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Numerical evolution of a scalar field soliton
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In this paper, we present the results of the numerical evolution of scalar field solitons in asymptotically flat space-times. First we introduce
the model we are working with and then we briefly mention the complications that arise in this particular numerical simulation, presenting
some details of code we used and some examples of the results.
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En estearticulo, presentamos los resultados de la evoluciunérica de solitones de campo escalar en espacios-tiempo8tisintente
planos. En primer lugar introducimos el modelo con el que estamos trabajando y posteriormente mencionamos las complicaciones que
surgen en esta simuldei nunérica, mostrando algunos detalles dedligo y ejemplos de los resultados.

Descriptores:Relatividad nurgrica; agujeros negrosadicos y solitones.

PACS: 04.25.Dm; 04.70.Bw; 05.45.Yv

1. Introduction Melnikov-Bocharova-Bekenstein (BMBB) black hole “solu-
tion” [8], which corresponds to a spherical symmetric ex-
This article reviews the results of studies of scalar field solitremal black hole with a scalar field conformally coupled
tons that have been originally reported in Refs. 18 and 25. Wep gravity, seemed to represent a discrete example of scalar
will show the dynamic interplay here between the theoreti-air, as it was shown [9] that there are no other static, spher-
cally motivated studies and the numerical evolution technolically symmetric Black Hole solutions in this theory. Later
ogy. The fact is that, while numerical simulations are oftenon, it was shown that this configuration, which presents a
the only available methodology for attacking certain theoretdivergence of the scalar field at the horizon, cannot be con-
ical issues, the availability of some models of purely theo-sidered as a regular black hole solution because the energy
retical interest serve at the same time as the arena where thgomentum tensor is ill-defined at the horizon [10]. Finally
numerical techniques can be inspired, developed and testeld.nas been shown that, if one requires that the scalar field
One such example arises with the study of the issues relatdsk bounded throughout the static region, then, there are no
to hairy black holes: the topic of black hole hair is often solutions at all [11].
thought of as being of interest only for mathematical physics,  For more general cases of non-minimal coupling, there
but the present work will underline its usefulness in the de-are results [12, 13] showing that under the assumption that a
velopment of tools for numerical relativity. certain “conformal factor” does not vanish or blow up, there
The no-hair conjecture for stationary black holes (the supare no nontrivial black hole solutions. Next, there is a re-
position that all such black holes are completely determinedult by Ref. 14 that does not rely on such an assumption, and
by the value of the globally conserved charges defined in thevhich considers the existence of static, spherically symmetric
asymptotic region such as mass, charge and angular momellack hole solutions in theories in which the sign of the non-
tum) is these days considered to be clearly wrong, since thminimal coupling constant is negative (the only case not cov-
list of counterexamples becomes larger by the day: Einsteirered by other theorems). There it is shown that, under certain
Yang-Mills [1], Einstein-Skyrme [2], Einstein-Yang-Mills- suppositions concerning the form of the energy-momentum
dilaton [3], Einstein-Yang-Mills-Higgs [4], Einstein-non- flux, there are no nontrivial solutions. In Ref. 15 it is argued
abelian-Procca [4] fields. In some sub-communities, the ide¢hat these suppositions are not fully justifiable and numerical
seems to be holding out that a modified version that appliesvidence is given against the existence of this type of black
only to stable black holes could remain valid, despite the fachole that does not rely on these assumptions.
that for some of the examples above some claims of stable It is therefore a rather unexpected development that hairy
non-trivial solutions exist in the literature. black hole solutions have now been found in both theories
A regime where it seemed for a while that there waswith minimal [16] as well as non-minimal [17] coupled scalar
hope for a restricted form of the conjecture was the scalafields, simply by considering asymptotically anti de-Sitter,
field arena. Here we had the original no-hair theorems ofather than asymptotically flat, boundary conditions. More-
Bekenstein [5], covering the case of minimally coupled scalaover these papers have strong indications that, under certain
fields with convex potentials; other theorems dealing withconditions, the new solutions are stable.
the case of minimally coupled fields with arbitrary potentials  In Ref. 18, some of us analyzed the situation regarding
were obtained in Refs. 6 and 7. The so-called Bronnikovthe asymptotically anti de Sitter case, in the light of existing
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results for the asymptotically flat case, discussed the points

where the differences are relevant, and give a simple explana-

tion of some _of the fgatures of the new solytions gnd point to L=v—g [13 _ EVQQSV%S —V(e)]. 1)
some surprising conjectures that can be directly infered from 16 2

this understanding. The method used in this part is a gener-

alization of one that was successfully employed in derivinga We choose the following asymmetric scalar-field poten-
general characterization of hairy black holes in a wide rangdial leading to the desired asymptotically flat solutions:

of theories [19].

Later, a new family of scalar-hairy black holes (BH) V(¢) = Z(¢_ a)? [(¢_ a)?
and their corresponding solitons (scalarons) were found 4
within an Einstein-Higgs theory with a non-positive semi- 4(m1 +m2)
definite scalar field potentidl'(¢) [20]. This kind of po- -5 @-a+ 27717/2} ; (2)

tential violates the weak-energy condition (WEC) and there-

fore invalidates the applicability of the no-scalar-hair theo-with ¢, 7, 7, anda constant parameters. For this class of
rems [6,7,21]. These configurations are interesting in SeVpotentials one can easily show thatpif > 21, >0, ¢ = a
eral respects. On one hand, they constitute an example thaérresponds to a local minimum, = a + 7, to the global
obstructs the extension of no-hair theorems to potentials ohinimum, and¢ = a + 7, to a local maximum. The key
this type. On the other hand, they can be useful for testingeature of this potential for the asymptotically flat and static
some of the predictions of the recent isolated-horizon forsplutions to exist is that the local minimumet= a is also a
malism [22]. In fact, these configurations can be shown to beero ofV(¢) [20]. The factors in front of the potential fixes
unstable with respect to radial-linear perturbations, and therehe scale, so one can always take= 1 and just re-scale
fore can be seen &mund statesf non-hairy black holes and  everything for a differentr afterward. For the simulations
scalarons (cf. [23] in the context of colored BH). The simplediscussed here, we shall take the following values for the pa-
perturbation analysis, however, does not provide any definittametersy = 1, 7, = 0.5, 7, = 0.1 anda = 0.

answer about the final fate of these configurations. Never- The field equations following from the Lagrangian (1)

theless, heuristic analysis based on energetic arguments dogs the Einstein’s field equations and the Klein-Gordon (KG)
provide some clues about their fate. Presumably, the plaigquation:

Schwarzschild BH constitutes the lower energy-mass bound
(the “ground state”) of possible BH configurations with fixed oV (9)
boundary conditions, which correspond to fixed horizon area Gy = 8T}, Lo = BEY R
Ay, and asymptotic flatness. Therefore, among all BH con-
figurations within the theory, the Schwarzschild BH is the The stress-energy tensor for the scalar field is
energetically preferred one.

In this paper, we present a brief description of the numeri- _ . 1 o
cal code we developed [24] and the results obtained in Ref. 25 Tuw = VudVud = guw 2V‘X(W o+Ve). @
where we performed a fully non-linear numerical evolution
of the scalar solitons, preparing the way for a future anal- In order to perform a numerical analysis of the problem
ysis of the scalar-hairy black holes. The philosophy of ourat hand we shall use a 3+1 approach based on the standarc
analysis is similar to that of Straumman and Zhou for theADM equations [27, 28]. Moreover, we shall assume that the
case of “colored solitons” (solitons in Einstein-Yang-Mills shift vanishes. The evolution equations for the 3-metyjg)(
theory) [26]. The initial conditions correspond to unstableand the extrinsic curvaturds(;) are
scalar solitons in a globally regular space-time. Two differ-
ent sets of initial perturbations will be considered: one that Oryij = —2ak5 (5)
leads to the formation of a Schwarzschild BH accompanied
by a small amount of radiated scalar field, and another one 0.Kij = —DiDjo + o (Rij + KK

®3)

which corresponds to an “exploding” configuration, where a _ QKZ.ZKJ[_ — 87M;) (6)

global phase transition is triggered through the formation of

an outward moving domain wall. and the Hamiltonian and momentum constraints are
H:=R+K*—- KKV —16mp =0, 7

2. Model and numerical methodology

M; =Dy (K', — K§;) — 8mJ; =0, (8)
We shall consider a model of a scalar field minimally cou-
pled to gravity and with a non-trivial self-interaction poten- with « the lapse functionp; and R;; the covariant deriva-
tial. The model is described by the Lagrangian (we shall us¢éive and Ricci tensor associated with;, R :=trR;;,
units such thaz = ¢ = 1): K :=trK;;, and where the matter sources are defined in
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terms of the stress-energy tensor as 3 '
p=mn,n,T", (9)
Ji = 77”LMTZH, (10) g i |
Si; = Tij, (11)
1 z
Mij = Sij + 5% (p—19), (12)
oL B
with n# the unit normal to the spatial hypersurfaces.
We shall focus on the dynamics of a spherically symmet-
ric space-time described by the metric t=0
ds® = —a’dt? + Adr® + Br? (d6? + sin® 0dy?) . (13) °0 05 15 2

1
log,o(1+r)
The spherical symmetry implies that all dynamical funCtlonSFlGURE 1. Evolution of the metric functior4 for the negative

depend only Or?" andt'_ . . . . perturbation. Notice how at late times the metric function grows,
The analysis of this problem in the numerical regime isjpgjcating slice stretching. The circles show the location of the ap-
complicated by the need for the code to deal with solutiongyarent horizon.

that have a regular origin which is normally covered by the
spherical coordinates which cease to be good coordinates a* . : :
that point and by the simultaneous requirement that the code

be able to handle the occurrence of apparent horizons. A o
code of this type including this kind of regularization was

presented in Ref. 24. Our regularization method is similar
in spirit, if not in detail, to that presented by Arbona and  «|
Bona in Ref. 29, the main difference being that the approachso
of Arbona and Bona was tied to the use of the Bona-Masso *
evolution system [30—34], while our algorithm is much more

general.

3. Evolutions

N
o L s s
|

0 0.5 1.5 2

The development of the code allows us to answer the phys- |°g101(1+r)

ically interesting questions regarding the evolution of a per-
turbed soliton. FIGURE 2. Evolution of the scalar fiel@ for negative perturba-

The initial conditions used to study the evolution are thelion- Atlate times the scalar field has values belolveverywhere,
static soliton solutions computed in Ref. 20, plus/minus atvivhlch implies that we are in the region where the potential is posi-
small Gaussian perturbation éh¢. Depending on the sign
of the initial perturbation, the solitons either collapse to a
Schwarzschild black hole or else “explode” into an outward ~

moving domain wall.

3.1. Collapse to a black hole

Figure 1 shows the evolution of the metric functiaas In
the plots, solid lines correspond to initial and final configura- <
tions, and dotted lines to intermediate stages (the separatior™ v [
in time between these lines it = 25). At first, there are
small oscillations around the initial value, but later on the ra-
dial metric starts to grow in a form characteristic of the slice ”
stretching associated with BH spacetimes. The analysis ofthe of
behavior of the lapse function shows the characteristic col- . . t =525
lapse of the lapse indicative of the approach to a singularity. 0 0.5
The corresponding evolution of the scalar field can be
seen in Fig. 2. Notice how the scalar field moves toward thericure 3. Evolution of the metric functiom for the positive per-
local minimum atp = 0 everywhere. At late times, the evo- turbation.

N

1.5 2.5
log,o(1+4r)
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FIGURE 4. Evolution of the scalar fieleh for the positive perturba-
tion. The scalar field is now moving toward the true minimum of
the potential a = 0.5 everywhere.

lution of the inner regions is frozen due to the collapse of th

61

ent from the case described in the previous section. In the
first place, there is no indication of the slice stretching ef-
fect. Moreover, in the evolution of the radial metd it is
clear that there is a wall moving outward. The wall moves
essentially at a uniform speed, even if this is not evident in
the log plot (this speed is approximately 1 in our units, which
coincides with the speed of light in the outer regions). Inside
this wall, the radial metric is collapsing to zero. The angu-
lar metric is also collapsing to zero in this region, but not as
rapidly.

The evolution of the scalar field can be seen in Fig. 4. In
contrast to the results of the previous section, in this case the
scalar field is moving toward the true minimum of the poten-
tial at ¢ = 0.5. Since this minimum corresponds to a neg-
ative value of the potential, the inside of the wall resembles
an anti-de-Sitter spacetime, except for the fact that the scalar
field is not uniform. Still, one would expect the formation of
a big-crunch type singularity in this region in a finite proper

dime [35, 36]. However, because of the singularity avoiding

lapse there. By that time, however, the scalar field has valProperties of harmonic slicing, this singularity would only be

ues below0.1 everywhere, which implies that we are in the

region where the potential is positive.

3.2. Explosion

Figure 3 shows the evolution of the metric functidnfor
this case (lines are now separated in timety = 75). It

reached after an infinite coordinate time.
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