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In the framework of4D Einstein–Maxwell Dilaton–Axion theory we show how to obtain a family of both unpolarized and polarizedS1×S2

Gowdy cosmological models endowed with nontrivial axion, dilaton and electromagnetic fields from a solitonic rotating black hole–type
solution by interchanging ther andt coordinates in the region located between the horizons of the black hole configuration. We also obtain
a family of Kantowski–Sachs cosmologies with topologyR1 × S2 from the polarized Gowdy cosmological models by decompactifying one
of the compact dimensions.
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En el marco de la teorı́a tetradimensional de Einstein–Maxwell con dilatón y axíon se muestra ćomo obtener una familia de modelos cos-
mológicos de Gowdy (polarizados y no polarizados) con topologı́a S1 × S2. Dichos modelos cosmológicos se obtienen a partir de una
solucíon solit́onica de tipo agujero negro rotatorio mediante el intercambio de las coordendasr y t en la regíon comprendida entre los ho-
rizontes del agujero negro y contempla campos dilatónico, axíonico y electromagńetico no triviales. A su vez, a partir de las cosmologı́as
de Gowdy polarizadas se obtiene una subclase de modelos cosmológicos de tipo Kantowski–Sachs con topologı́a R1 × S2 mediante la
decompactificación de una de las coordenadas compactas.

Descriptores:Cosmoloǵıas de tipo Gowdy y Kantowski-Sachs; agujeros negros rotatorios; teorı́a de cuerdas a bajas energı́as; transformación
de coordenadas.
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1. Introduction

In the last few years there have been many attempts to look
at cosmology from a string theory point of view. More-
over, string cosmology is becoming a subject of great inter-
est among both theoreticians and phenomenologists. At the
present time there are many cosmological scenarios and the
topic itself is experiencing tremendous activity. For useful re-
views see, for instance, [1] and the references quoted therein.

In the framework of general relativity, Kantowski and
Sachs [2] proposed a method which relates the inner region
of a static black hole solutions to a homogeneous cosmologi-
cal background under the simple coordinate transformation
r ←→ t. This result was further generalized and a rela-
tionship between Gowdy cosmologies [3] and the Kerr ro-
tating black hole was established by Obregón, Quevedo and
Ryan in Ref. 4. In this latter case, the coordinate change
mentioned above relates the region located between the two
horizons of the rotating black hole solution to a cosmological
model of Gowdy type. Thus, this simple coordinate trans-
formation enables us to obtain straightforwardly cosmologi-
cal backgrounds from black hole configurations, and vicev-
ersa, without solving the Einstein equations, a nontrivial fact
which is worth taking into account. Recently, several pa-
pers concerning the physics of inhomogeneous cosmologies

have appeared in the literature in the framework of Einstein,
Einstein–Maxwell, dilaton gravity, sugra and string/M theo-
ries [5–7].

The idea of this brief report consists in extrapolating this
method to the realm of the4D low–energy heterotic string
theory which describes gravity coupled to a dilaton, an axion
and just one electromagnetic vector fieldi. This generaliza-
tion becomes possible in the case when the4D theory pos-
sesses two commuting Killing vectors (as occurs within the
framework of general relativity) and can be lifted to any di-
mensions for configurations which possessD−2 commuting
Killing vectors.

Thus, in this work we shall perform a straightforward im-
plementation of the coordinate transformationr ←→ t in
order to obtain several families of cosmological backgrounds
from black hole configurations (and viceversa) without tears.
Namely, by starting with a rotating field configuration of
black hole type possessing two horizons, we just apply such
a coordinate interchange in the region located between the
horizons, and as a result we get as well several families of in-
homogeneous cosmological model of Gowdy type, both po-
larized and unpolarized. It is interesting to note that a family
of Kantowski–Sachs cosmologies arises from the polarized
Gowdy cosmological models by decompactifying one of the
compact dimensions.



64 T. CISNEROS–ṔEREZ, A. HERRERA–AGUILAR, J.C. MEJ́IA–AMBRIZ, AND V. ROJAS–MACÍAS

2. The General Relativity Side of the Story

We start this Section by quoting the Schwarzschild black hole
solution to the vacuum Einstein’s equations

ds2 = −(1− 2m/r)dt2 + (1− 2m/r)−1dr2

+ r2(dθ2 + sin2 θ dϕ2), (1)

wherem is a constant parameter which can be interpreted as
the mass of the static black hole.

On the other side, we shall recall as well a particular cos-
mological model which was reported for the first time in [9],
but which is quoted in the literature as the Kantowski–Sachs
cosmologies [2], namely, a metric of the form

ds2 = −N(t)2dt2 + e2
√

3β(t)dr2

+ e−2
√

3β(t)e−2
√

3Ω(t)(dθ2 + sin2 θ dϕ2). (2)

Kantowski and Sachs obtained the following one-
parameter family of solutions to the vacuum Einstein’s equa-
tions:

N(t)2 =
(α

t
− 1

)−1

, e2
√

3β(t) =
α

t
− 1,

e−2
√

3Ω(t) = t2
(α

t
− 1

)
. (3)

As mentioned above, they also realized that this homoge-
neous cosmological model is related to the Schwarzschild
black hole solution inside the horizon under the coordinate
transformationr ←→ t, i.e. solutions (1) and (2)–(3) map
into each other by interchanging the coordinatesr and t in
the region wherer < 2m with the following identification:
α = 2m.

Taking advantage of this fact, Obregón, Quevedo and
Ryan implemented this coordinate map in the Kerr solution
and showed that the metric of a spinning black hole between
the inner and outer horizons can be reinterpreted as an ex-
act cosmological solution of the Gowdy type with topology
S1 × S2 (for details see [4]).

In order to see how this fact behaves in this case, let us
express the Kerr metric in the Boyer–Lindquist coordinates

ds2=−f

(
dt+

2m′ra′ sin2 θ

∆′−a′2 sin2 θ
dϕ

)2

+f−1

[(
∆′−a′2 sin2 θ

)(dr2

∆′ +dθ2

)
+∆′ sin2 θdϕ2

]
, (4)

where

f(r) =
∆′ − a′2 sin2 θ

r2 + a′2 cos2 θ
, (5)

∆′(r) = (r − m′)2 − σ′2, σ′2 = m′2 − a′2, andm′ and
a′ are two constants that represent the mass and the rotation
parameter of the rotating black hole.

This solution possesses two horizons given by the follow-
ing expressions:

r± = m′ ±
√

m′2 − a′2, (6)

wherer+ andr− are called outer and inner horizons, respec-
tively.

On the other side, the unpolarized Gowdy cosmological
models with topologyS1 × S2 [3] have the following form:

ds2 = e(τ−λ)/2
(−e−2τdτ2 + dθ2

)
+ L sin(e−τ )

×eP
[
(dδ + Qdϕ)2 + e−2P sin2 θdϕ2

]
, (7)

whereλ, P andQ are functions ofτ andθ, andL stands for
arbitrary constant.

Here we shall say just a few words concerning the topol-
ogy of the metric. It is clear that theθϕ possesses the topol-
ogy of the two–sphereS2. Thus, in order to get a metric with
the topologyS1 × S2, the δ coordinate must be a compact
one. This can be achieved by requiring0 ≤ δ ≤ 2π, with
pointsδ = 0 andδ = 2π identified.

In the case when the functionQ is set to zero, one obtains
the so–called polarized cosmological Gowdy models [10]

ds2 = e(τ−λ)/2
(−e−2τdτ2 + dθ2

)

+ L sin(e−τ )
(
eP dδ2 + e−P sin2 θdϕ2

)
. (8)

By performing the coordinate interchanget ←→ r in
the region located between the inner and outer horizons
r− < r < r+ of the Kerr solution, one gets the following
metric:

ds2=−f ′
(

dt+
2m′ta′ sin2 θ

∆′−a′2 sin2 θ
dϕ

)2

+f ′−1

[(
∆′−a′2 sin2 θ

)(dt2

∆′ +dθ2

)
+∆′ sin2 θdϕ2

]
, (9)

where we now have

f ′(t) =
∆′ − a′2 sin2 θ

t2 + a′2 cos2 θ
(10)

and∆′(t) = (t−m′)2 − σ′2.
By performing the following coordinate transformations

in this metric (9):

t = α
[
1 +

√
1− β2 cos(e−τ )

]
, r = δ, (11)

wherea′ = αβ and m′ = α, we effectively compactify
ther–coordinate. Thus, we have a metric with the topology
S1×S2 of the unpolarized Gowdy cosmological models. It is
a straightforward exercise to prove that the metric (9) trans-
forms into the metric (7) under the following identifications:

Q =
−2αβ[1 +

√
1− β2 cos(e−τ )] sin2 θ

(1− β2) sin2(e−τ ) + β2 sin2 θ
, (12)

eP =
(1− β2) sin2(e−τ ) + β2 sin2 θ{[

1 +
√

1− β2 cos(e−τ )
]2

+ β2 cos2 θ

}
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×
[
α
√

1− β2 sin(e−τ )
]−1

, (13)

e
(τ−λ)

2 =α2

{[
1+

√
1−β2 cos(e−τ )

]2

+β2 cos2 θ

}
, (14)

L = α
√

1− β2 = σ′. (15)

In the particular case when the rotation parametera′, in
the framework of the spinning black hole configuration, is set
to zero, the cosmological parameterβ also disappears and, in
turn, the functionQ vanishes as well. As a result, one obtains
a family of polarized Gowdy cosmological models with the
topologyS1 × S2.

Here we would like to make an important remark. The
vanishing of the parametera′ or β, which implies the vanish-
ing of the functionQ, leads as well to the vanishing of the
inner horizon. Thus, when performing the coordinate trans-
formationr ←→ t, one must take care to map the inner part
of the black hole configuration into the polarized Gowdy cos-
mological background since we no longer have two horizons.

This fact is crucial in order to understand that in this
limit, if we decompactify theδ–coordinate, we recover a met-
ric with topology S2 × R1 and, hence, another family of
Kantowski–Sachs cosmological models with the identifica-
tions previously indicated (3).

3. The String Theory Side of the Story

Let us turn our attention to the string theory counterpart of
this story. The4D Einstein-Maxwell theory with dilaton and
axion fields (EMDA) is one of the simplest low–energy string
gravity models. It arises as the corresponding truncation of
the critical heterotic string theory (D=10, with 16U(1) vector
fields) reduced to four dimensions with no moduli fields ex-
cited and just one non–vanishing vector field. In the Einstein
frame it is described by the action

S =
∫

d4x|g| 12
[
−R + 2(∂φ)2 +

1
2
e4φ(∂κ)2

− e−2φF 2 − κFF̃
]
,

where

Fµν = ∂µAν − ∂νAµ, F̃µν =
1
2
EµνλσFλσ,

are the strength of theU(1) Maxwell field and its dual
tensor, respectively,φ is the dilaton field,κ is the pseu-
doscalar axion field, andEµνλσ = (1/

√
|g|)εµνλσ. For-

mally, the EMDA theory can be considered an extension of
the Einstein–Maxwell system to the case when one takes into
account the (pseudo)scalar dilaton and axion fields.

It turns out that when this theory admits the presence of
two commuting Killing vectors, the corresponding field equa-
tions can be expressed in a simple chiral form in terms of the
so–called matrix Ernst potentials [11] and, hence, the inverse
scattering method can be implemented in order to construct

exact solutions. By making use of this method, Yurova has
obtained a seven parameter soliton solution to the field equa-
tions of this theory [12]. The metric of this solution possesses
as well the form of a rotating black hole configuration and is
endowed with two horizons.

It is precisely a six parametric subclass of this family of
solutions (we shall set to zero the so–called NUT parameter
in order to restrict ourself to asymptotically flat field configu-
rations) that we shall use in order to obtain new cosmological
backgrounds. Among these solutions we shall encounter in-
homogeneous unpolarized and polarized Gowdy cosmolog-
ical models as well as homogeneous Kantowski–Sachs cos-
mologies.

Here we shall not derive the Yurova’s soliton, but we shall
just quote the solution:

ds2 = −F̃
[
dt +

2a sin2 θ[mr − (Q2
e + Q2

m)/2]

∆̃− a2 sin2 θ
dϕ

]2

+F̃−1

[(
∆̃− a2 sin2 θ

) (
dr2

∆̃
+ dθ2

)
+ ∆̃ sin2 θdϕ2

]
, (16)

where

F̃(r) =
∆̃− a2 sin2 θ

r2 + a2 cos2 θ −D2 −K2
; (17)

the function∆̃ still possesses the same form

∆̃ = (r −m)2 − σ̃2, (18)

but now the constant̃σ consists of a larger quadratic combi-
nation of constants

σ̃2 = m2 + D2 + K2 −Q2
e −Q2

m − a2, (19)

where the constant parameters have the following physical
interpretation:m denotes the mass of the gravitational con-
figuration,D is the dilaton charge,K is the axion charge,Qe

andQm label the electric and magnetic charges, respectively,
anda stands for the angular momentum per unit mass of the
rotating soliton.

This solution possesses as well inner and outer horizons
defined through the relations

r± = m± σ̃. (20)

The expressions for the matter fields in the black hole pic-
ture are the following:
the dilaton field is

e2φ =
(r + D)2 − (K + a cos θ)2

r2 + a2 cos2 θ −D2 −K2
, (21)

and the axion field reads

κ =
2(Kr −Da cos θ)

(r + D)2 − (K + a cos θ)2
, (22)
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whereas the electric and magnetic potentials adopt the form

v =
√

2(Qer + Qma cos θ + DQe + KQm)
r2 + a2 cos2 θ −D2 −K2

, (23)

u =
√

2(Qmr −Qea cos θ + DQm −KQe)
r2 + a2 cos2 θ −D2 −K2

. (24)

In the same spirit as in the Kerr solution, we perform the
coordinate transformationt ←→ r in the region located be-
tween the two horizons and obtain the following gravitational
field configuration

ds2 = −F
[
dr +

2a sin2 θ[mt− (Q2
e + Q2

m)/2]
∆− a2 sin2 θ

dϕ

]2

+F−1

[(
∆− a2 sin2 θ

) (
dt2

∆
+ dθ2

)
+ ∆sin2 θdϕ2

]
, (25)

where now

F(t) =
∆− a2 sin2 θ

t2 + a2 cos2 θ −D2 −K2
, (26)

and

∆(t) = (t−m)2 − σ̃2. (27)

In order to interpret this metric as an inhomoge-
neous unpolarized Gowdy cosmological model with topology
S1×S2, we again perform a coordinate transformation of the
form (11)

t = α + σ cos(e−τ ), r ≡ δ, m = α, (28)

thus compactifying ther–coordinate, and we make the fol-
lowing identifications for the functionsQ, P andλ:

Q =
−2γ sin2 θ

{
α [α + σ cos (e−τ )]− (

q2
e + q2

m

)
/2

}

σ2 sin2(e−τ ) + γ2 sin2 θ
, (29)

eP =
σ2 sin2 (e−τ ) + γ2 sin2 θ{

[α + σ cos (e−τ )]2 + γ2 cos2 θ − d2 − k2
}

× [
σ sin

(
e−τ

)]−1
, (30)

e(τ−λ)/2 =
[
α + σ cos

(
e−τ

)]2 + γ2 cos2 θ − d2 − k2, (31)

and for the constant parameterL

L = σ =
√

α2 + d2 + k2 − q2
e − q2

m − γ2, (32)

where we have introduced the new charges of the system
D = d, K = k, Qe = qe, Qm = qm, and, finally, the
new parametera = γ.

The corresponding expressions for the matter fields in the
cosmological framework are the following:

the dilaton field reads

e2φ =
{[α + σ cos (e−τ )] + d}2 − (k + γ cos θ)2

[α + σ cos (e−τ )]2 + γ2 cos2 θ − d2 − k2
, (33)

and the axion field is

κ =
2 {k [α + σ cos (e−τ )]− dγ cos θ}

{[α + σ cos (e−τ )] + d}2 − (k + γ cos θ)2
, (34)

whereas the electric and magnetic potentials are given by the
following relations:

v =
√

2qe [α + σ cos (e−τ )]
[α + σ cos (e−τ )]2 + γ2 cos2 θ − d2 − k2

+
√

2 (qmγ cos θ + dqe + kqm)
[α + σ cos (e−τ )]2 + γ2 cos2 θ − d2 − k2

, (35)

u =
√

2qm [α + σ cos (e−τ )]
[α + σ cos (e−τ )]2 + γ2 cos2 θ − d2 − k2

−
√

2 (qeγ cos θ − dqm + kqe)
[α + σ cos (e−τ )]2 + γ2 cos2 θ − d2 − k2

, (36)

respectively.
As occurs in the case of the Kerr metric, if we set to zero

the rotation parametera or, equivalently, the cosmological
parameterγ, which in turn yields to a vanishing functionQ,
we are led to a family of polarized Gowdy cosmological mod-
els with the topologyS1 × S2.

However, it is worth noticing that, within the framework
of string theory, the vanishing of the functionQ does not
yield to the vanishing of the inner horizon. This fact is due
to the presence of the matter fields, which make their contri-
bution to the size of the region located between the horizons.
Thus, by looking at the expression of the horizons (20), we
see that the region located between them gets larger because
of the minus sign of theγ2 term in the definition (32) of the
constantσ.

If we indeed decompactify theδ–coordinate, we obtain
a manifold with topologyR1 × S2 and, hence, a new family
of Kantowski–Sachs cosmological models with the following
identifications for the components of the metric tensor:

N(t)2 =
(

(t− α)2 − σ2

d2 + k2 − t2

)−1

,

e2
√

3β(t) =
(t− α)2 − σ2

d2 + k2 − t2
,

e−2
√

3Ω(t) = − [
(t− α)2 − σ2

]
. (37)

On the other side, the dilaton field is given by

e2φ(t) =
(t + d)2 − k2

t2 − d2 − k2
, (38)
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and the axion field reads

κ(t) =
2kt

(t + d)2 − k2
, (39)

whereas the electric and magnetic potentials adopt the form

v(t) =
√

2(qet + dqe + kqm)
t2 − d2 − k2

, (40)

u(t) =
√

2(qmt + dqm − kqe)
t2 − d2 − k2

, (41)

A remarkable feature of this latter cosmological
Kantowski–Sachs solution is that all the matter fields decay
to zero as we approach the limitt −→ ∞. Thus, their phys-
ical relevance takes place in an interval wheret is finite and
becomes crucial as we approach the singularityt −→ 0, i.e.
in the early universe.

4. Discussion

In this work we have presented an implementation of the co-
ordinate transformationt ←→ r in order to obtain new (un-
polarized and polarized) Gowdy and Kantowski–Sachs cos-
mological models in the framework of the4D low–energy
effective field theory of the heterotic string, the so–called
EMDA theory. These stringy cosmological solutions display
a different structure with respect to its general relativity coun-
terparts. In particular, the behaviour of the horizons of the

backgrounds generated turns out to be very different for the
field solutions of the string cosmologies. This is an interest-
ing subject which deserves further investigation and will be
pursued elsewhere.

There are more directions in which the coordinate ex-
change presented in this work can be exploited. For instance,
this idea can be easily generalized to models which involve
more than four space–time dimensions with the aid of the so
called matrix Ernst potentials [11]; for instance, one could
take as a starting solution the field configuration obtained
in Ref. 10, apply the coordinate transformationr ←→ t
in the region located between the horizons and get multi–
dimensional (D > 4) inhomogeneous cosmological models
of a Gowdy type. Another issue concerns the inclusion of the
moduli fields that come from the extra dimensions. We hope
to develop some research along these lines in the near future.
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i. A stringy Kantowski–Sachs cosmological solution describing
gravity coupled to dilaton and Kalb–Ramond (axion) fields was
reported in Ref. 5.
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