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From conformal Killing vector fields to boost-rotational symmetry
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We discuss a connection between three-dimensional Riemannian manifolds(Σ, γ) admitting a special conformal Killing vector fieldξ
and static vacuum or non-vacuum spacetimes. Any such(Σ, γ) generates a vacuum spacetime(M, g) but it also generates a spacetime
(M, g, Φ), where(g, Φ) satisfies the Einstein-Klein-Gordon massless minimally coupled gravity equations, or the Einstein-Conformal scalar
field equations. The resulting spacetimes either admit four Killing vector fields or possess boost and rotational symmetry. We argue that this
connection goes beyond the vacuum or Einstein-scalar field system and it should be viewed as a mechanism of generating solutions for the
Einstein equations, admitting a hypersurface orthogonal Killing vector field.
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Se discute la conexión entre variedades Riemannianas(Σ, γ) de dimensíon tres que admiten un campo vectorial de Killing conformeξ y
espacios- tiempo estáticos asociados a sistemas en el vacı́o o no-vaćıo. Cualquiera de estas variedades(Σ, γ) generan un espacio-tiempo
(M, g) e igual generan un espacio-tiempo(M, g, Φ), donde(g, Φ) satisfacen las ecuaciones para el campo escalar asociadas a los sistemas de
Einstein-Klein-Gordon con acoplamiento mı́nimo o conforme. Los espacios-tiempo asociados resultantes admiten cuatro campos vectoriales
de Killing o una simetŕıa de ”boost ” y rotacional. Se argumenta como esta conexión va mas alĺa de los sistemas en el vacı́o o de los sistemas
de campos escalares y esto puede ser visto como un mecanismo para generar soluciones de las ecuaciones de Einstein, que admitan un campo
vectorial de Killing ortogonal a una hipersuperficie.

Descriptores:Relatividad general; campo vectorial de Killing conforme; ecuaciones de Einstein.

PACS: 04.20.jb; 04.20.-q

1. Introduction

This work is focused on properties and applications to rel-
ativistic gravity of three-dimensional Riemannian manifolds
(Σ, γ) satisfying the following conditions:

a) The smooth metric γ admits a hypersurface-
orthogonal, non-singular conformal Killing vector
field ξ,

b) The Ricci tensor of γ is described by
Rab = λ(3XaXb − γab), whereλ 6= 0 and the unique
eigenvectorX of Ricci is parallel to the fieldξ.

c) The expansionΘ = Daξa and magnitudeγ(ξ, ξ) of ξ
are determined by the eigenvaluesλ of the Ricci tensor.

We shall begin by first discussing the reasoning that
lead us to study such manifolds. In this regard, we recall
that any smooth spacetime(M, g) admitting a hypersurface-
orthogonal timelike Killing vector fieldξ′ admits a local co-
ordinate chart so thatξ′ = ∂/∂t and the components ofg are
described by [1]:

g = −V 2dt2 + γabdxadxb, a, b = 1, 2, 3, (1)

whereγab are the components of the induced positive def-
inite metric on anyt = const spacelike hypersurface and
−V 2 stands for the magnitude ofξ′. Wheneverg is a so-
lution of Einstein’s vacuum equations, the red-shift factor (or
lapse function)V and the components ofγab satisfy on any
t =const:

V Rab = DaDbV, (2)

DaDaV = 0, (3)

where (Rab, D) stand for the Ricci curvature and the co-
variant derivative operator associated withγ. Moreover, as
is well known, and easy verifiable, for any smooth solution
(γ, V ) of those equations, the York-Cotton tensorRabc(γ)
satisfies [2]:

V Rabc = 2RabDcV − 2RacDbV + γabRcdD
dV

−γacRbdD
dV. (4)

In order to establish the connection between the three man-
ifolds introduced earlier on and relativistic gravity, we view
system (2) from a slightly different point of view. We con-
sider a smooth three-manifoldΣ equipped with a Riemannian
metricγ′ and a strictly positive functionV ′ so that(γ′, V ′)
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satisfy Eq. (2) and thus also (4). The triplet(Σ, γ′, V ′) gives
rise to a static spacetime(M, g) in the following way: on the
product manifoldM ≡ Σ×IR, we define the Lorentzian met-
ric g = −V 2dt2 + γ, whereγ andV are the lifts of(γ′, V ′)
onM by the natural projection ofM uponΣ. It is easily seen
that this(M, g) is a vacuum spacetime admitting a hypersur-
face orthogonal timelike Killing vector fieldξ′, possessing
complete orbits. Thus any(Σ, γ, V ) as above leads to a static
vacuum spacetime(M, g). For simplicity, we hereafter drop
the distinction between primed fields(γ′, V ′) defined onΣ
and their lifts(γ, V ) defined onM . Of course this connec-
tion of (Σ, γ, V ) to the vacuum(M, g) is rather well known.
However, we would like to discuss the role of relation (4)
in this type of association. Normally Eq. (2) augmented by
a suitable regularity or and boundary conditions, determine
the positive functionV and the metricγ, and in this event
(V, γ) identically satisfies (4). Suppose, however, that one is
interested in constructing a solution(γ, V ) of (2) so that the
Ricci curvature ofγ has a special structure, for example be-
ing algebraically special onΣ. To be more concrete, let us
suppose thatRab(γ) = λ(3XaXb − Λab) for an unknown
non-vanishing scalarλ and a smooth fieldX. If Eq. (2) ad-
mits this solution, then the proposedRab(γ) andV ought to
obey relation (4). For the proposed Ricci,Rabc(γ) reduces to
Rabc = DbRca −DcRba and it takes the form:

Rabc = (3XaXc − γac)Dbλ− (3XaXb − γab)Dcλ

+3λ(XaDbXc + XcDbXa −XaDcXb −XbDcXa). (5)

Combining this expression with Eq. (4) yields:

V [(3XaXc − γac)Dbλ− (3XaXb − γab)Dcλ

+ 3λ(XaDbXc + XcDbXa −XaDcXb

−XbDcXa)] = 3λ[2Xa(XbVc −XcVb)

+ γab(XdVdXc − Vc)− γac(XdVdXb − Vb)]. (6)

This set of tensorial relations act as constraints in the follow-
ing sense: solution(γ, V ) of (2) subject to the restriction that
Rab(γ) = λ(3XaXb−Λab) would exist provided(Xa, λ, V )
and components ofγ satisfy those constraints onΣ. The con-
tent of the above integrability conditions has been worked out
elsewhere [3, 4]. They hold true providedXa, λ, V andγ
obey the following onΣ:

DaXb + DbXa = − 2
3λ

(XcDcλ)γab

+
1
3λ

(XaDbλ + XbDaλ), (7)

DaXb −DbXa =
1
3λ

(XaDbλ−XbDaλ), (8)

V Y aDaλ = −3λY aDaV, (9)

where in the last equationY stands for any smooth vector
field perpendicular toX. In terms of a new vector fieldξ

defined viaξa = λ−1/3Xa, Eq. (7, 8) imply:

Daξb + Dbξa =
2
3
Θγab, (10)

Da(λ
2
3 ξb)−Db(λ

2
3 ξa) = 0, (11)

and thusξ = λ−1/3Xa(∂/∂xa) satisfies the conformal
Killing equation in Σ. Moreover, the expansionΘ and
magnitude ofξ are determined by the eigenvalueλ via
Θ = Daξa = (−1/λ)ξaDaλ andξaξa = λ−2/3. On the
other hand, (11) implies that the one formA = λ2/3ξa dxa

is closed and thus, as long asΣ is assumed to be simply con-
nected, it is exact. As far as (9) is concerned, utilizing the
fact thatY is arbitrary, and as long asλ1/3V 6= 0, one arrives
at:

Y aDa log |λ 1
3 V | = 0, Y aXa = 0. (12)

Introducing a parameterx varying along the integral curves
of ξ, then the above equation implies:

|λ 1
3 V | = G2(x), (13)

whereG2 = G2(x) is a smooth function exhibiting a gradi-
ent along the integral curves ofξ. Notice however that (9) is
also satisfied identically wheneverλ = λ(x)⇔ V = V (x) a
relation that will be useful latter on.

In summary, any(γ, V ) such that

Rab(γ)=λ(3XaXb−γab),

is compatible with (4), providedγ admit a conformal Killing
vector ξ parallel to X obeying (10-11) and additionally
(λ, V ) either obey (13) orλ = λ(x) and thusV = V (x).
Suppose for the moment that all manifolds(Σ, γ) obeying
conditions (a-c) withξ the conformal Killing field ofγ are
explicitly known. For a specific(Σ, γ), by appealing to (13)
one may define a red-shift factorV up to a smooth func-
tion G exhibiting a gradient parallel toξ or simply taking
V = V (x). The specification of the arbitrary functionG2(x)
or V (x) can be determined by demanding satisfaction of (2).
OnceV has been determined, the triplet(Σ, γ, V ) defines a
vacuum spacetime(M, g). This conclusion makes clear our
motivations for studying manifolds(Σ, γ) obeying (a-c) men-
tioned earlier on.

Even though this brief discussion demonstrates the con-
nection between(Σ, γ) and vacuum static spacetimes, ac-
tually the manifolds(Σ, γ) are of relevance in constructing
non-vacuum spacetimes as well. In order to establish this
connection, we shall consider Einstein gravity coupled to a
real massless scalar fieldΦ, and in this work we shall limit
ourselves to two particular cases:

α) Φ is minimally coupled to gravity,

β) Φ is conformally coupled to gravity.

For the first case, we recall that the relevant equations are:

Gµν = k[∇µΦ∇νΦ− 1
2
gµν∇σΦ∇σΦ], (14)

∇µ∇µΦ = 0, (15)
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while for the case thatΦ is conformally coupled, the corre-
sponding system is described by:

(1− αΦ2)Rµν = α(4∇µΦ∇νΦ

− 2Φ∇µ∇νΦ− gµν∇σΦ∇σΦ), (16)

∇µ∇µΦ = 0, µ, ν = 0, 1, 2, 3, (17)

whereα = 8πG/c46. For a static spacetime(M, g, Φ) with
(g, Φ) satisfying either (14) or the above equations, the metric
g admits a hypersurface-orthogonal timelike Killing vector
field ξ′ such that:Lξ′g = 0, and moreoverLξ′Φ = 0. Rel-
ative to the coordinate gauge of (1), any(g, Φ) obeying (14)
satisfies on anyt = const hypersurface:

Rab = V −1DaDbV + kDaΦDbΦ, (18)

DaDaΦ = −V −1DaV DaΦ, (19)

DaDaV = 0, (20)

where (Rab , D) stand for the Ricci tensor and covariant
derivative operator ofγab respectively. On the other hand,
for the case of the conformal coupling, it is convenient to
work with the metricΛ = e2Uγ whereU is related toV via
V = eU . Thus for the conformal system we shall be working
with the following representation ofg:

g := −e2Udt2 + e−2UΛabdxadxb, (21)

and relative to this gauge, the covariant Eqs. (16) yield [3,5]:

(1−Φ2)(Rab−2DaUDbU)=4DaΦDbΦ−2ΦDaDbΦ

−2ΦDaΦDbU−2ΦDaUDbΦ−2ΛabD
cΦDcΦ, (22)

(1− Φ2)DaDaU = DaΦDaΦ + 2ΦDaΦDaU, (23)

DaDaΦ = 0, (24)

where currently(Rab, D) stand for the Ricci tensor and co-
variant derivative computed using the positive definite met-
ric Λ. Following the same reasoning as for the vacuum case,
we view the systems (18)-(20) resp (22)-(24) as being de-
fined on a three-manifoldΣ equipped with the metricγ case
of minimal coupling, orΛ, a case of conformal coupling.
Smooth configurations(γ, V, Φ) on Σ satisfying (18)-(20)
generate a static spacetime(M, g, Φ) obeying the covariant
Eqs. (14), while a triplet(Λ, U,Φ) satisfying (22)-(24) on
Σ, generates via (21) a spacetime(M, g, Φ) satisfying the
conformal Eqs. (16). Even though currently we are dealing
with systems more complex and different from the vacuum
system (2), nevertheless we shall apply the same lines of ar-
gument as for the vacuum case. On a smooth three-manifold
Σ, we are interested in constructing solutions(γ, V, Φ) and
(Λ, U,Φ) resp so that theRab(γ), Rab(Λ) resp , are alge-
braically special onΣ. These requirements upon the Ricci
require the satisfaction of integrability conditions in addition
to (18)-(20) and (22)-(24) respectively . Those integrability

conditions can be worked out explicitly (see Ref. 6). How-
ever for the present paper we shall not need their explicit
forms. Rather we shall need the integrability conditions that
will arise by assuming onΣ that the functions(Φ, V ) and
(Φ, U) resp are functionally related,i.e. F (Φ, V ) = 0 and
F̂ (Φ, U) = 0, resp. Under the assumption that the gradient
of F andF̂ resp is not identically zero, smooth configurations
(γ, V, Φ(V )) and(γ, U(Φ),Φ) resp. are compatible with the
set (18-20) (22-24) resp only for specific form ofF and F̂
resp. To construct those functions, let us first consider the
system (18-20). Imposing the ansatzΦ = Φ(V ), Eq. (19),
combined with the absence of critical points ofV in Σ im-
plies: Φ(V ) = α ln V + β with α, β arbitrary constants. For
suchΦ(V ) the remaining equations implies that(γ, V ) sat-
isfy:

V 2Rab(γ) = V DaDbV + kα2DaV DbV, (25)

DaDaV = 0. (26)

It is advantageous to conformally deformγ so that the result-
ing metricΛ possesses zero scalar curvature. Even though
there exist an infinite parameter family of conformal factors
Ω fulfilling this requirement, our choice ofΩ is related to the
red-shift factor. We defineΛ via: Λ = Ω2γ = V 2nγ, where
n is a free parameter. Rewriting (25) and (26) in terms ofΛ
and associated covariant derivativeD, yields:

V 2Rab(Λ) = (1− n)V DaDbV

+ (kα2 + 3n− n2)DaV DbV, (27)

V DaDaV − nDaV DaV = 0. (28)

Taking the trace of (27) in view of (28), we arrive at:

V 2R(Λ) = (k α2 + 4n− 2n2)DaV DaV, (29)

and thus, requiring thatR(Λ) ≡ 0, the parametern is chosen
so that:2n2 − 4n − k α2 = 0. This algebraic equation, as
long ask > 0, admits a positiven+ and a negativen− root.
Hereafter we shall assume thatn has been fixed as one of the
two roots, implying via (29) thatR(Λ) = 0.

From the system (27-28) specifies the components ofΛ
and the functionV . Let (Λ, V ) be a smooth solution of those
equations differentiation of (27), antisymetrization, use of the
Ricci identityDaDbXc−DbDaXc = Rabc

dXd and the fact
that at three dimensions the Riemann tensor is determined by
the Ricci curvature, it follows thatRabc(γ), Rab(γ) andV
obey:

V Rabc = (1− n)
[

2(RabDcV −RacDbV )

+ΛabRcdD
dV − ΛacRbdD

dV
]
, (30)

a relation which for our purpose is identical to relation (4).
Accordingly we shall use it in the same manner as for the
vacuum case. We inquire whether (27-28) admits solutions
(Λ, V ) so thatRab(Λ) = λ(3XaXb − Λab), XaXa = 1.
Combining this Ricci with (30), and via identical algebraic
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manipulations as those for the analysis of (4), it follows that
Λ admits a hypersurface-orthogonal, conformal Killing vec-
tor fieldξ which obeys conditions (a-c) introduced earlier on.
Moreover,V and the eigenvalueλ of Ricci are either related
to each other viaλ = λ(x) ⇔ V = V (x) or they satisfy the
following relation:

λ
1
3 =

G2(x)
V 1−n

, (31)

where the positive functionG2(x) has the same meaning
as (13), i.e. it exhibits a gradient only along the integral
curves of the vector fieldξ. From this analysis it is clear
that manifolds(Σ, Λ) obeying conditions (a-c) are becom-
ing relevant for system (14) as well. For any such(Σ, Λ), the
functionV is determined via (31) whileG2(x) is specified by
requiringΛ andV to obey (27) and (28). Once suchG2(x)
has been determined, a static solution of (14) is immediately
available. The space-time manifold is defined viaM=IR×Σ,
the metricg is defined byg = −V 2dt2 + V −2nΛ, while the
field Φ is specified viaΦ = α ln V + β.

Let us now shift our considerations to the conformal cou-
pling, i.e. the set (22)-(24). Reasoning as for the case of min-
imal coupling, we look for(Λ, U(Φ),Φ) satisfying (22)-(24).
This requirement fixes theU(Φ) [3,6]:

U(Φ) = − ln(1 + Φ) + C2, (32)

and for thisU(Φ) the set (22)-(24) implies that(Λ, Φ) obey:

(1− Φ2)Rab = 6DaΦDbΦ

− 2ΦDaDbΦ− 2ΛabD
cΦDcΦ, (33)

DaDaΦ = 0, (34)

whereRab, D stand for the Ricci tensor and covariant deriva-
tive operators associated withΛ. However, the structure of
those equations implies that, for any smooth solution(Λ, Φ),
the York-Cotton tensor, Ricci tensor ofΛ andΦ obey:

Φ(1− Φ2)Rabc = 4DbΦRca − 4DcΦRba

− 2DdΦRdcΛba + 2DdΦRdbΛca, (35)

i.e. a relation functionally identical to the fundamental re-
lation (4). Again we are interested in constructing solutions
(Λ,Φ) of (33-34) so thatRab(Λ) = λ(3XaXb − Λab). For
this Ricci, the content of this integrability condition (35)
requires thatΛ admit a hypersurface-orthogonal confor-
mal Killing field ξ obeying (10, 11), and moreover either
λ = λ(x) ⇔ Φ(x) or in any region whereΦ2 6= 1, the field
Φ andλ obey:

λ
1
3 =

G2(x)Φ2

1− Φ2
, (36)

whereG2(x) stands for a non-vanishing function having the
same property as the previously discussed cases. Thus again
the manifolds(Σ,Λ) obeying conditions (a-c) evidently are
of importance here as well. Starting from any such(Σ, Λ), we

construct the fieldΦ by appealing to the above-mentioned re-
lation in conjunction with the dynamical Eqs. (33-34). To the
triplet (Σ, Λ, Φ) we associate the spacetime(M, g, Φ), where
M = IR× Σ, while the spacetime metricg is described by:

g := − dt2

(1 + Φ)2
+ (1 + Φ)2Λ. (37)

The analysis so far demonstrates that any(Σ, γ) obey-
ing conditions (a-c) can be used as a seed to construct space-
times(M, g, Φ) where(g, Φ) are particular solutions of the
Einstein massless scalar field equations. Naturally, the con-
siderations so far lead us to ask: how many such(Σ, γ) exist?

2. On Riemannian Manifolds admitting a con-
formal Killing field

In this section we shall determine all manifolds(Σ, γ) obey-
ing conditions (a-c). In order to carry out this task we need to
build a suitable coordinate chart and here Eqs. (10-11) is the
starting point. As a consequence of it we have:

Lemma: There exists a local coordinate chart(x, x1, x2)
such thatξ=∂/∂x, Θ=Daξa=−λ−1ξaDaλ, and the compo-
nents ofγ can be written in the form:

γ = λ−
2
3

(
dx2 + γ̂ijdxidxj

)

=
dx2

S2(x, x1, x2)
+

γ̂ij(x1, x2)
S2(x, x1, x2)

dxidxj ,

i, j = 1, 2, (38)

wherex ∈ (a, b) ∈ IR and(x2, x3) are arbitrary local coor-
dinates on anyx = const two surfaces.

It may be easily verified that, whit respect to this chart,
ξ = ∂/∂x is a conformal Killing field ofγ obeying the
conditions of the lemma. (The proof of this Lemma is dis-
cussed in Ref. 4). Making use of this coordinate we view
Rab = λ(3XaXb − γab) as the dynamical equations deter-
miningγ, λ andX. ProjectingRab = λ(3XaXb−γab) along
and perpendicular tox = const coordinate surfaces yields [7]:

−R(2) −KijKij + K2 =4S3, (39)

DiK −Dj Kj
i =0, (40)

−S
∂Kij

∂x
+ 2KilK

l
j −KKij +

1
2
R(2)γij

+
1
S

DiDjS − 2
S2

DiSDjS = −S3γij , (41)

1
2
S

∂γij

∂x
= Kij , (42)

where(R(2), Di) stand for the scalar curvature and the co-
variant derivative of the intrinsic two metricγij = S−2γ̂ij ,
while Kij are the components of the extrinsic curvature of
thex = const surfaces described by:

Kij=
1
2
Lnγij =

1
2
S

∂

∂x

γ̂ij

S2
= − γ̂ij

S2

∂S

∂x
= −∂S

∂x
γij . (43)
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Rewriting (39-42) in terms of̂γij yields:

S2R̂(2) + 2SD̂iD̂iS

−2D̂iSD̂iS + 4S3 − 2
(

∂S

∂x

)2

= 0, (44)

∂2S

∂x∂xi
= 0, i, j = 1, 2, (45)

[
2S

∂2S

∂x2
−4

(
∂S

∂x

)2

+2S3+S2R̂(2)+2SD̂kD̂kS

−4D̂kSD̂kS
]
γ̂ij+SD̂iD̂jS=0, (46)

2

[
S

∂2S

∂x2
−

(
∂S

∂x

)2

−S3

]
+SD̂iD̂iS−2D̂iSD̂iS=0 (47)

in which the scalar curvaturêR(2) and derivative operator̂Di

are formed using the “intrinsic” metriĉγij = γ̂ij(x1, x2) on
eachx = const 2-surface. Despite the fact that this system
is a coupled system of partial differential equations, to our
pleasant surprise, it can be integrated explicitly and the mo-
mentum constraint is the starting point. The general solution
of (45) is described by:

S(x, x1, x2) = f(x) + σ(x1, x2), (48)

wheref andσ are smooth functions of their arguments. This
form of S(x, x1, x2) suggests a classification of the metricsγ̂
satisfying (44)-(47) in accordance with one of the following
choices:

a) S = S(x) = f(x),
(49)

b) S = S(x1, x2) = σ(x1, x2),
(50)

c) S = S(x, x1, x2) = f(x)+σ(x1, x2).
(51)

Since, on the other hand,S is related to the Ricci eigen-
value λ, and in turnλ determines the expansionΘ of ξ,
conditions (49-51) are restrictions upon the behavior ofΘ
along the integral curves ofξ. Any solution to (44-47)
with S = S(x) implies thatγ admits a conformal Killing
field ξ so that the gradient of the expansionΘ is parallel
to ξ. On the other hand, any solution of (44)-(47) subject
to S = S(x1, x2) implies thatγ admit ξ as a hypersurface-
orthogonal Killing vector field, while for any solution of (44)-
(47) with S = S(x, x1, x2), the gradient ofΘ is no longer
parallel toξ. Below we shall only highlight the integration
procedure of (44)-(47). For the choiceS = S(x), equations,
(44) implies that anyx = const surface is a space of constant
curvatureR(2) = 2B with B a real constant. The remaining
equations imply thatS(x) satisfies:

(
dS

dx

)2

− 2S3 −BS2 = 0. (52)

The integration of (44)-(47) eventually yields the following
classes of three metrics. For the caseB > 0:

γ1 =
dr2

1− 2M
r

+ r2g+, r > 2M > 0, (53)

γ2 =
dr2

1 + 2M
r

+ r2g+, r ∈ (0,∞), M > 0, (54)

whereg+ stands for a two metric of positive Gaussian curva-
ture. For the case whereB < 0, the integration yields:

γ3 =
dr2

2M
r − 1

+ r2g−, 0 < r < 2M. (55)

whereg− stands for a two metric of negative Gaussian cur-
vature. And finally for,B = 0 the result is:

γ4 = rdr2 + r2g0 r ∈ (0,∞), (56)

with g0 a flat two metric. By construction,(γ1 − γ4) possess
a degenerate traceless Ricci whereλ = S3 and its unique
eigenvectorX is parallel to the conformal Killing fieldξ. If
we assume that ther = const spaces to be connected, simply
connected and geodesically complete, the metrics(γ1 − γ4)
can be considered to be defined on the product manifolds
(IR × S2, γ1), (IR × S2, γ2), (IR × H2, γ3), and(IR3, γ4).
Every one of those manifolds generates solutions to the vac-
uum, Einstein-Klein-Gordon and conformal system respec-
tively. In the concluding section, we shall comment on the
local and global properties of the resulting spacetimes.

For the choiceS = S(x1, x2), the integration of (44)-
(47) is rather lengthy. We have been able to complete the in-
tegration by introducing a coordinatey related toS(x1, x2)
via y = S(x1, x2) and using the freedom in thex2 coordi-
nate to diagonalize the intrinsic metric of eachx = const two
spaces. Leaving technicalities aside, the resulting metricΛ is
described by (see Ref. 4 for details):

Λ =
1
y2

[
dx2 +

dy2

y2(2y + C)
+ y2(2y + C)dz2

]
, (57)

whereC is a real constant and the range ofy is restricted
to suitable domains. This family of metrics possesses a de-
generate Ricci with the eigenvalueλ = S3 = y3 and ad-
mits ξ = ∂/∂x andξ1 = ∂/∂z as commuting Killing vec-
tor fields. Moreover,RabRab = 6λ2 = 6y6, implying that
curvature singularities take place asy → ∞. Accordingly
the singularities in the components of the metric occurring at
y = C/2 and aty = 0 ought to be mere coordinate singu-
larities. Settingb(y) ≡ (2y + C)y2, thenΛ possesses the
Euclidean signature provided the domain wherey takes its
values is restricted. For the case whereC = 2c2, with c real,
Λ possesses a right signature provided either−c2 < y < 0,
or 0 < y < ∞. On the other hand, for the case where
C = −2c2, Λ has the right signature providedc2 < y < ∞.
Finally there exist a “degenerate” case arising by choosing
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c ≡ 0, and here0 < y < ∞. Amongst those possibilities be-
low, we shall briefly discuss a few properties ofΛ under the
assumption thatC = 2c2 and−c2 < y < 0. For this choice,
at first we show extendability ofΛ aty → −c2 andy → 0−.
For this it is convenient to define a new coordinatey∗(y) via:

dy∗(y) ≡ dy√
2(y + c2)

1
2 |y| , y ∈ (−c2, 0). (58)

In terms ofy∗ we have

lim
y→−c2

Λ =
1
c4

[
dx2 + dy∗2 + y∗2c8dz2

]
. (59)

Applying the criterion of “elementary flatness”, it follows
that Λ is regular aty∗ = 0 providedz is periodically iden-
tified, i.e.

0 ≤ z ≤ 2π
1
c4

, (60)

and thus the singularity ofΛ as y → −c2 behaves as the
origin (r, θ) of the Euclidean 2-plane andΛ is extendible
up to and including the pointy = −c2. As long asz is
restricted in the domain specified by (60), thex = const
two spaces will be regular two spaces, and∂/∂z is an ax-
ial Killing vector field. At the other extremum, i.e. as
y → 0−, it would be sufficient to analyze the behav-
ior of the induced metricΛ2 on anyz = const slice. In
terms of the coordinatey∗, the induced metricΛ2 takes the
form: Λ2 = [1/y2(y∗)]

[
dx2 + dy∗2

]
. Extendability ofΛ2 as

y→0−, can be accomplished by passing to a suitable set of
isothermal coordinates(x(x, y∗) y(x, y∗)), and details of this
extension is discussed in Ref. 4. In summary, and as long as
(60) holds true,Λ is one parameter family of metrics admit-
ting two commuting Killing fields with one of them axial.
The fact thatΛ admits an axial Killing vector field would be
of crucial importance in understanding the structure of the
resulting spacetimes and issue that will be discussed further
below.

Finally the integration of (44)-(47) for the case where
S = S(x, x1, x2) has been discussed in detail in the appendix
I of Ref. 3 (see also [4]). It yields the following family of
metrics:

C =
1
S2

(
dx2

a(x)
+

dy2

b(y)
+ b(y)dz2

)
, (61)

where:

S(x, y) = x + y,

a(x) = 2x3 +
l

2
x2 + mx + n,

b(y) = 2y3 − l

2
y2 + my − n, (62)

where l,m, n are arbitrary for the moment free parame-
ters and the ranges of the(x, y, z) are restricted so that
C possesses the right signature. This family of metrics
admit ξ = ∂/∂x as a hypersurface-orthogonal confor-
mal Killing vector field and additionallyξz = ∂/∂z as

a Killing vector field. The Ricci tensor of (61) has the
form Rab = λ(3XaXb − Λab) with λ := (x + y)3 and
X = Xa(∂/∂xa) = (x + y)a1/2(x)(∂/∂x). Via the lin-
ear transformation:x = Ac0x + c1, y = Ac0y − c1, z = z
with A, c0 andc1 non vanishing constants, the functionsa(x)
andb(y) can be put in the form:

a(x) = −2Amx3 + x2 − 1,

b(y) = −2Amy3 − y2 + 1, (63)

whereA andm are arbitrary real parameters and for conve-
nience we have dropped the over bar from the(x, y) coordi-
nates. Due to the property thata(x) = −b(−x), the roots
of a(x) = 0 are related to the roots ofb(y) = 0 and vice-
versa. Moreover,a(x) = 0 may admit three real distinct
rootsx1 < x2 < x3 wheneverA2m2 < 1/27, two multiple
rootsx1 = x2 < x3 wheneverA2m2 = 1/27, or a single
real rootx1 case ofA2m2 > 1/27. Accordingly there exist
a number of domains where theC metrics possess the right
signature. Here we shall consider properties of the family of
C metrics subject to the condition that the coordinates(x, y)
are restricted by:x2 < x < x3 ⇔ y2 < y < y3. At first we
shall discuss extendability ofC as the root ofa(x) andb(y)
are approached. Let us for the moment consider the induced
metricC2 on anyx ≡ c, c ∈ (x2, x3) surface:

C2 =
1

(x + y)2

[
dy2

b(y)
+ b(y)dz2

]
. (64)

Setting for the moment

b(y)=1−y2−2Amy3=−2Am(y−y1)(y−y2)(y−y3),

wherey1 < y2 < y3 are the roots ofb(y) = 0, it follows that:

db(y)
dy

∣∣∣∣
y3

= −2Am(y3 − y1)(y3 − y2),

db(y)
dy

∣∣∣∣
y2

= 2Am(y2 − y1)(y3 − y2). (65)

Via identical reasoning as for the case of the metricΛ, we
introduce a new coordinatey∗(y) defined by:

dy∗(y) =
dy√
b(y)

, y ∈ (y2, y3), (66)

thus castingC2 in the form:

C2 =
1

(x + y(y∗))2
[dy∗2 + b(y(y∗))dz2], (67)

from which it follows that:

lim
y→y2

C2 =
1

(x + y2)2
[
dy∗2 + K2(y2)y∗

2dz2
]
, (68)

whereK2(y2) = 2Am(y2 − y1)(y3 − y2). Regularity ofC2

as y∗ → 0 is established by periodically identifying thez
coordinate

0 ≤ z ≤ 2π

[2Am(y2 − y1)(y3 − y2)]
1
2

=
2π

K(y2)
. (69)
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Even though this restriction guarantees extendability ofC2

up to and including they = y2, problems arise at the extend-
ability of y → y3. At this limit, C2 is reduced to :

lim
y→y3

C2 =
1

(x + y3)2
[
dy∗2 + K(y3)y∗

2dz2
]
, (70)

whereK(y3) = 2a(y3 − y1)(y3 − y2). Since however the
range ofz has been fixed by (69), and since the roots of
b(y) are distinct, it follows thatC2 exhibits an irremovable
conical-like singularity occurring aty = y3. This singularity
in the gauge of (61) would appear as one-dimensional singu-
lar line. In this respect, theC-metrics exhibit different be-
havior than theΛ-metrics considered earlier, and the impli-
cations of this difference will be clarified in the next section.
Extendability of theC−metric at the zero of thex + y factor
is discussed in Ref. 4.

3. Discussion

In the last section, we have established the existence of
manifolds(Σ, γ) obeying the conditions (a-c) of the intro-
duction section, and in this section we shall briefly discuss
properties of the resulting spacetimes. Using the manifolds
(IR×S2, γ1), (IR×S2, γ2), (IR×H2, γ3), and(IR3, γ4) de-
fined earlier on, we constructed vacuum spacetimes(M, gi),
i = 1 − 4 belonging to the classA in the Ehlers-Kundt [8]
classification,i.e. all (M, gi) i = 1 − 4 possess a degener-
ate four-Ricci. Moreover, the corresponding(M, g, Φ) with
(g, Φ) satisfying the minimal or conformal equations are a
generalization of the family of vacuum spacetimes(M, gi)
i = 1 − 4 belonging to classA in the Ehlers-Kundt classi-
fication. All constructed spacetimes admit four linearly in-
dependent Killing vector fields, and additional properties are
discussed in Ref. 4. For the remaining part, we shall dis-
cuss a few properties of the vacuum spacetimes generated
using the metrics(Λ, C) derived and discussed in the last sec-
tion. These metrics can be used in two distinct ways: either
one may maximally extend them consistently with conditions
(a-c) andRab = λ(3XaXb − λab) and subsequently use the
extended manifold to construct the spacetime, or one way use
the incomplete manifolds of the last section to construct a
(geodesically incomplete) spacetime but subsequently extend
this spacetime consistently with the relevant field equations.
Here we shall follow the second avenue, and we shall briefly
discuss the properties of the vacuum spacetime(M, g) ob-
tained by considering theΛ family defined by (57) and tak-
ing asΣ the manifold covered by the single chart(x, y, z),
−c2 < y < 0, 0 ≤ z ≤ 2π(1/c4) while x takes its values
over some interval ofIR. As we have seen, the eigenvalueλ
andV are related via (13), which currently takes the form:

V = V (x, y) =
G2(x)

λ
1
3

=
G2(x)
S(y)

=
G2(x)

y
. (71)

A straightforward computation in the coordinate gauge
of (57) shows:

DaDbV = DaDb(
G2(x)

y
) = S3V (3XaXb − Λab)

+S(G2
xx + CG2)XaXb, (72)

and thus satisfaction of (2) requiresG2(x) to obey:

G2
xx + CG2 = 0. (73)

For the case whereC=2c2, we chooseG2(x)= sin(
√

2cx),
and the resulting spacetime metric denoted hereafter asΛ4 is
described by:

Λ4 := −2c2 sin2(
√

2|c|x)
y2

dt2

+
1
y2

[
dx2 +

dy2

2(y + c2)y2
+ 2(y + c2)y2dz2

]
,

−∞ < t < ∞, 0 < x <
π√
2c

−c2 < y < 0, 0 < z ≤ 2π

A
, (74)

where the range of thex−coordinate has been restricted
so that the Killing fieldξ = ∂/∂t is timelike. It follows
from (74) thatRαβγδRαβγδ = 48y6, and thus the curvature
of Λ4 is regular over the domain specified by the coordinate
chart specified in (74). Moreover, the behavior of the cur-
vature suggests extendability across the singularities ofΛ4

occurring asy → 0 and y → −c2, and also extendabil-
ity across the “Killing horizon” occurring at the point where
V 2(x, y) = 0. SinceΛ4 is a vacuum, static, axially symmet-
ric metric, it can be cast into the Weyl form. Leaving aside
the details, (74) can be written in the form:

Λ4 = −e2λdt2 + e2(ν−λ)(dr2 + dz2) + r2e−2λdϕ2, (75)

whereλ = λ1 + λ2 and

λ1(r, z) =
1
2

log(z + 1 +
√

r2 + (z + 1)2),

λ2(r, z) =
1
2

log(1− z +
√

r2 + (z − 1)2) (76)

are the Newtonian potentials of two semi-infinite line seg-
ments of uniform linear densityρ = 1/2, extending from
z = 1 up to+∞ (case ofλ2) andz = −1 up to−∞ (case of
λ1). The functionν(r, z) is defined via:

e2(ν−λ)

=
1

32c6

(√
r2 + (z + 1)2 +

√
r2 + (z − 1)2 + 2

)2

√
r2 + (z + 1)2

√
r2 + (z − 1)2

(77)

Relative to this Weyl chart,Λ4 is well defined on the entire
(r, z) plane except at the set points of thez-axis, where the
potentialsλ1 andλ2 are singular. Moreover, by application
of the elementary flatness criterion, it follows thatΛ4 is reg-
ular along the part of thez-axis free of singularities of the
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Newtonian potential,i.e. for −1 < z < 1. Thus in the
Weyl formalism,Λ4 is generated by the Newtonian potentials
of two semi-infinite non-overlapping line segments. Further
properties of (75) can be revealed by going over to Bondi
coordinates(τ, x, y, ζ) defined via [9]:

tanh
(

t

β

)
=

τ

x
, (78)

1 + z =
1
2β

(x2 − τ2 − y2 − ζ2), (79)

r =
1
β

(y2 + ζ2)
1
2 (x2 − τ2)

1
2 , (80)

tan ϕ =
y

ζ
, (81)

with β an arbitrary parameter. After a little algebra it follows
thatΛ4 transforms into the form:

Λ4 =
β

2c2
e2λ2

(xdτ − τdx)2

x2 − τ2
+

2c2

β
e−2λ2

(ζdy − ydζ)2

y2 + ζ2

+
1

16c6
e2(ν2−λ2)

[
(xdx− τdτ)2

x2 − τ2
+

(ydy + ζdζ)2

y2 + ζ2

]
, (82)

where:

e2λ2=1−z+
√

r2+(z−1)2

=
1
2β

(A−B+4+
√

(A+B)2+8(A−B)+16), (83)

e2(ν2−λ2)=
1

16c2
(

√
r2+(z+1)2+

√
r2+(z−1)2+2√

r2+(z−1)2

=F (A,B), (84)

F (A, B)

=
1

16c2

√
(A+B)2+8(A−B)+16+B+A+4β√

(A+B)2+8(A−B)+16
,

andA : =y2+ζ2, B=x2−τ2. The transformation (77-81)
has eliminated the effects due toλ1 at the expense of
making Λ4 manifestly time dependent. In the(τ, x, y, ζ)
chart, Λ4 exhibits local boost and rotational symme-
try [10]. Boost symmetry is generated by the timelike
Killing field ξt = x(∂/∂τ) − τ(∂/∂x), while rotations
along thex−axis is generated by the spacelike Killing field
ξϕ = y(∂/∂z) + z(∂/∂y). In the new chart,g is well de-
fined onx > τ andy > 0, ζ > 0, except on the part of
the rotation axis where the singularity of the functionλ2 has
been mapped. The timelike Killing vector fieldξt becomes
null on x = ±τ , defining two branches of the acceleration
horizon. The spacetime(M, g) can be analytically extended
through the acceleration horizon, and in fact for all values
of −∞ < x < ∞, −∞ < t < ∞. In the extended man-
ifold, there appear two singularities along the rotation axis,
symmetrically placed with respect to the origin and along the
rotation axis, and moreover four branches ofIR × IR2 accel-
eration horizons intersecting on the(y, ζ) plane. Thus the

seemingly simple-looking metricΛ4 expressed in the chart
of (72) exhibits a remarkably rich structure once it is maxi-
mally extended. To get more insights into the structure ofΛ4,
we shall briefly discuss the properties of the vacuum space-
time generated, using the family ofC-metric analyzed in the
previous section. After algebra (see [3, 4]), it leads to the
spacetime metric denoted byC4:

C4 :=
1

A2(x + y)2

×
[
−a(x)dt2 +

dx2

a(x)
+

dy2

b(y)
+ b(y)dz2

]
, (85)

wherea(x) and b(y) are described by (62). The ranges of
the(x, y, z) coordinates have been specified earlier on, while
t ∈ (−∞,∞). Since∂/∂z is an axial Killing vector field, the
metrics (85) can be cast into the Weyl form. Currently how-
ever the generating potentialλ = λ1 + λ2 is a superposition
of potentialλ1, due to a semi-infinite line segment of uni-
form linear densityρ = 1/2 along the negativez−axis, and
the Newtonian potentialλ2 of a finite line segment of uniform
density placed along the positive axis [11, 12]. As a conse-
quence of the conical singularity of theC−metric discussed
earlier on, there exists a strut singularity either between those
line segments or starting from the one end of the line seg-
ment and extending to infinity. Moreover, by employing the
Bondi transformation, the effects of the potentialλ1 can be
transformed away and the resulting metric exhibits boost and
rotational symmetry [11, 12]. In contrast to the case ofΛ4,
currently only a finite part of the rotation axis is singular.
The analytical extension of the spacetime(M, C4) has been
discussed in various places in the current literature [13, 14].
The extended manifold can be interpreted as describing two
black holes accelerating in opposite directions with the ac-
celeration mechanism supplied either by the strut lying along
the common symmetry of the holes, or by the struts pulling
the holes in opposite directions along the axis of symmetry.
The family of C4−metrics can be considered as a special
case of the family of theΛ4-metrics in the following sense:
while the Λ4 family in the Weyl chart is generated by the
superposition of two semi-infinite line segments, by allow-
ing one of them to become of finite extension theC4 family
of metrics is recovered. However no sources for the met-
ric Λ4 are currently known. Due to space and time limita-
tions, we shall not discuss any further properties of the ex-
tended spacetime(M, Λ4), nor shall we make a further com-
parison between(M, Λ4) and the corresponding(M, C4). It
should to be mentioned that an important issue left uncovered
concerns the existence, and properties, of the futureJ + and
past null infinityJ + of the extended spacetimes. Those is-
sues, combined with an analysis of the extended non-vacuum
spacetimes(M, g, Φ) generated by three manifolds(Σ, Λ)
and(Σ, C), are discussed in details in Ref. 4.

We shall finish by recapitulating the main ideas of the
work. Starting from simple considerations,i.e. by an in-
quiry regarding the significance of the fundamental rela-
tion (4), we have constructed five classes of 3-dimensional
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Riemannian manifolds(Σ, γ) satisfying conditions (a-c). In
turn those manifolds generate families of non-trivial vacuum
and non-vacuum spacetimes. We may add that this genera-
tion technique can be extended to the case where the mani-
folds (Σ, γ) are allowed to become Lorentzians and in that
event the generated spacetimes admit a spacelike or a null
Killing vector field (see Ref. 15). Moreover, the three
manifolds(Σ, γ) can be used to construct other non-vacuum
spacetimes as well. Our choice to work with the Einstein-
Klein-Gordon massless minimally coupled gravity equations
or the Einstein-Conformal scalar field equations was a mat-
ter of convenience. Suppose for instance that, instead of
the vacuum system or equations (14-15) and (16-17) resp.,
we have started with the systemGµν = Tµν(g, Φi), where
Tµν(g, Φi) stands for the total energy momentum tensor in-
volving N -fields denoted generically by(Φ1,Φ2 . . . ΦN ).
Static configurations(g, Φ1, Φ2, . . . , ΦN ) in the gauge
of (1) would satisfy: V Rab(γ) = Sab(γ, Φ1,Φ2, . . . , ΦN ),
V R(γ) = S(γ, Φ1, Φ2, . . . , ΦN ). for a suitable three tensor
Sab Via a conformal deformation, we can pass to a metric
γ = Ω2γ so thatR(γ) = 0. Requiring that the effective eqs

for (γ = Ω2γ, Φi = ΩniΦi, i = 1, 2, . . . N) admit a degen-
erate three Riccii.e., Rab(γ) = λ(3XaXb − γab) one arrives
at an integrability condition analogous to relation (6). Imple-
mentation of this procedure for specific field configurations
will be discussed in a future work. We may only note here
that, in view of the interpretation of theC4-metric, the ex-
istence of accelerating by a strut hairy black holes is an in-
triguing possibility. Such a possibility can be analyzed by
appealing to the main ideas of this work, and currently this
question is under active investigation.
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