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Numerical evolution of a scalar field soliton
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In this paper, we present the results of the numerical evolution of scalar field solitons in asymptotically flat space-times. First we introduce
the model we are working with and then we briefly mention the complications that arise in this particular numerical simulation, presenting
some details of code we used and some examples of the results.
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En esteárticulo, presentamos los resultados de la evolución nuḿerica de solitones de campo escalar en espacios-tiempos asintóticamente
planos. En primer lugar introducimos el modelo con el que estamos trabajando y posteriormente mencionamos las complicaciones que
surgen en esta simulación nuḿerica, mostrando algunos detalles del código y ejemplos de los resultados.
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1. Introduction

This article reviews the results of studies of scalar field soli-
tons that have been originally reported in Refs. 18 and 25. We
will show the dynamic interplay here between the theoreti-
cally motivated studies and the numerical evolution technol-
ogy. The fact is that, while numerical simulations are often
the only available methodology for attacking certain theoret-
ical issues, the availability of some models of purely theo-
retical interest serve at the same time as the arena where the
numerical techniques can be inspired, developed and tested.
One such example arises with the study of the issues related
to hairy black holes: the topic of black hole hair is often
thought of as being of interest only for mathematical physics,
but the present work will underline its usefulness in the de-
velopment of tools for numerical relativity.

The no-hair conjecture for stationary black holes (the sup-
position that all such black holes are completely determined
by the value of the globally conserved charges defined in the
asymptotic region such as mass, charge and angular momen-
tum) is these days considered to be clearly wrong, since the
list of counterexamples becomes larger by the day: Einstein-
Yang-Mills [1], Einstein-Skyrme [2], Einstein-Yang-Mills-
dilaton [3], Einstein-Yang-Mills-Higgs [4], Einstein-non-
abelian-Procca [4] fields. In some sub-communities, the idea
seems to be holding out that a modified version that applies
only to stable black holes could remain valid, despite the fact
that for some of the examples above some claims of stable
non-trivial solutions exist in the literature.

A regime where it seemed for a while that there was
hope for a restricted form of the conjecture was the scalar
field arena. Here we had the original no-hair theorems of
Bekenstein [5], covering the case of minimally coupled scalar
fields with convex potentials; other theorems dealing with
the case of minimally coupled fields with arbitrary potentials
were obtained in Refs. 6 and 7. The so-called Bronnikov-

Melnikov-Bocharova-Bekenstein (BMBB) black hole “solu-
tion” [8], which corresponds to a spherical symmetric ex-
tremal black hole with a scalar field conformally coupled
to gravity, seemed to represent a discrete example of scalar
hair, as it was shown [9] that there are no other static, spher-
ically symmetric Black Hole solutions in this theory. Later
on, it was shown that this configuration, which presents a
divergence of the scalar field at the horizon, cannot be con-
sidered as a regular black hole solution because the energy
momentum tensor is ill-defined at the horizon [10]. Finally
it has been shown that, if one requires that the scalar field
be bounded throughout the static region, then, there are no
solutions at all [11].

For more general cases of non-minimal coupling, there
are results [12, 13] showing that under the assumption that a
certain “conformal factor” does not vanish or blow up, there
are no nontrivial black hole solutions. Next, there is a re-
sult by Ref. 14 that does not rely on such an assumption, and
which considers the existence of static, spherically symmetric
black hole solutions in theories in which the sign of the non-
minimal coupling constant is negative (the only case not cov-
ered by other theorems). There it is shown that, under certain
suppositions concerning the form of the energy-momentum
flux, there are no nontrivial solutions. In Ref. 15 it is argued
that these suppositions are not fully justifiable and numerical
evidence is given against the existence of this type of black
hole that does not rely on these assumptions.

It is therefore a rather unexpected development that hairy
black hole solutions have now been found in both theories
with minimal [16] as well as non-minimal [17] coupled scalar
fields, simply by considering asymptotically anti de-Sitter,
rather than asymptotically flat, boundary conditions. More-
over these papers have strong indications that, under certain
conditions, the new solutions are stable.

In Ref. 18, some of us analyzed the situation regarding
the asymptotically anti de Sitter case, in the light of existing
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results for the asymptotically flat case, discussed the points
where the differences are relevant, and give a simple explana-
tion of some of the features of the new solutions and point to
some surprising conjectures that can be directly infered from
this understanding. The method used in this part is a gener-
alization of one that was successfully employed in deriving a
general characterization of hairy black holes in a wide range
of theories [19].

Later, a new family of scalar-hairy black holes (BH)
and their corresponding solitons (scalarons) were found
within an Einstein-Higgs theory with a non-positive semi-
definite scalar field potentialV (φ) [20]. This kind of po-
tential violates the weak-energy condition (WEC) and there-
fore invalidates the applicability of the no-scalar-hair theo-
rems [6,7,21]. These configurations are interesting in sev-
eral respects. On one hand, they constitute an example that
obstructs the extension of no-hair theorems to potentials of
this type. On the other hand, they can be useful for testing
some of the predictions of the recent isolated-horizon for-
malism [22]. In fact, these configurations can be shown to be
unstable with respect to radial-linear perturbations, and there-
fore can be seen asbound statesof non-hairy black holes and
scalarons (cf. [23] in the context of colored BH). The simple
perturbation analysis, however, does not provide any definite
answer about the final fate of these configurations. Never-
theless, heuristic analysis based on energetic arguments does
provide some clues about their fate. Presumably, the plain
Schwarzschild BH constitutes the lower energy-mass bound
(the “ground state”) of possible BH configurations with fixed
boundary conditions, which correspond to fixed horizon area
Ah and asymptotic flatness. Therefore, among all BH con-
figurations within the theory, the Schwarzschild BH is the
energetically preferred one.

In this paper, we present a brief description of the numeri-
cal code we developed [24] and the results obtained in Ref. 25
where we performed a fully non-linear numerical evolution
of the scalar solitons, preparing the way for a future anal-
ysis of the scalar-hairy black holes. The philosophy of our
analysis is similar to that of Straumman and Zhou for the
case of “colored solitons” (solitons in Einstein-Yang-Mills
theory) [26]. The initial conditions correspond to unstable
scalar solitons in a globally regular space-time. Two differ-
ent sets of initial perturbations will be considered: one that
leads to the formation of a Schwarzschild BH accompanied
by a small amount of radiated scalar field, and another one
which corresponds to an “exploding” configuration, where a
global phase transition is triggered through the formation of
an outward moving domain wall.

2. Model and numerical methodology

We shall consider a model of a scalar field minimally cou-
pled to gravity and with a non-trivial self-interaction poten-
tial. The model is described by the Lagrangian (we shall use
units such thatG = c = 1):

L =
√−g

[
1

16π
R− 1

2
∇αφ∇αφ− V (φ)

]
. (1)

We choose the following asymmetric scalar-field poten-
tial leading to the desired asymptotically flat solutions:

V (φ) =
σ

4
(φ− a)2

[
(φ− a)2

− 4(η1 + η2)
3

(φ− a) + 2η1η2

]
, (2)

with σ, η1, η2 anda constant parameters. For this class of
potentials one can easily show that, ifη1 > 2η2 > 0, φ = a
corresponds to a local minimum,φ = a + η1 to the global
minimum, andφ = a + η2 to a local maximum. The key
feature of this potential for the asymptotically flat and static
solutions to exist is that the local minimum atφ = a is also a
zero ofV (φ) [20]. The factorσ in front of the potential fixes
the scale, so one can always takeσ = 1 and just re-scale
everything for a differentσ afterward. For the simulations
discussed here, we shall take the following values for the pa-
rameters:σ = 1, η1 = 0.5, η2 = 0.1 anda = 0.

The field equations following from the Lagrangian (1)
are the Einstein’s field equations and the Klein-Gordon (KG)
equation:

Gµν = 8πTµν , ¤φ =
∂V (φ)

∂φ
, (3)

The stress-energy tensor for the scalar field is

Tµν = ∇µφ∇νφ− gµν

[
1
2
∇αφ∇αφ + V (φ)

]
. (4)

In order to perform a numerical analysis of the problem
at hand we shall use a 3+1 approach based on the standard
ADM equations [27,28]. Moreover, we shall assume that the
shift vanishes. The evolution equations for the 3-metric (γij)
and the extrinsic curvature (Kij) are

∂tγij = −2αKij , (5)

∂tKij = −DiDjα + α (Rij + KKij

− 2KilK
l
j − 8πMij

)
, (6)

and the Hamiltonian and momentum constraints are

H := R + K2 −KijK
ij − 16πρ = 0, (7)

Mi := Dl

(
Kl

i −Kδl
i

)− 8πJi = 0, (8)

with α the lapse function,Di andRij the covariant deriva-
tive and Ricci tensor associated withγij , R := trRij ,
K := trKij , and where the matter sources are defined in
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terms of the stress-energy tensor as

ρ = nµnνTµν , (9)

Ji = −nµTµ
i , (10)

Sij = Tij , (11)

Mij = Sij +
1
2
γij (ρ− S) , (12)

with nµ the unit normal to the spatial hypersurfaces.
We shall focus on the dynamics of a spherically symmet-

ric space-time described by the metric

ds2 = −α2dt2 + Adr2 + Br2
(
dθ2 + sin2 θdϕ2

)
. (13)

The spherical symmetry implies that all dynamical functions
depend only onr andt.

The analysis of this problem in the numerical regime is
complicated by the need for the code to deal with solutions
that have a regular origin which is normally covered by the
spherical coordinates which cease to be good coordinates at
that point and by the simultaneous requirement that the code,
be able to handle the occurrence of apparent horizons. A
code of this type including this kind of regularization was
presented in Ref. 24. Our regularization method is similar
in spirit, if not in detail, to that presented by Arbona and
Bona in Ref. 29, the main difference being that the approach
of Arbona and Bona was tied to the use of the Bona-Masso
evolution system [30–34], while our algorithm is much more
general.

3. Evolutions

The development of the code allows us to answer the phys-
ically interesting questions regarding the evolution of a per-
turbed soliton.

The initial conditions used to study the evolution are the
static soliton solutions computed in Ref. 20, plus/minus a
small Gaussian perturbation in∂tφ. Depending on the sign
of the initial perturbation, the solitons either collapse to a
Schwarzschild black hole or else “explode” into an outward
moving domain wall.

3.1. Collapse to a black hole

Figure 1 shows the evolution of the metric functionsA. In
the plots, solid lines correspond to initial and final configura-
tions, and dotted lines to intermediate stages (the separation
in time between these lines is∆t = 25). At first, there are
small oscillations around the initial value, but later on the ra-
dial metric starts to grow in a form characteristic of the slice
stretching associated with BH spacetimes. The analysis of the
behavior of the lapse function shows the characteristic col-
lapse of the lapse indicative of the approach to a singularity.

The corresponding evolution of the scalar field can be
seen in Fig. 2. Notice how the scalar field moves toward the
local minimum atφ = 0 everywhere. At late times, the evo-

FIGURE 1. Evolution of the metric functionA for the negative
perturbation. Notice how at late times the metric function grows,
indicating slice stretching. The circles show the location of the ap-
parent horizon.

FIGURE 2. Evolution of the scalar fieldφ for negative perturba-
tion. At late times the scalar field has values below0.1 everywhere,
which implies that we are in the region where the potential is posi-
tive.

FIGURE 3. Evolution of the metric functionA for the positive per-
turbation.
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FIGURE 4. Evolution of the scalar fieldφ for the positive perturba-
tion. The scalar field is now moving toward the true minimum of
the potential atφ = 0.5 everywhere.

lution of the inner regions is frozen due to the collapse of the
lapse there. By that time, however, the scalar field has val-
ues below0.1 everywhere, which implies that we are in the
region where the potential is positive.

3.2. Explosion

Figure 3 shows the evolution of the metric functionA for
this case (lines are now separated in time by∆t = 75). It
is evident that the dynamical evolution is completely differ-

ent from the case described in the previous section. In the
first place, there is no indication of the slice stretching ef-
fect. Moreover, in the evolution of the radial metricA, it is
clear that there is a wall moving outward. The wall moves
essentially at a uniform speed, even if this is not evident in
the log plot (this speed is approximately 1 in our units, which
coincides with the speed of light in the outer regions). Inside
this wall, the radial metric is collapsing to zero. The angu-
lar metric is also collapsing to zero in this region, but not as
rapidly.

The evolution of the scalar field can be seen in Fig. 4. In
contrast to the results of the previous section, in this case the
scalar field is moving toward the true minimum of the poten-
tial at φ = 0.5. Since this minimum corresponds to a neg-
ative value of the potential, the inside of the wall resembles
an anti-de-Sitter spacetime, except for the fact that the scalar
field is not uniform. Still, one would expect the formation of
a big-crunch type singularity in this region in a finite proper
time [35, 36]. However, because of the singularity avoiding
properties of harmonic slicing, this singularity would only be
reached after an infinite coordinate time.
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