
REVISTA MEXICANA DE FÍSICA S53 (2) 54–57 FEBRERO 2007

The influence of non-minimally coupled scalar fields on the dynamics of
interacting galaxies
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We study bar formation in galactic disks as a consequence of the collision of two spiral galaxies under the influence of a potential which is
obtained from the Newtonian limit of a scalar–tensor theory of gravity. We found that dynamical effects depend on parameters (α, λ) of the
theory. In particular, we observe that the bar is shorter for weaker tidal perturbations, which in turn corresponds to smaller values ofλ used
in our numerical experiments.
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Estudiamos la formación de barras en discos galácticos como consecuencia de la colisión de dos galaxias espirales bajo la influencia de un
potencial de interacción que proviene del lı́mite Newtoniano de una teorı́a escalar–tensorial de gravitación. Encontramos ćomo los efectos
dinámicos dependen de los parametros (α, λ) de la teoŕıa y en particular vemos que la longitud de la barra es menor cuando las perturbaciones
de marea son menores, y esto se logra con valor deλ menor en nuestros experimentos numéricos.
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1. Introduction

Observations of spiral galaxies indicate that the presence of
a central structure called abar is a common feature [1]. The
instability of isolated stellar disks in galactic models leads to
bar formation and is characterized by Toomre’s stability pa-
rameterQ [2]. The models withQ < 1 are subject to bar
formation. However, we are interested in dynamical effects
of non–isolated systems which are found in clusters of gala-
xies. In this regard, it has been suggested that the observed
bar in many spirals is the result of the gravitational interac-
tion between two or more nearby galaxies. For instance, No-
gushi [3] has found that, during the collision of two galaxies
and between the first and the second closest approaches, the
disk takes on transient bar shape. The gravitational interac-
tion between the two galaxies gives rise to perturbations in
the orbits of the stars that result in the formation of the bar.

Bar formation in the simulations of stellar disks depends
upon various simultaneous effects. In the case of collisions,
these factors are [4]: rotation curve shape, disk-halo mass ra-
tio, perturbation force and geometry. However, simulations
can suffer from numerical effects such as low spatial and
temporal resolution, too few particles representing the sys-
tem and an approximate force model. These effects can be
drastic: for example, observations show that bars have typ-
ically a length scale close to the exponential length of the
disk [5], while the bar’s semi-major axis obtained from nu-
merical models is two to four times longer [6,7].

Recent observational data measured in the Cosmic Mi-
crowave Background at various angular scales, in Supernovae
Ia, and in the 2dF galactic survey, suggest [8] that the Uni-
verse is composed of about4% baryons in the form of gas and

stars,26% dark matter (DM) and70% dark energy, which is
a kind of cosmological constant and is responsible today for
the accelerated expansion of the Universe. This way, galaxies
are expected to possess these dark components and, in accor-
dance with rotation curves of stars and gas around the centers
of spirals, this might be in the form of halos, and must con-
tribute to at least 3 to 10 times the mass of the visible matter
of spirals.

Regarding to the nature of DM, we know that DM has
to be non–baryonic. This is because nucleosynthesis abun-
dances of light elements are only consistent with the above–
mentioned baryonic fraction, and this is not sufficient at all
to account for rotational velocities of spirals. This fact opens
up new possibilities for explaining the nature of DM. In this
sense, in a recent paper [9] a model is proposed in which a
scalar field (SF) couples non–minimally to gravity to produce
locally a modified Newtonian theory of gravity. It turns out
that the dynamics is now determined by the Poisson equation
coupled to a Klein–Gordon equation for the assumed scalar
field in the galaxy. Thus, the boson mass of the scalar field
modifies the Newtonian law of attraction, and the dynamics
of DM is different from its Newtonian counterpart. In this
scalar–tensor theory, potential–density pairs for various halo
density profiles were computed.

In the present work we use the above–mentioned results
to study the collision process of two spirals, each of which
possess a disk, bulge and dark halo, in order to estimate the
effects of the modified gravity theory on the bar’s length and
the orbital decay of galaxies. We first studied dynamical ef-
fects on isolated galaxy models for three different interaction
scales (λ). We found no significant changes in the morphol-
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ogy of models, but we did in the total potential energy. Then,
we analyzed the formation of a bar during a parabolic colli-
sion of two identical galaxies and compared the results ob-
tained in the SF model with three scales ofλ and with a pure
Newtonian interaction.

2. Scalar–tensor theory and its Newtonian
limit

A typical scalar–tensor theory is given by the following La-
grangian:

L=
√−g

16π

[
−φR+

ω(φ)
φ

(∂φ)2−V (φ)
]

+LM (gµν), (1)

from which we obtain the gravity and SF equations. Heregµν

is the metric,LM (gµν) is the Lagrangian matter andω(φ)
andV (φ) are arbitrary functions of the SF. According to the
Newtonian approximation, gravity and SF are weak, and the
velocities of the stars are non–relativistic. Thus, we expect
to have small deviations of the SF around the background
defined here as〈φ〉 = 2 ≡ G−1

0 . If we define the perturba-
tion φ̄ ≡ φ− 2, then the Newtonian approximation gives the
equations [9,10]

∇2ψ = 4πG0ρ , ∇2φ̄−m2φ̄ = −8παG0ρ , (2)

whereψ = 1
2 (h00 + φ̄). Here we defineλ = ~/mc, the

Compton wavelength of the effective massm of some ele-
mentary particle (boson) given throughω(φ) and the poten-
tial V (φ), andα ≡ 1/(3 + 2ω(φ)) is the amplitude of the
perturbed SF,̄φ. The above formalism is valid for any po-
tential that can be expanded in a Taylor series around〈φ〉.
In what follows we shall useλ instead ofm−1. This mass
can have a range of values depending on particular particle
physics models.

General solutions of Eqs. (2) can be found in terms of
the corresponding Green’s functions, and the new Newtonian
potential is

ΦN ≡ ψ − 1
2
φ̄ = −G0

∫
drs

ρ(rs)
|r− rs|

−αG0

∫
drs

ρ(rs)e−|r−rs|/λ

|r− rs| + B.C. (3)

Solutions to these equations for point masses are

φ̄ = 2αuλ , (4)

ΦN = −u− αuλ , (5)

where

u =
∑

s

G0ms

|r− rs| , (6)

uλ =
∑

s

G0ms

|r− rs|e
−|r−rs|/λ, (7)

with ms being a source mass. The total gravitational force on
a particle of massmi is

F = −∇ΦN = mia. (8)

The potentialu is the Newtonian part anduλ is the SF modi-
fication which is of the Yukawa type.

3. Initial conditions

We use the Monte-Carlo procedure to construct a galaxy
model with a Newtonian potential. A fully self–consistent
model in the context of the SF is in preparation. The ini-
tial conditions of the galaxies are constructed following the
model described by Barnes [11]. In this model, both the
bulge and halo are non-rotating, spherically symmetric and
with an isotropic Gaussian distribution of velocities charac-
terized by the velocity dispersionsσb andσh, respectively.
The units are such that the local (r ¿ λ) gravitational con-
stant isG = G0(1 + α) = 1, and the units of mass, lon-
gitude and time areM = 2.2 × 1011 M¯, R = 40 kpc and
T = 250 Myrs, respectively. The bulge density profile is [12]

ρb(r) =
Mbab

2π

1
r(r + ab)3

, (9)

and the halo density profile is a Dehnen’s family member
with γ = 0 [13],

ρh(r) =
3Mh

4π

ah

(r + ah)4
. (10)

The disk density profile is exponential [14]

ρd(r, z) =
Md

4πa2
dz0

e−r/adsech2
(

z

z0

)
. (11)

HereMb = 0.0625, Md = 0.1875, andMh = 1.0 are the
total mass of the bulge, disk, and halo, respectively. The
scale lengths of the bulge, halo, and disk areab = 0.04168,
ah = 0.1, andad = 1/12, respectively, andz0 = 0.007 is
the scale height of the disk. The mass distributions were trun-
cated at a radius containing95% of the total mass, since they
extend to infinity. The compound galaxy was sampled with
N = 40960 equal mass particles. The velocity distribution of
the disk is given by the Schwarzschild distribution function
with the velocity dispersionsσR = 2σz ∝ e−adr, andσz

given by the equilibrium condition of an infinite gravitating
sheet;σφ is calculated from the epicyclic approximation. The
Toomre parameter for the initial disk isQ ≈ 1, so we have
a disk which is marginally stable for axisymmetric pertur-
bations, but not, however, against strong non-axisymmetric
ones.

Observations suggest that the majority of the interacting
galaxies are located on nearly parabolic orbits. For all colli-
sions, disks were located in the plane of parabolic orbits, cal-
culated from parameterized equations of the two-body prob-
lem, with a pericentric separationp = 0.4, and the time to

Rev. Mex. F́ıs. S53 (2) (2007) 54–57
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pericentertp = 3.0. The direction of rotation of one of the
disks (disk 1) was in the same direction as the corresponding
orbital-angular-momentum,i.e. direct motion. The other disk
(disk 2) was in retrograde motion. The two colliding galaxies
are initially identical.

4. Numerical method

For the time evolution we use the Barnes tree code [15] modi-
fied to include the Newtonian contribution of the scalar fields
as given by Eqs. (4)-(8). The forces were computed with a
tolerance parameterθ = 0.75, and including the monopole
term only. For the gravitational potential we used the stan-
dard Plummer model

Φ ∝ − 1√
r2 + ε2

. (12)

Here, ε is the softening parameter taken in our simulations
to beε = 0.015. The equations of motion were integrated
using the second order leap–frog algorithm with a fixed time
step∆t = 1/256. With these parameters we obtain a good
energy conservation (< 0.2%) and also good angular mo-
mentum conservation (< 0.5%) for all runs presented here.

To characterize quantitatively the bar amplitude, we con-
sider the distortion parameter defined as [17]

η =
√

η2
+ + η2×, (13)

where

η+ =
Ixx − Iyy

Ixx + Iyy
, η× =

2Ixy

Ixx + Iyy
, (14)

and

Iij =
N∑

k=1

mkxi
kxj

k, i, j = (x, y). (15)

The particles that are outside of the spatial region of the orig-
inal disk can affect the parameter under study. For instance,
if we calculate the distortion parameter using all the particles
in the disk, we have in both cases similar evolution curves.
Therefore, to avoid the noise, we exclude particles that are
outside of the original radius of the disk.

5. Results

We first study isolated galaxy models with different values of
λ. We consider four sets of simulations followed up to time
t = 8.0. The parameters and results of runs are presented in
the table, whereE0 andĒ are the initial and total mean en-
ergies, and∆E/E0 is the relative change of the total energy
during the evolution with respect to its initial value. Though
the scale of interactionλ and magnitude ofα are unknown,
we choose their values arbitrarily such thatλ is equal to the
cutoff radius of the disk, bulge and halo for models A1, A2
and A3, respectively, and a fixed amplitude of the SF,α = 1.

TABLE I.

Run λ Q̄ |E0| |Ē| | ∆E
E0

|, % η̄

A1 0.4 1.0 0.7279 0.7277 0.066 0.030

A2 1.0 0.9 0.9511 0.9509 0.048 0.033

A3 6.0 0.9 1.1632 1.1630 0.039 0.042

A4 ∞ 1.0 1.2234 1.2232 0.036 0.045

The largerλ makes the contribution of the SF weaker for a
fixed galactic size. Forλ = ∞, one obtains the Newtonian
case, model A4. Previous studies of protogalactic interac-
tions under the influence of this SF [16] were made for scales
less than those considered here.

All models show good energy conservation (see table).
The presence of the SF decreases the total potential energy
due to a shallower potential well at distancesr > λ. The
initial models reaccommodate rapidly due to potential mod-
ification, i.e., shifts to a new equilibrium state. At the end
of the evolution, the components of galaxy models with the
SF became slightly more extended. The velocity profiles of
the components match the Newtonian ones up tor ≈ λ. For
r > λ there is a slow decay in velocities, since the effec-
tive gravitational constant decreases. The distortion parame-
ter shows a nearly equal noise level of surface density of the
disks. The evolution of Toomre’s local stability parameterQ
shows a slow decay fromQ ≈ 1 to Q ≈ 0.9, with mean
values presented in the table for each run.

Then, we proceed to study the interaction of two equal
galaxy models. During the orbital decay we analyze the bar’s
strength for different values ofλ. Because the equilibrium
galaxy models were constructed with Newtonian potential,
we relax them up to timet = 1.0 with a modified SF poten-
tial in order to reach a new equilibrium state for a givenλ.
Then we place relaxed galaxies on parabolic orbits and let
them interact.

The results are as follows. The first encounter occurs at
time t ≈ 3.0. This is the time of major transfer of orbital an-
gular momentum, and then disk 1 forms a strong bar, while
disk 2 is in retrograde motion and develops a very weak bar.
Fig. 1 (left) presents the separation between the centers of
mass,p, of two galaxies as a function of time. All runs,
except A1, after several close approaches merge and form
a remnant. In the run with model A1, after the first approach
the galaxies separate such a large distance that they will never
encounter again. This is because the weaker the gravity, the
lessable the galaxies are to become bound: at distances larger
thanλ, the potential diminishes in comparison with the pure
Newtonian. In runs A2 and A3, the SF causes just a retar-
dation of the subsequent interactions. The simulation with
model A3 is practically identical to the Newtonian one.

In order to analyze the bar formation, we consider follow-
ing only disk 1.In Fig. 1 (right) we plot the distortion param-
etersη as a function of time for runs with galaxy models A2
and A4 only. As a consequence of gravity modification, the
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FIGURE 1. Left: The separation between the centers of mass of two galaxies as a function of time. Right: Evolution ofη for two collision
runs with models A1 and A3.

galaxies do not approach each other too closely as happens in
the Newtonian run. Thus, weaker perturbations make the bar
shorter. The run with galaxy model A3 is very similar to the
Newtonian case. The bar’s phases are displaced due to orbit
modification.

6. Conclusions

From simulations of isolated galaxy models with a different
λ, we can see that the addition of a non–minimally coupled
SF slightly modifies the equilibrium of the Newtonian model,
acting as a small perturbation, and it diminishes the total po-
tential energy forr > λ, since the effective gravitational con-
stant decreases in this range. Our results show that the inter-
action of galaxies with the SF is weaker in comparison with
the Newtonian case. We have found that the inclusion of the
SF changes dynamical properties such as collision time, bar

morphology, and in general the remnant properties. All these
changes depend on the pair (α, λ), which on the other hand,
can be constrained from observations. For instance, the du-
ration of interaction cannot be larger than the age of the Uni-
verse, implying constraints on values ofG0, which depends
on G andα. These constraints can be provided from statis-
tical data on the fraction of observed interacting galaxies. A
wide range of parameters should be investigated and higher
resolution must be used in simulations in order to make pre-
dictions for particular interacting models. Further investiga-
tions with more particles and self-consistent initial models
are under way.
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