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Presentamos un resumen de la i@aletas de los modelos de discos de adraalrededor de agujeros negros. Asumiendo perturbaciones
lineales, se encuentran dos modos principales de vioratg! disco de acremn, que producen moduldri del flujo de rayos X emitidos por
el mismo. Se muestra la determin@tide la masa y el egppara un ejemplo concreto de un candidato a agujero negro.

Descriptores:Agujeros negros; discos de aci@ti

We present a summary of the theory of accretion disks around black holes. In the regime of linear perturbation, we find the normal modes of
vibration of the accretion disk that modulate the emission of X-ray bursts. An example is shown for the determination of the mass and spin
of a particular black hole candidate.
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1. Introduccion 2. Agujeros negros de Schwarzschild

Cuando una estrella cumple su ciclo dda, la presbn de L& metrica de Schwarzschild describe el espaciotiempo exte-
radiacbn producida por la fuéh nuclear no puededs con-  fior auna configuradin esérica y esitica de masa. Utilizan-
trarrestar la atracéh de la fuerza gravitatoria, por lo que la do coordenadas ésfcas la escribimos como

estrella coIapéaDepe~ndiendo delas propiedqdes de la estre- ds2 = —acdf® + a~dr® 4 r2(d6? + sin 0d?), (L)

lla tales como su tanii®, su masa, etc., ella pédcolapsar y ’
convertirse en algun otro tipo de objeto celeste: enana blancggndeq = 1 — rp/r. La cantidadr, = (2GM/c?) es co-

enana cd, estrella de neutrones, etc. El caso extremo es @|gcida comaadio de Schwarzschildionde)/ representa la
colapso en lo que llamamos agujero negrd1-3]. masa total del objeto central, es la constante de gravi-

Los agujeros negros son objetosidies de observar, tacibn. Notemos que para radies> r,, la métrica (1) se
ya que en principio no emiten radiaai electromagetica  encuentra bien definida.
directamenté. Existen, sin embargo, varios indicios que  Parar = r,, el terminog,, de la netrica se indefine.
pueden llevar a la observaci indirecta de un agujero ne- De manera general, a la superficie dogge= 0 se le lla-
gro[4]. ma superficie de corrimiento al rojo infinitd?or otro lado,

El proposito del presente aculo es presentar la tdar  la superficie para la cugl., se indetermina, es generalmen-
basica defiis de las observaciones de la radiadintensa de te llamada ehorizonte de evento&n el caso de la &trica
rayos X que, sdn creemos, proviene ddisco de acreéin  de Schwarzschild, los papeles de superficie de corrimiento al
de materia que se presenta alrededor de ciertos candidatosogo infinito y horizonte de eventos son jugados por la misma
ser agujeros negros[5]. Esto es de particular importancia, ysuperficie, aunquesta no es una regla general.
que se estima que la régi donde son generados los rayos X  Para estudiar la damica de paftulas de prueba masivas
se encuentra o algunos radios de Schwarzschild del agu-en el espaciotiempo (1), es conveniente definir el Lagrangia-

jero negro en cuestn. no de geodsicas comaC = g, i*i” = —c?[6], donde el
Para esclarecer las propiedadésibas de los agujeros Punto significa derivada respecto al tiempo propio _
negros, comenzaremos en la Sec. 2 con el casogencillo, El LagrangianaC no depende exdlitamente de las varia-

el agujero negro (eatico) de Schwarzschild. En la Sec. 3, blesty ¢, de lo cual inferimos que los correspondientes mo-

estudiaremos los agujeros negros rotantes, que son caractéfentos cadnicos,e = 9L/ty A = dL/d¢, son constantes
zados por la rétrica de Kerr. de movimiento. De esta manera, la ecbaale movimiento

(de las paitulas de prueba que se obtiene directamente del

Enla Sec. 4, presentaremos los modelos de disco de ac _
Lagrangiano es

cion alrededor de un agujero negro de Kerr. El objetivo prin
cipal sea encontrar las eigenfrecuencias del movimiento de 2 2 _ A2
. . . . . .2 242 € c(rn—r) (5
perturbaciones lineales de la materia en el discolRiono, 7+ artf” — ol 3 rt+ 2anZo ) @)
en la Sec. 5, revisaremos la coraxiexistente entre teiar
y observaciones, y presentaremos las conclusiones generatiande la parte derecha define al potencial gravitatorio efecti-

del trabajo. vo V (r).
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Las oOrbitas circulares se corresponden con Idaimos
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Las orbitas de paftulas de prueba masivas en la

de V(r). Los valores de equilibrio que se obtienen son enmeétrica (5) son descritas por tres constantes de movi-

toncesdy = (7/2),y

A2
"0T 5GM

®3)

1 12G2M?
<1:t \/1 — 14262> .

miento. Estas cantidades conservadas Bea — 9L/0f,
L=0L/0¢,y
L2

. )
sin? 6

Q = pg 4 cos? 0 |a*(u* — E?) +

Para encontrar las eigenfrecuencias del movimiento lidondey es la masa en reposo de la peuta prueba = 0

nealmente perturbado de una pauta masiva en unarbita
circular, hacemos un afisis de pequias oscilaciones alre-
dedor de los valores de equilibri6y, r)[7,8]. Las eigenfre-
cuencias obtenidas son

para fotones)F es la enerta total de la paftula pruebal
es la proyecd@n del momento angular de una pewta sobre
el eje de rotadin del agujero negro, § es una integral de
movimiento encontrada por Carter en la Ref. 9.
Las ecuaciones que gobiernan la trayectoria orbital de las

w? = A;, w? = AT2 B 6A22G5M ’ (4) Parculas son
o 0 c“ry dr
Za = :I:(Vr)l/2 ) (8)
dondeA? = GMrq (1 —3GM/ (c2r0))_1, ver Ec. (3). En &0
este casowi corresponde a la frecuencia radiaky a la Y— = (V)2 9)
frecuencia azimutal. Otra frecuencigita del sistema es la dA
orbital, dada pof2 = dip/dt = (GM/T‘S)I/Q, la cual coinci- ode _ (aE _ L2) n ﬂ’ (10)
de con el @lculo Newtoniano. dX sin“ 0 A
Tambén de la Ec. (3) se observa que para valores de dt T
A? < (12G2M?/c?), el radior, no esé definido, lo cual Toy = —alak sin?@ — L) + (r? + az)g, (11)
indica un cambio cualitativo en la forma de la cuva del po-d de) ametro ain ders
tencial. Es decir, existe un valofinimo paraA2, y en conse- ondeA es un paimetro ain, y adenas
cuencia, existe tamén un valor nmimo parary. Esto es lo T=E (T2 4 a2) — La, (12)
gue define el llamado radio de dabita circular estable &s
pequédia (ISCO, por las siglas en irggl deinnermost stable V,=T? - A [u2r2 + (L - aE)2 + Q} , (13)
circular orbit), el cual es ;500 = 3r. )
Vo =Q — cos®0 {cﬁ (/QL2 — E2) + _L2 } . (14)
sin“ 6

3. Agujeros negros de Kerr

Para analizar el espaciotiempo de un agujero negro rotantgj‘(r)

es conveniente comenzar con latnca de Kerr

AMar sin® 0 b))

— ﬂdtdg@ 4+ Zdr?
A

2Ma?r sin® 0

+ Xdo?* + (r2+a2+ 5

) sin? 0dp?,  (5)

dondeX = r2+a2cos? 6, A = r2—2Mr+a2. Ademas de la
masa total del objeto centrdl/, aparece un nuevo ganetro

Paraorbitas circulares, se deben cumplir las condiciones
=0y V/(r) = 0 (donde’ = 9,), que al resolverlas
simultaneamente parg y L, se obtiene

E r3/2 — oMr1/2 4+ a M2

m = r3/4(r3/2 — 3Mr1/2 £ 2aM1/2)1/2 (15)

L + M2 (r? F 2aM Y2012 4+ a?)

; - r3/A(r3/2 — 3Mr1/2 + 2aM1/2)1/2

El signo superior se refieretabitas directas y el signo infe-
rior se refiere @rbitas retogradas[10].
Ya que no todas laérbitas circulares son estables para

(16)

a, que es conocido como elomento angular por unidad de cualquier valor de-, es necesario qug”” < 0, lo cual equi-

masd®.
A = 0, entonces el radio, correpondiente es
ry =M+ (M? —a®)V/2,
Tomando qué® < a < M, entonces ;. € [r,/2,74].
Por otro lado, la superficie dongg = 0 yace fuera del

horizonte de eventos,8sta es llamada kergoesfera super-
ficie dellimite eshtico, con radio

M? — a2 cos20

(7)

vale a
Para la rétrica (5), el horizonte de eventos ocurre cuando

72 — 6Mr £ 8aM?r1/2 — 342 >0, (17)

6r > rrsco, donderysco separa a lasérbitas circulares
estables de las inestables, y viene dado por

risco = M{3+Z; F((3—21)(3+ Z1+22,)]"/?}, (18)

1
a2 \:
M2

73 = (3a®/M?) + Z3.

donde ader@as

W
L —
—
—
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<[=
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4. Disco de acre@n Por otro lado, de las Ecs. (23) y (25), y de la defimicile

_ o perturbaddn Euleriana obtenemos
Con el fin de encontrar los modos de oscitaciobserva-

dos experimentalmente, es necesario considerar un disco 50— 52 5—U+LA S50 (26)

de acredin estacionario y axialmente ginico. La mate- p=r Ip  wp “ ’

ria en este disco puede ser tratada como un fluido perfecto, . -

T = pu®u? + pg™, dondep es la densidad de engag dondep < p, 6U es un potencial escalar definido como

p es la pregin, u® es la 4-velocidad del fluido, y*© =  0U =0dp/py Ao = Vap/p* — (1/ppl)Vap.

g7 + utu. Por otro lado, usando la Ec. (26), y la defibigcide po-
Escribimos la rétrica de Kerr en coordenadas de Boyer-tencial escalar, podemos transformar la Ec. (21) en

Lindquist de la forma
Va [pQPV U] — Q*PV \pV U + WU =0, (27)

2 A * * 2
ds® = JAA* dt2+f—2(d¢—ﬁ;dt)2+ bdr2+dzz, 20)  4onde
con A* = r2 — 2r + a2, A* = r* 4+ r2a® + 2rad?, y _ o fwB a8 ) 2 ~af
W = (2ar/A*). Las pariculas se movén sobre el plano =0 (pF pAaQ Ay ) +Va [7Q7 A
ecuatorial con una 4-velocidad = 3(t* + Q®), donde in2
8 = dt/ds, Q = d¢/dt, ¢* y t* son las componentes del — pQ*PV \pAs + L (m + wBupy) (QB"
vector de Killing. of
Consideremos ahora las ecuaciones linealizadas para las — Q“ﬁ) DA, . (28)

perturbaciones Eulerianagp, dp(< dp) y du®. Por lo
tanto, las leyes de consenvéwide ener@g, v, V,T**=0,  Aqui, o¢ = q*P /a3 es la combinaéin lineal de los cam-
y las ecuaciones de movimiento de Euler perturbadagyos de Killing y
qo' vV, T*'=0, a primer orden son, respectivamente,

— . N 1
Q=25 PV 30 VA

UV abp + 50" Vap + pVadd® =0,  (21)
p (quu”vyéﬁ“ + 511”Vuu0‘)
= —0pul'V,u® — ¢*"V,0p,  (22) 101

dondedu® = g;dut, ugdu® = 0 (hemos asumido que el
disco es delgado y que+ p ~ p). Asumimos que la en- 8
tropia espeffica de un elemento del fluido permanece inalte-
rada conforme evoluciona, es dedipy = (pI'/p) Ap, donde
T’ es una fundn arbitraria estacionaria y axialmente &ini

e . ~ 6
ca en el equilibrio del fluido. s
Las perturbaciones Lagrangianas aest relaciona- «
das con sus contrapartes Eulerianas por las ecuacione &g

Ap = 6p+ E9Vapy Ap = Op + £2Vap, Mientras que = 4
para la velocidad perturbada tenemos

00 = qy (W'V, " ="V, ut) . (23) )

Asumimos ahora que todas las cantidades de pertdnpaci
Euleriana tienen dependencia temporal y azimutal, es decir.
€0 = &%(p, 2)e!metot) dondew(r,z) = o + mQ es la
frecuencia corrotantey = 0, +1,+2, ..., de esta forma

o

o (ot oa . " FIGURA 1. La intersecdn de lasineas élidas corresponden a la
0u” = (qu + o qu) P (24) masa y el esp de un candidato a agujero negro, ver Ref. 4, para el
cual se han identificado las frecuencias de 450 Hz y 300 Hz QPOs
Despues de cierto tratamiento algebraico obtenemos como los modos ¢ y g mencionados en el texto. irzeds horizon-

tales delimitan el rango de masa determinad@uticamente. De

a _L o l o v g acuerdo con la figura, el eispdel agujero negro es/M ~ 0.9.
¢ = Bw {qﬂ wa’ ¥ VMQ] our, (25) Las lineas punteadas corresponden al caso en que se han intercam-
biado los valores de los modogjtese entonces que la interséeci
donde hemos fijado la norma éft haciendat“u,, = 0. de las mismas estafuera del intervalo estimado para la masa.
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En este momento es necesario introducir latnma
heP = ¢q*8 — p>4P, de esta manera, de la Ec. (27), obte-
nemos

D, (A*)l/%HWDV(W] F(AMY2L 308V =0, (29)

dondeD,, es la derivada covariante asociada con Etrin
cah®?, las cuales adtn, por ejemplo, sobre escalares com
Do f = hBVsf. 8V = §U/wp es la perturbadin del poten-
cial reescalado,

rr 2(&12—/&2)71 ,

H'" =¢"w H** = w*(w?> -~ N*™1 (30)

siendoH"* despreciable para discos delgadeoses la fre-
cuencia epitclica radial y N2 es la frecuencia de Brunt
Vaisala, veanse en la Ref. 5. Utilizando el&todo WKB,
transformamos la Ec. (29) en

O LoV 10, o
9 o (w2 —Kk2) Or p 0z | (w2 —N2) 0z
g> 1 o pYt o
+ { 2 + DT 95 | (02— ND) 0 % (31)

Proponemos la siguiente solanioV: = V,.(r)V;(r,n),
donden = z/h(r) y V,, es una fundén der que vafa lenta-
mente, obteniendo Bglos ecuaciones separadas

a2V, 1 d o 9 dV;
0= dr? _(wQ—KQ)ﬂ(w _ﬁ)dr
2,2 2 v
+a(w —5)(1—2>Vr, (32)
w*
d*v, n oA _\V, w2
T ‘<rg‘an“)an+rg‘/"
U — 2 n oA 0% oAU
—F 1+ 5= — -2V 33
(55 5 T @

dondew, = w/Q,w, eslafrecuencia egiclica vertical[5],

y
2 Grr —__ 82Ql oA
= ==R(n—7+ —
“ rh2Q? (77 on? + on
_ .9
R = N2

z

(o)
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5. Mediciones y conclusiones generales

La medicbn del esfn de un agujero negro puede ser hecha
identificando las dos QPOs (Quasi-Periodic Oscillations) ob-
servadas en las frecuencias de los modos lineales de vibraci
de los flujos de acregn. En particular, se han identificado
tres tipos de modos como fuentes potenciales de variabilidad
cuasi-perbdica.
= Modos g: Estos son los modos de inercia-gravedad, que

ocurren a una frecuencfg ~ k., £mf2,,. Se encuen-

tran en aquellos valores de la fudride separadn ¥

que satisfacew > w2, y los cuales corresponden a

K2 > w2

Modos c: Estos son los modos de corrugacgue
ocurren a una frecuencja ~ Q —2, . Para encontrar-
los, es necesario que la Ec. (32) cumpla dor= w?
en al menos en un valor del radio.

Modos p: Estos son los modos de inerci@siica y no
se espera que produzcan modudacsignificante en el
flujo de rayos-X.

Si se identifican dos frecuencias de QPO correspondien-
tes a dos diferentes modos, se puede determinanigo par
de valores de la masa y del @sjpara el agujero negro. Esto
se ilustra para un ejemplo particular en la Fig. 1.

La existencia de agujeros negros es predicha por la Rela-
tividad General de Einstein. Pero la existencia real de estos
objetos @n esé bajo riguroso escrutinio, ya que se cuenta
hasta ahora con evidencia indirecta. Sin embargo, se espers
gue la presencia de un horizonte de eventos, una cdsdicter
ca fundamental de los hoyos negros, pueda ser detectada er
el futuro pBximo[11].
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negros de poca masa [12].
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