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Gowdy Cosmological Models from Stringy Black Holes
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In the framework oftD Einstein-Maxwell Dilaton—Axion theory we show how to obtain a family of both unpolarized and polafized?
Gowdy cosmological models endowed with nontrivial axion, dilaton and electromagnetic fields from a solitonic rotating black hole—tyj
solution by interchanging theandt coordinates in the region located between the horizons of the black hole configuration. We also obtai
a family of Kantowski—-Sachs cosmologies with topold@y x 52 from the polarized Gowdy cosmological models by decompactifying one
of the compact dimensions.

Keywords:Gowdy and Kantowski—Sachs cosmological models; rotating black holes; low—energy string theory; coordinate transformatior

En el marco de la te@a tetradimensional de Einstein—Maxwell con dilaty axibn se muestra@no obtener una familia de modelos cos-
molbgicos de Gowdy (polarizados y no polarizados) con todaléd x S2. Dichos modelos cosmdgjicos se obtienen a partir de una
solucbn solibnica de tipo agujero negro rotatorio mediante el intercambio de las coordegdasn la regbn comprendida entre los ho-
rizontes del agujero negro y contempla campos @lilab, axbnico y electromaggtico no triviales. A su vez, a partir de las cosmaisy
de Gowdy polarizadas se obtiene una subclase de modelos éggros| de tipo Kantowski—-Sachs con topdl@' x S? mediante la
decompactifica¢in de una de las coordenadas compactas.

Descriptores:Cosmolodas de tipo Gowdy y Kantowski-Sachs; agujeros negros rotatoriosa@eicuerdas a bajas enierg transformadn
de coordenadas.

PACS: 98.80.Hw, 04.20.Jb, 04.50.+h, 11.25.M

1. Introduction have appeared in the literature in the framework of Einstein,
Einstein—Maxwell, dilaton gravity, sugra and string/M theo-
In the last few years there have been many attempts to lookes [5—7].
at cosmology from a string theory point of view. More- The idea of this brief report consists in extrapolating this
over, string cosmology is becoming a subject of great intermethod to the realm of théD low—energy heterotic string
est among both theoreticians and phenomenologists. At thineory which describes gravity coupled to a dilaton, an axion
present time there are many cosmological scenarios and tland just one electromagnetic vector ffeldhis generaliza-
topic itself is experiencing tremendous activity. For useful re-tion becomes possible in the case when4fktheory pos-
views see, for instance, [1] and the references quoted thereisesses two commuting Killing vectors (as occurs within the
In the framework of general relativity, Kantowski and framework of general relativity) and can be lifted to any di-
Sachs [2] proposed a method which relates the inner regiofensions for configurations which posséss 2 commuting
of a static black hole solutions to a homogeneous cosmologKilling vectors.
cal background under the simple coordinate transformation Thus, in this work we shall perform a straightforward im-
r «— t. This result was further generalized and a rela-plementation of the coordinate transformation— ¢ in
tionship between Gowdy cosmologies [3] and the Kerr ro-order to obtain several families of cosmological backgrounds
tating black hole was established by OlegQuevedo and from black hole configurations (and viceversa) without tears.
Ryan in Ref. 4. In this latter case, the coordinate chang&amely, by starting with a rotating field configuration of
mentioned above relates the region located between the twiack hole type possessing two horizons, we just apply such
horizons of the rotating black hole solution to a cosmologicala coordinate interchange in the region located between the
model of Gowdy type. Thus, this simple coordinate trans-horizons, and as a result we get as well several families of in-
formation enables us to obtain straightforwardly cosmologi-homogeneous cosmological model of Gowdy type, both po-
cal backgrounds from black hole configurations, and viceviarized and unpolarized. It is interesting to note that a family
ersa, without solving the Einstein equations, a nontrivial facof Kantowski—-Sachs cosmologies arises from the polarized
which is worth taking into account. Recently, several pa-Gowdy cosmological models by decompactifying one of the
pers concerning the physics of inhomogeneous cosmologiempact dimensions.
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2. The General Relativity Side of the Story This solution possesses two horizons given by the follow-

ing expressions:
We start this Section by quoting the Schwarzschild black hole

solution to the vacuum Einstein’s equations re=m'£vm? —a? (6)
ds® = —(1 — 2m/r)dt® + (1 — 2m/r) " dr? wherer, andr_ are called outer and inner horizons, respec-
tively.
+ r2(d6? + sin® 0 dyp?), 1) On the other side, the unpolarized Gowdy cosmological

models with topologys' x S? [3] have the following form:

wherem is a constant parameter which can be interpreted as 2 (rN)/2 oo ) N
the mass of the static black hole. ds®=e (—e *dr® +df?) + Lsin(e™7)
On the other side, we shall recall as well a particular cos- P 2, _op . 2 2}
mological model which was reported for the first time in [9], e {(dé +Qdp)" +e sin”fde” |, (7)

but which is quoted in the literature as the Kantowski-Sachgyhere), P and(Q are functions of- andé, and L stands for

cosmologies [2], namely, a metric of the form arbitrary constant.
Here we shall say just a few words concerning the topol-
2 _ 2 7,2 2V36(t) 7,.2 . :
ds® = =N (t)%dt* + e>**War ogy of the metric. It is clear that thp possesses the topol-

ogy of the two—sphers?. Thus, in order to get a metric with
the topologyS® x S2, theé coordinate must be a compact

Kantowski and Sachs obtained the following one-°Ne€- This can be achieved by requiriags § < 2m, with
parameter family of solutions to the vacuum Einstein’s equaP0iNtsd = 0 andé = 2 identified.

+ e 2V38(1) g —2v30(1) (d6* +sin? 0 dp?).  (2)

tions: In the case when the functid@pis set to zero, one obtains
) the so—called polarized cosmological Gowdy models [10]
N(t)2 — (% — 1) R 62\/§ﬁ(t) = % —_ 1, d82 _ e(Tfk)/Z (_6727'd,7_2 + d92)

+ Lsin(e™7) (e7dé* + e "sin® 0dp?) . (8)

—2v/3Q o . . . .
o723 = 2 <; - 1) ‘ 3 By performing the coordinate interchange—— r in
. ) ] the region located between the inner and outer horizons
As mentioned above, they also realized that this homoge; _ ,. r. of the Kerr solution, one gets the following
neous cosmological model is related to the Schwarzschilghetric:

black hole solution inside the horizon under the coordinate L 2
transformation” «— ¢, i.e. solutions (1) and (2)=(3) map g2 ¢/ <dt+ 2mta Sl'n 4 (p)
112 2
into each other by interchanging the coordinateandt in A’—a'?sin” ¢
the region where: < 2m with the following identification: A2
a = 2m. +f71 [(A’—a’2 sin? 9)<A,+d92> + A sin? Gdgpz] . (9)
Taking advantage of this fact, Obi@y Quevedo and
Ryan implemented this coordinate map in the Kerr solutionvhere we now have
and showed that the metric of a spinning black hole between A —a?sin? 6
| - - f'0)= G meg
the inner and outer horizons can be reinterpreted as an ex- T 2+ a2cos26
act cosmological solution of the Gowdy type with topology P "o 2
S x S2 (for details see [4]). andA’(t) = (t —m')” — o™, . .
: R By performing the following coordinate transformations
In order to see how this fact behaves in this case, let US ihis metric ):
express the Kerr metric in the Boyer—Lindquist coordinates '

5 t=o {1 ++/1 -2 cos(e_T)} ., r=29, (11)

wherea’ = a8 andm’ = «, we effectively compactify

) the r—coordinate. Thus, we have a metric with the topology

e [(A/_alz sin2 9)<dT/+d(92> 1+ A sin? 9dtp2:| . (@) S x S of the unpolarized Gowdy cosmological models. Itis
A a straightforward exercise to prove that the metric (9) trans-

forms into the metric (7) under the following identifications:

(10)

2m/ra’ sin® 0
A'—a?sin% 0

ds’=—f <dt+

where

_ —_ 732 -7\ ain 2

A — a2 sin2 0 Q- 2a0[1 + \/.12 (32 cos(e )] Zm 97 (12)
f(r) = 21 a2cos2f’ (5) (1 —-32)sin“(e~7) + 32sin 0
A2\ 2 (p—T 2 102

A(r) = (r —m')? —0?, 0?% = m” — a2, andm’ and el = (1 - %) sin"(e )Jrf sin” §
a’ are two constants that represent the mass and the rotation { {1 + mcos(e—f)} + B2 cos? 9}
parameter of the rotating black hole.
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x [a\/ﬁ Sin(e_T)} L a3)
7 g2 { [1+\/@cos(e*7)} ’ +3? cos? 0} , (14)
L = am = 0'/.

In the particular case when the rotation parametemn

(
e

(15)

65

exact solutions. By making use of this method, Yurova has
obtained a seven parameter soliton solution to the field equa-
tions of this theory [12]. The metric of this solution possesses
as well the form of a rotating black hole configuration and is
endowed with two horizons.

It is precisely a six parametric subclass of this family of
solutions (we shall set to zero the so—called NUT parameter
in order to restrict ourself to asymptotically flat field configu-

the framer:]work of ﬂ:e s_plr:nlng black Toled(_:onflguratlon,dls_setrations) that we shall use in order to obtain new cosmological
to zero, the cosmological paramegealso disappears and, in backgrounds. Among these solutions we shall encounter in-

turn, the function) vanishes as well. As a result, one obtains
a family of polarized Gowdy cosmological models with the
topologyS® x S2.

Here we would like to make an important remark. The
vanishing of the parametef or 3, which implies the vanish-
ing of the function@, leads as well to the vanishing of the
inner horizon. Thus, when performing the coordinate trans

formationr «—— t, one must take care to map the inner part ds®> = —F
of the black hole configuration into the polarized Gowdy cos-

homogeneous unpolarized and polarized Gowdy cosmolog-
ical models as well as homogeneous Kantowski—Sachs cos-
mologies.

Here we shall not derive the Yurova's soliton, but we shall
just quote the solution:
) 2asin® Olmr — (Q% + Q2,)/2] d@} ’

A — a?sin? 6

{dt +

mological background since we no longer have two horizons.

This fact is crucial in order to understand that in this
limit, if we decompactify thé—coordinate, we recover a met-
ric with topology S? x R' and, hence, another family of

_ N 2 ~
+F [(A ~a?sin?0) (CZ + d92> + Asin’ 9d<p2] , (16)

Kantowski—Sachs cosmological models with the identifica-where

tions previously indicated (3).

3. The String Theory Side of the Story

A — a?sin’ 6

Let us turn our attention to the string theory counterpart of

this story. ThelD Einstein-Maxwell theory with dilaton and
axion fields (EMDA) is one of the simplest low—energy string

Flr) = 72 +a2cos2f — D2 — K2 (17)
the functionA still possesses the same form
A=(r—m)?-35> (18)

gravity models. It arises as the corresponding truncation obut now the constarit consists of a larger quadratic combi-

the critical heterotic string theory (D=10, with 1§1) vector
fields) reduced to four dimensions with no moduli fields ex-

cited and just one non—-vanishing vector field. In the Einstein

frame it is described by the action
S= /d4x|g\% {R +2(90) + %ew(aﬂ)?
R KFF] ,
where

. 1
FNV = aﬂAu - 31,14#, FrY = iEMV)\UFAm

are the strength of thé/(1) Maxwell field and its dual
tensor, respectivelyp is the dilaton field,x is the pseu-
doscalar axion field, an&*** = (1/,/]g|)e"**°. For-
mally, the EMDA theory can be considered an extension o

account the (pseudo)scalar dilaton and axion fields.

It turns out that when this theory admits the presence o
two commuting Killing vectors, the corresponding field equa
tions can be expressed in a simple chiral form in terms of th

so—called matrix Ernst potentials [11] and, hence, the inverse
scattering method can be implemented in order to construct

nation of constants

> =m?+D*+ K*-Q-Q;, —d’, (19)
where the constant parameters have the following physical
interpretation:m denotes the mass of the gravitational con-
figuration, D is the dilaton chargéef is the axion charge).
andq@),,, label the electric and magnetic charges, respectively,
anda stands for the angular momentum per unit mass of the
rotating soliton.

This solution possesses as well inner and outer horizons
defined through the relations

re =m=£a. (20)

The expressions for the matter fields in the black hole pic-

ture are the following:

: the. Othe dilaton field is
the Einstein—Maxwell system to the case when one takes int

0]
2 _ (r+ D)% — (K + acosf)?
f € r2+a2cos?2 — D2 — K2’ (21)
gnd the axion field reads
B 2(Kr — Dacosf) (22)

- (r+D)?— (K +acosf)?’
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whereas the electric and magnetic potentials adopt the fornthe dilaton field reads

V2(Qer + Quacos + DQ. + KQy,) {la +ocos(e” )]+ d}2 — (k +~ycos0)?

]
= s 23 €2¢ = ) 33
! r2+a?cos? 0 — D? — K2 (23) [+ o cos (e=7)]> + 2 cos? 0 — d2 — k2 (33)
V3@ 0 ) 0 0 and the axion field is
2(Qr — Qeacos + DQ,, — KQ.
u = ot Quocss0 1 DG . (24) o 2{ka+ocos(e"T)] — dycosb} (34)

o . , s(e=T) +d}* — (k 50)2”
In the same spirit as in the Kerr solution, we perform the {la+ocos(e™)] +d}” = (k + 7 cosf)

coordinate transformation<— r in the region located be- whereas the electric and magnetic potentials are given by the
tween the two horizons and obtain the following gravitationalfollowing relations:

field configuration
J V2ge [+ o cos (7))

v =
ds? = —F [dr I 2asin® 6[mt — (Q? + Q7,)/2] dw] ’ [+ o cos (e=7)]% + 72 cos? 6 — d2 — k2
A — a?sin® 6

+F1 {(A — a*sin?0) (CZ + d€2> + Asin? 9d<,02] , (25) o+ o cos (e77)]* + 2 cos?  — d? — k>
where now B V2 [+ o cos (e77)]

A —a?sin? 6 [a 4 o cos (e=7)]> + 42 cos? 0 — d2 — k2

F) = t2 +a?cos?2f — D? — K2’ (26)
and . \/i (QS'V cos 6 — de + k/’Qe) (36)
A(t) = (t— m)? — 57 27) [a + o cos (e=)]* + 42 cos? 0 — d2 — k?

respectively.

In order to interpret this metric as an inhomoge-  As occurs in the case of the Kerr metric, if we set to zero
neous unpolarized Gowdy cosmological model with topologythe rotation parameter or, equivalently, the cosmological
S1xS?, we again perform a coordinate transformation of theparametery, which in turn yields to a vanishing functia@,
form (11) we are led to a family of polarized Gowdy cosmological mod-
els with the topologys! x S2.

However, it is worth noticing that, within the framework
of string theory, the vanishing of the functigp does not
yield to the vanishing of the inner horizon. This fact is due
to the presence of the matter fields, which make their contri-

~2ysin? 0 {afa +ocos(e)] — (g2 +q2) /2) - bution to the size of the region located between the horizons.
Q= o2 sin?(e—7) + 72 sin’ 0 » (29) Thus, by Iooklng at the expression of the horizons (20), we
see that the region located between them gets larger because
of the minus sign of the? term in the definition (32) of the

t=a+ocos(e "), r =90, m=aq, (28)

thus compactifying the—coordinate, and we make the fol-
lowing identifications for the function, P and A:

oF o?sin” (e”7) +7° sin” 0 constant.
{[a tocos(e=))? +~2cos?f — d? — kz} If we indeed decompactify thé-coordinate, we obtain
a manifold with topologyR! x S2 and, hence, a new family
x [osin (e77)] ' (30) of Kantowski—Sachs cosmological models with the following
identifications for the components of the metric tensor:
-1
e(T=N/2 = [+ o cos (677)]2 + 72 cos? 0 — d* — k*, (31) N(#)? = (t—a)?—o?
d2 + k2 _ t2 ’
and for the constant parameter ) )
2vasw _ (t= ) —o”
L=oc=+\a2+d+k?—q2— ¢ — 12, (32) a2+ k2 — 12
where we have introduced the new charges of the system eV = — [(t—a)? - 7] . (37)

D =4d, K =k, Q. = ¢, Qum = qm, and, finally, the
new parametet = .

The corresponding expressions for the matter fields in the so(y  (t+d)? — K
cosmological framework are the following: € S22 (38)

On the other side, the dilaton field is given by
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and the axion field reads backgrounds generated turns out to be very different for the
2kt field solutions of the string cosmologies. This is an interest-
K(t) = 573 (39)  ing subject which deserves further investigation and will be

(t+d)?—k

. . . pursued elsewhere.
whereas the electric and magnetic potentials adopt the form  There are more directions in which the coordinate ex-

hange presented in this work can be exploited. For instance,
2(qot + dgo + kg, chan _ _ orin
V2(g d ) (40)  this idea can be easily generalized to models which involve

v(t) =

12— d? = k? more than four space—time dimensions with the aid of the so

called matrix Ernst potentials [11]; for instance, one could

u(t) = V2(gmt + dgm — kq€)7 (41) take as a starting solution the field configuration obtained
2 —d? —k? in Ref. 10, apply the coordinate transformation—— ¢

A remarkable feature of this latter cosmological in the region located between the horizons and get multi—
Kantowski—Sachs solution is that all the matter fields decayglimensional D > 4) inhomogeneous cosmological models
to zero as we approach the limit— oo. Thus, their phys- of a Gowdy type. Another issue concerns the inclusion of the
ical relevance takes place in an interval wheig finite and ~ moduli fields that come from the extra dimensions. We hope
becomes crucial as we approach the singuldrity— 0, i.e.  to develop some research along these lines in the near future.
in the early universe.
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