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Presentamos un resumen de la teorı́a detŕas de los modelos de discos de acreción alrededor de agujeros negros. Asumiendo perturbaciones
lineales, se encuentran dos modos principales de vibración del disco de acreción, que producen modulación del flujo de rayos X emitidos por
el mismo. Se muestra la determinación de la masa y el espı́n para un ejemplo concreto de un candidato a agujero negro.

Descriptores:Agujeros negros; discos de acreción.

We present a summary of the theory of accretion disks around black holes. In the regime of linear perturbation, we find the normal modes of
vibration of the accretion disk that modulate the emission of X-ray bursts. An example is shown for the determination of the mass and spin
of a particular black hole candidate.
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1. Introducción

Cuando una estrella cumple su ciclo devida, la presíon de
radiacíon producida por la fusión nuclear no puede ḿas con-
trarrestar la atracción de la fuerza gravitatoria, por lo que la
estrella colapsai. Dependiendo de las propiedades de la estre-
lla tales como su tamaño, su masa, etc., ella podrá colapsar y
convertirse en algun otro tipo de objeto celeste: enana blanca,
enana caf́e, estrella de neutrones, etc. El caso extremo es el
colapso en lo que llamamos unagujero negro[1-3].

Los agujeros negros son objetos difı́ciles de observar,
ya que en principio no emiten radiación electromagńetica
directamenteii. Existen, sin embargo, varios indicios que
pueden llevar a la observación indirecta de un agujero ne-
gro[4].

El proṕosito del presente artı́culo es presentar la teorı́a
básica detŕas de las observaciones de la radiación intensa de
rayos X que, seǵun creemos, proviene deldisco de acrecíon
de materia que se presenta alrededor de ciertos candidatos a
ser agujeros negros[5]. Esto es de particular importancia, ya
que se estima que la región donde son generados los rayos X
se encuentra a sólo algunos radios de Schwarzschild del agu-
jero negro en cuestión.

Para esclarecer las propiedades básicas de los agujeros
negros, comenzaremos en la Sec. 2 con el caso más sencillo,
el agujero negro (estático) de Schwarzschild. En la Sec. 3,
estudiaremos los agujeros negros rotantes, que son caracteri-
zados por la ḿetrica de Kerr.

En la Sec. 4, presentaremos los modelos de disco de acre-
ción alrededor de un agujero negro de Kerr. El objetivo prin-
cipal seŕa encontrar las eigenfrecuencias del movimiento de
perturbaciones lineales de la materia en el disco. Porúltimo,
en la Sec. 5, revisaremos la conexión existente entre teorı́a
y observaciones, y presentaremos las conclusiones generales
del trabajo.

2. Agujeros negros de Schwarzschild

La métrica de Schwarzschild describe el espaciotiempo exte-
rior a una configuración esf́erica y est́atica de masa. Utilizan-
do coordenadas esféricas la escribimos como

ds2 = −αc2dt2 + α−1dr2 + r2(dθ2 + sin2 θdϕ2) , (1)

dondeα = 1 − rh/r. La cantidadrh ≡ (2GM/c2) es co-
nocida comoradio de Schwarzschild, dondeM representa la
masa total del objeto central, yG es la constante de gravi-
tación. Notemos que para radiosr > rh, la métrica (1) se
encuentra bien definida.

Parar = rh, el término grr de la ḿetrica se indefine.
De manera general, a la superficie dondegtt = 0 se le lla-
ma superficie de corrimiento al rojo infinito. Por otro lado,
la superficie para la cualgrr se indetermina, es generalmen-
te llamada elhorizonte de eventos. En el caso de la ḿetrica
de Schwarzschild, los papeles de superficie de corrimiento al
rojo infinito y horizonte de eventos son jugados por la misma
superficie, aunquéesta no es una regla general.

Para estudiar la dińamica de partı́culas de prueba masivas
en el espaciotiempo (1), es conveniente definir el Lagrangia-
no de geod́esicas comoL = gµν ẋµẋν = −c2[6], donde el
punto significa derivada respecto al tiempo propioτ .

El LagrangianoL no depende explı́citamente de las varia-
blest y ϕ, de lo cual inferimos que los correspondientes mo-
mentos cańonicos,ε = ∂L/∂ṫ y A = ∂L/∂ϕ̇, son constantes
de movimiento. De esta manera, la ecuación de movimiento
de las part́ıculas de prueba que se obtiene directamente del
Lagrangiano es

ṙ2 + αr2θ̇2 − ε2

c2
=

c2 (rh − r)
r3

(
r2 +

A2

c2 sin2 θ

)
, (2)

donde la parte derecha define al potencial gravitatorio efecti-
vo V (r).
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Las órbitas circulares se corresponden con los mı́nimos
de V (r). Los valores de equilibrio que se obtienen son en-
toncesθ0 = (π/2), y

r0 =
A2

2GM

(
1±

√
1− 1

A2

12G2M2

c2

)
. (3)

Para encontrar las eigenfrecuencias del movimiento li-
nealmente perturbado de una partı́cula masiva en unáorbita
circular, hacemos un análisis de pequẽnas oscilaciones alre-
dedor de los valores de equilibrio(θ0, r0)[7,8]. Las eigenfre-
cuencias obtenidas son

w2
1 =

A2

r4
0

, w2
2 =

A2

r4
0

− 6A2GM

c2r5
0

, (4)

dondeA2 = GMr0

(
1− 3GM/

(
c2r0

))−1
, ver Ec. (3). En

este caso,w2
1 corresponde a la frecuencia radial yw2

2 a la
frecuencia azimutal. Otra frecuencia tı́pica del sistema es la
orbital, dada porΩ = dϕ/dt =

(
GM/r3

0

)1/2
, la cual coinci-

de con el ćalculo Newtoniano.
Tambíen de la Ec. (3) se observa que para valores de

A2 < (12G2M2/c2), el radior0 no est́a definido, lo cual
indica un cambio cualitativo en la forma de la cuva del po-
tencial. Es decir, existe un valor mı́nimo paraA2, y en conse-
cuencia, existe también un valor ḿınimo parar0. Esto es lo
que define el llamado radio de laórbita circular estable ḿas
pequẽna (ISCO, por las siglas en inglés deinnermost stable
circular orbit), el cual esrISCO = 3rh.

3. Agujeros negros de Kerr

Para analizar el espaciotiempo de un agujero negro rotante,
es conveniente comenzar con la métrica de Kerr

ds2 = −
(

1− 2Mr

Σ

)
dt2 − 4Mar sin2 θ

Σ
dtdϕ +

Σ
∆

dr2

+ Σdθ2 +
(

r2 + a2 +
2Ma2r sin2 θ

Σ

)
sin2 θdϕ2 , (5)

dondeΣ = r2+a2 cos2 θ, ∆ = r2−2Mr+a2. Adeḿas de la
masa total del objeto central,M , aparece un nuevo parámetro
a, que es conocido como elmomento angular por unidad de
masaiii.

Para la ḿetrica (5), el horizonte de eventos ocurre cuando
∆ = 0, entonces el radior+ correpondiente es

r+ = M + (M2 − a2)1/2 . (6)

Tomando que0 ≤ a ≤ M , entoncesr+ ∈ [rh/2, rh].
Por otro lado, la superficie dondegtt = 0 yace fuera del

horizonte de eventos, ýesta es llamada laergoesferao super-
ficie del l ı́mite est́atico, con radio

r0 = M +
√

M2 − a2 cos2 θ . (7)

Las órbitas de partı́culas de prueba masivas en la
métrica (5) son descritas por tres constantes de movi-
miento. Estas cantidades conservadas sonE= − ∂L/∂ṫ,
L = ∂L/∂ϕ̇, y

Q = p2
θ + cos2 θ

[
a2(µ2 − E2) +

L2

sin2 θ

]
,

dondeµ es la masa en reposo de la partı́cula prueba (µ = 0
para fotones),E es la enerǵıa total de la partı́cula prueba,L
es la proyeccíon del momento angular de una partı́cula sobre
el eje de rotacíon del agujero negro, yQ es una integral de
movimiento encontrada por Carter en la Ref. 9.

Las ecuaciones que gobiernan la trayectoria orbital de las
part́ıculas son

Σ
dr

dλ
= ±(Vr)1/2 , (8)

Σ
dθ

dλ
= ±(Vθ)1/2 , (9)

Σ
dϕ

dλ
= −

(
aE − L

sin2 θ

)
+

aT

∆
, (10)

Σ
dt

dλ
= −a(aE sin2 θ − L) + (r2 + a2)

T

∆
, (11)

dondeλ es un paŕametro af́ın, y adeḿas

T ≡ E
(
r2 + a2

)− La , (12)

Vr ≡ T 2 −∆
[
µ2r2 + (L− aE)2 + Q

]
, (13)

Vθ ≡ Q− cos2 θ

[
a2

(
µ2 − E2

)
+

L2

sin2 θ

]
. (14)

Paraórbitas circulares, se deben cumplir las condiciones
Vr(r) = 0 y V ′

r (r) = 0 (donde′ ≡ ∂r), que al resolverlas
simult́aneamente paraE y L, se obtiene

E

µ
=

r3/2 − 2Mr1/2 ± aM1/2

r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2
, (15)

L

µ
=

±M1/2(r2 ∓ 2aM1/2r1/2 + a2)
r3/4(r3/2 − 3Mr1/2 ± 2aM1/2)1/2

. (16)

El signo superior se refiere aórbitas directas y el signo infe-
rior se refiere áorbitas retŕogradas[10].

Ya que no todas laśorbitas circulares son estables para
cualquier valor der, es necesario queV ′′

r ≤ 0, lo cual equi-
vale a

r2 − 6Mr ± 8aM1/2r1/2 − 3a2 ≥ 0 , (17)

ó r ≥ rISCO, donderISCO separa a laśorbitas circulares
estables de las inestables, y viene dado por

rISCO = M{3+Z2∓ [(3−Z1)(3+Z1 +2Z2)]1/2} , (18)

donde adeḿas

Z1 = 1 +
(

1− a2

M2

) 1
3

[(
1 +

a

M

) 1
3

+
(
1− a

M

) 1
3
]

,

Z2
2 = (3a2/M2) + Z2

1 . (19)
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4. Disco de acrecíon

Con el fin de encontrar los modos de oscilación observa-
dos experimentalmente, es necesario considerar un disco
de acrecíon estacionario y axialmente simétrico. La mate-
ria en este disco puede ser tratada como un fluido perfecto,
Tαγ = ρuαuγ + pqαγ , dondeρ es la densidad de energı́a,
p es la presíon, uα es la 4-velocidad del fluido, yqαγ =
gαγ + uαuγ .

Escribimos la ḿetrica de Kerr en coordenadas de Boyer-
Lindquist de la forma

ds2 = −r2∆∗

A∗
dt2 +

A∗

r2
(dφ− w̃dt)2 +

r2

∆∗ dr2 +dz2, (20)

con ∆∗ ≡ r2 − 2r + a2, A∗ ≡ r4 + r2a2 + 2ra2, y
w̃ ≡ (2ar/A∗). Las part́ıculas se moverán sobre el plano
ecuatorial con una 4-velocidaduα = β(tα + Ωϕα), donde
β = dt/ds, Ω = dφ/dt, ϕα y tα son las componentes del
vector de Killing.

Consideremos ahora las ecuaciones linealizadas para las
perturbaciones Eulerianasδρ, δp(¿ δρ) y δuα. Por lo
tanto, las leyes de conservación de enerǵıa, uµ∇αTαµ=0,
y las ecuaciones de movimiento de Euler perturbadas,
qα
ν∇µTµν=0, a primer orden son, respectivamente,

uα∇αδρ + δûα∇αρ + ρ∇αδûα = 0 , (21)

ρ
(
qα
µuν∇νδûµ + δûµ∇µuα

)

= −δρuµ∇µuα − qαµ∇µδp , (22)

dondeδûα = qα
µδuµ, uαδuα = 0 (hemos asumido que el

disco es delgado y quep + ρ ≈ ρ). Asumimos que la en-
troṕıa espećıfica de un elemento del fluido permanece inalte-
rada conforme evoluciona, es decir,∆p = (pΓ/ρ)∆ρ, donde
Γ es una funcíon arbitraria estacionaria y axialmente simétri-
ca en el equilibrio del fluido.

Las perturbaciones Lagrangianas están relaciona-
das con sus contrapartes Eulerianas por las ecuaciones
∆p = δp + ξα∇αp y ∆ρ = δρ + ξα∇αρ, mientras que
para la velocidad perturbada tenemos

δûα = qα
µ (uν∇νξµ − ξν∇νuµ) . (23)

Asumimos ahora que todas las cantidades de perturbación
Euleriana tienen dependencia temporal y azimutal, es decir,
ξα = ξ∗α(r, z)ei(mφ+σt), dondeω(r, z) = σ + mΩ es la
frecuencia corrotante ym = 0,±1,±2, ..., de esta forma

δûα =
(

qα
µ +

i

ω
qα
ν ϕν∇µΩ

)
iβωξµ . (24)

Despúes de cierto tratamiento algebraico obtenemos

ξα = − i

βω

[
qα
µ −

i

ω
qα
ν ϕν∇µΩ

]
δûµ , (25)

donde hemos fijado la norma enξα haciendoξαuα = 0.

Por otro lado, de las Ecs. (23) y (25), y de la definición de
perturbacíon Euleriana obtenemos

δρ = ρ2

(
δU

Γρ
+

i

ωβ
Aαδûα

)
, (26)

dondep ¿ ρ, δU es un potencial escalar definido como
δU = δp/ρ y Aα = ∇αρ/ρ2 − (1/ρpΓ)∇αp.

Por otro lado, usando la Ec. (26), y la definición de po-
tencial escalar, podemos transformar la Ec. (21) en

∇α

[
ρQαβ∇βδU

]−Qαβ∇αp∇βδU + ΨδU = 0 , (27)

donde

Ψ = ρ2

(
ωβ

pΓ
− ρAαQαβAβ

)
+∇α

[
ρ2QαβAβ

]

− ρQαβ∇αpAβ +
iρ2

σβ
(m + ωβuαϕα)

(
Qβµ

− Qµβ
)
ϕ̂βAµ . (28)

Aqúı, ϕ̂α = qαβϕβ/σβ es la combinación lineal de los cam-
pos de Killing y

Q−1
αβ=ωβqαβ−2iqµ

β∇µuα+iβqαµϕµ∇βΩ− 1
ωβ
∇αpAβ .

FIGURA 1. La interseccíon de las ĺıneas śolidas corresponden a la
masa y el esṕın de un candidato a agujero negro, ver Ref. 4, para el
cual se han identificado las frecuencias de 450 Hz y 300 Hz QPOs
como los modos c y g mencionados en el texto. Las lı́neas horizon-
tales delimitan el rango de masa determinado dinámicamente. De
acuerdo con la figura, el espı́n del agujero negro esa/M ∼ 0.9.
Las ĺıneas punteadas corresponden al caso en que se han intercam-
biado los valores de los modos; nótese entonces que la intersección
de las mismas está afuera del intervalo estimado para la masa.
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En este momento es necesario introducir la métrica
hαβ = qαβ − ϕ̂αϕ̂β , de esta manera, de la Ec. (27), obte-
nemos

Dµ

[
(∆∗)1/2ρHµνDνδV

]
+ (∆∗)1/2ω β Φ δV = 0 , (29)

dondeDα es la derivada covariante asociada con la métri-
cahαβ , las cuales actúan, por ejemplo, sobre escalares como
Dαf = hβ

α∇βf . δV = δU/ωβ es la perturbación del poten-
cial reescalado,

Hrr = grrω2(ω2−κ2)−1 , Hzz = ω2(ω2−N2
z )−1 (30)

siendoHrz despreciable para discos delgados,κ2 es la fre-
cuencia epićıclica radial y N2

z es la frecuencia de Brunt
Väis̈alä, véanse en la Ref. 5. Utilizando el método WKB,
transformamos la Ec. (29) en

0 = grr ∂

∂r

[
1

(ω2 − κ2)
∂δV

∂r

]
+

1
ρ

∂

∂z

[
ρ

(ω2 −N2
z )

∂δV

∂z

]

+
{

β2

c2
s

+
1

p1/Γ

∂

∂z

[
p1/Γ

(ω2 −N2
z )

∂A

∂z

]}
δV. (31)

Proponemos la siguiente solución δV = Vr(r)Vη(r, η),
dondeη = z/h(r) y Vη es una funcíon der que vaŕıa lenta-
mente, obteniendo ası́, dos ecuaciones separadas

0 =
d2Vr

dr2
− 1

(ω2 − κ2)
d

dr
(ω2 − κ2)

dVr

dr

+ α2(ω2 − κ2)
(

1− Ψ
ω2∗

)
Vr, (32)

0 =
d2Vη

dη2
−

(
η

Γg
− ∂A

∂η
+ Ξ

)
∂Vη

∂η
+

ω2
∗

Γg
Vη

+
[
Ψ− ω2

∗
Γ

(
1 +

η

ω2∗

∂A

∂η

)
+

∂2A

∂η2
− Ξ

∂A

∂η

]
Vη , (33)

dondeω∗ ≡ ω/Ω⊥, ω⊥ es la frecuencia epicı́clica vertical[5],
y

α2 =
grr

Γh2Ω2
⊥

, Ξ ≡ R

(
η
∂2A

∂η2
+

∂A

∂η

)

R ≡ Ω2
⊥

ω2 −N2
z

.

5. Mediciones y conclusiones generales

La medicíon del esṕın de un agujero negro puede ser hecha
identificando las dos QPOs (Quasi-Periodic Oscillations) ob-
servadas en las frecuencias de los modos lineales de vibración
de los flujos de acreción. En particular, se han identificado
tres tipos de modos como fuentes potenciales de variabilidad
cuasi-períodica.

Modos g: Estos son los modos de inercia-gravedad, que
ocurren a una frecuenciafg ≈ κm±mΩm. Se encuen-
tran en aquellos valores de la función de separación Ψ
que satisfacenΨ > ω2

∗, y los cuales corresponden a
κ2 > ω2.

Modos c: Estos son los modos de corrugación que
ocurren a una frecuenciafc ≈ Ω−Ω⊥. Para encontrar-
los, es necesario que la Ec. (32) cumpla conΨ = ω2

∗
en al menos en un valor del radio.

Modos p: Estos son los modos de inercia-acústica y no
se espera que produzcan modulación significante en el
flujo de rayos-X.

Si se identifican dos frecuencias de QPO correspondien-
tes a dos diferentes modos, se puede determinar unúnico par
de valores de la masa y del espı́n para el agujero negro. Esto
se ilustra para un ejemplo particular en la Fig. 1.

La existencia de agujeros negros es predicha por la Rela-
tividad General de Einstein. Pero la existencia real de estos
objetos áun est́a bajo riguroso escrutinio, ya que se cuenta
hasta ahora con evidencia indirecta. Sin embargo, se espera
que la presencia de un horizonte de eventos, una caracterı́sti-
ca fundamental de los hoyos negros, pueda ser detectada en
el futuro pŕoximo[11].
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i. Este es una versión muy simplificada del ciclo de vida de una
estrella. Informacíon más detallada puede consultarse en las
Refs. 1 y 3.

ii. Mención aparte merece la llamada Radiación de Hawking, la
cual puede llevar a la evaporación de un agujero negro. Sin
embargo, esto serı́a un feńomeno importante śolo en agujeros
negros de poca masa [12].

iii. Nótese que hemos elegido unidades tales que G=c=1.
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6. B.F. Schutz,A first course in general relativity(Cambridge,
Uk:Univ.Pr., 1985) p. 376.

7. H. Goldstein,Classical Mechanics(Addison-Wesley: Reading
Massachusetts, 1980).

8. L.D. Landau y E.M. Lifshitz,Course of theoretical physics:
Mechanics, Third Edition (Pergamon Press., 1976).

9. B. Carter,Phys. Rev.174(1968) 1559.

10. J.M. Bardeen, W.H. Press y S.A. Teukolsky,Astro-phys.J.178
(1972) 347.

11. R. Narayan (2003), astro-ph/0310692.

12. N.D. Birrell y P.C.W. Davies,Quantum fields in curved space
(Cambridge, Uk:Univ.Pr., 1982) p. 340.

Rev. Mex. F́ıs. S53 (4) (2007) 46–50


