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We discuss a connection between three-dimensional Riemannian mar{ifald$ admitting a special conformal Killing vector fielgl

and static vacuum or non-vacuum spacetimes. Any g8th/) generates a vacuum spacetiile, g) but it also generates a spacetime
(M, g, @), where(g, @) satisfies the Einstein-Klein-Gordon massless minimally coupled gravity equations, or the Einstein-Conformal scal
field equations. The resulting spacetimes either admit four Killing vector fields or possess boost and rotational symmetry. We argue that
connection goes beyond the vacuum or Einstein-scalar field system and it should be viewed as a mechanism of generating solutions ft
Einstein equations, admitting a hypersurface orthogonal Killing vector field.

Keywords:General relativity; conformal Killing vector field; Einstein equations.

Se discute la conefin entre variedades Riemanniaras v) de dimenddn tres que admiten un campo vectorial de Killing confogmne
espacios- tiempo esicos asociados a sistemas en eliwacno-vaéo. Cualquiera de estas variedad®s~) generan un espacio-tiempo
(M, g) eigual generan un espacio-tiem@d, g, ®), donde(g, @) satisfacen las ecuaciones para el campo escalar asociadas a los sistemas |
Einstein-Klein-Gordon con acoplamientdmimo o conforme. Los espacios-tiempo asociados resultantes admiten cuatro campos vectorial
de Killing o una simefia de "boost " y rotacional. Se argumenta como esta cénexa mas aél de los sistemas en el va® de los sistemas

de campos escalares y esto puede ser visto como un mecanismo para generar soluciones de las ecuaciones de Einstein, que admitan u
vectorial de Killing ortogonal a una hipersuperficie.

Descriptores:Relatividad general; campo vectorial de Killing conforme; ecuaciones de Einstein.

PACS: 04.20.jb; 04.20.-q

1. Introduction where~,;, are the components of the induced positive def-
inite metric on anyt = const spacelike hypersurface and

This work is focused on properties and applications to rel-_y/2 stands for the magnitude @f. Whenevery is a so-

ativistic gravity of three-dimensional Riemannian manifoldsjytion of Einstein’s vacuum equations, the red-shift factor (or

(2, v) satisfying the following conditions: lapse function)l” and the components of,;, satisfy on any
t =const:
a) The smooth metricy admits a hypersurface-
orthogonal, non-singular conformal Killing vector VRap = Do DyV, (2)
field ¢,
leld ¢ DD,V =0, 3)

b) The Ricci tensor of v is described by
Rap = M3X, X — vap), WhereX £ 0 and the unique
eigenvectorX of Ricci is parallel to the field.

where (R.;, D) stand for the Ricci curvature and the co-
variant derivative operator associated with Moreover, as
is well known, and easy verifiable, for any smooth solution

¢) The expansio® = D,£¢ and magnitude (¢, €) of £ (%_V)_ of those equations, the York-Cotton teng®x,. ()
are determined by the eigenvaluesf the Ricci tensor. ~ Satisfies [2]:

d
We shall begin by first discussing the reasoning that VBabe = 2Rap DV = 2Rac DoV + Yap Feea DV
lead us to study such manifolds. In this regard, we recall —VacRoa DV, (4)
that any smooth spacetinid/, g) admitting a hypersurface-
orthogonal timelike Killing vector field’ admits a local co- In order to establish the connection between the three man-
ordinate chart so th@t = 9/0t and the components gfare  ifolds introduced earlier on and relativistic gravity, we view
described by [1]: system (2) from a slightly different point of view. We con-
sider a smooth three-manifoklequipped with a Riemannian
g = —V2dt? + ygpdztda®, a,b=1,2,3, (1) metricy/ and a strictly positive functiof’’ so that(y’, V")
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satisfy Eq. (2) and thus also (4). The trip(&t,/, V') gives  defined viat, = A\~'/3X,,, Eq. (7, 8) imply:

rise to a static spacetim{@/, g) in the following way: on the 9

product manifoldV/ = ¥ x IR, we define the Lorentzian met- Do&p + Dpéa = g@%b, (10)
ric g = —V?2dt? + ~, wherey andV are the lifts of(y/, V’) ) ,

on M by the natural projection af/ uponX. It is easily seen Da(A3&) — Dp(A3&,) =0, (11)

that this(MM, g) is a vacuum spacetime admitting a hypersur-4,4 thus¢ = A~1/3X%(9/92%) satisfies the conformal
face orthogonal timelike Killing vector field’, possessing Killing equation in . Moreover, the expansio® and
complete orbits. Thus aryE, v, V') as above leads to a static magnitude of¢ are determined by the eigenvalue via
vacuum spacetiméM, g). For simplicity, we hereafter drop O = D,&% = (—1/A\)&"D,\ and€?g, = A~2/3. On the
the distinction between primed fields’, V') defined on¥  ihor hand (11) implies that the one forn= \2/3¢, dz®
a_md their lifts(y, V') defined onM. Of course this connec- g closed and thus, as long Bds assumed to be simply con-
tion of (3,7, V) to the vacuun{l, g) is rather well known. . hacteq it is exact. As far as (9) is concerned, utilizing the

However, we would like to discuss the role of relation (4) tact thaty is arbitrary, and as long a8/3V # 0, one arrives
in this type of association. Normally Eq. (2) augmented by;.

a suitaplg regular.ity or and boundary conditlions,. determine YD, log |)\%V\ -0, YeX, = 0. (12)
the positive functionV and the metricy, and in this event ) , .

(V,~) identically satisfies (4). Suppose, however, that one iéntroducmg a parameter varying a.IorTg the integral curves
interested in constructing a solutién, V) of (2) so that the  ©f & then the above equation implies:

Ricci curvature ofy has a special structure, for example be- |)\%w = G?%(x), (13)
ing algebraically special oli. To be more concrete, let us ) ) . )
suppose thafuy (1) = A(3X.X, — Aup) for an unknown whereG? = G?(x) is a smooth function exhibiting a gradi-
non-vanishing scalax and a smooth field . If Eq. (2) ad- ent alon_g Fhe _integ_ral curves of Notice however that (9) is
mits this solution, then the proposét,(v) andV ought to also _satlsﬂed |_dent|cally whenever= \(z) &V =V (z) a
obey relation (4). For the proposed RicBi.;..(7) reduces to  rélation that will be useful latter on.

Rupe = DyReq — DRy, and it takes the form: In summary, anyy, V') such that

Rab('y):)\(?)XaXb_'Yab)u

is compatible with (4), provided admit a conformal Killing
F3NXa Dy Xe + XDy Xo — XoDe Xy — XpDeXa). (5)  vector ¢ parallel to X obeying (10-11) and additionally
(A, V) either obey (13) o\ = A(z) and thusV = V(x).
Suppose for the moment that all manifol@s, v) obeying
conditions (a-c) with¢ the conformal Killing field ofy are
VIBXaXe = %ae) DoA = (3Xa Xp = Yap) De explicitly known. For a specifi¢3, ~), by appealing to (13)
+ 3N X DpX. + X Dp X, — XoD: Xy one may define a red-shift factdf up to a smooth func-
tion G exhibiting a gradient parallel t¢ or simply taking
= XpDeXo)] = 3A2Xa(XpVe — X Vi) V = V(x). The specification of the arbitrary functi@¥ ()
F v (X VX, = Vo) — vae(XVu X, — V3)). (6)  ©F V(x) can be determined by demanding satisfaction of (2).
OnceV has been determined, the tripl&f, v, V') defines a
This set of tensorial relations act as constraints in the followvacuum spacetimel/, g). This conclusion makes clear our
ing sense: solutiofry, V) of (2) subject to the restriction that motivations for studying manifolds:, ) obeying (a-c) men-
Rap(7) = M(3X, X}, —Agp) would exist provided X, A, V) tioned earlier on.
and components of satisfy those constraints &h The con- Even though this brief discussion demonstrates the con-
tent of the above integrability conditions has been worked ouRection betweer{X,v) and vacuum static spacetimes, ac-
elsewhere [3,4]. They hold true provided,, A, V and~ tually the manifolds(%, v) are of relevance in constructing

Rabc = (3XaXc - fYac)Db)\ - (3XaXb - "Yab)DcA

Combining this expression with Eq. (4) yields:

obey the following or>: non-vacuum spacetimes as well. In order to establish this
connection, we shall consider Einstein gravity coupled to a
D, X, + Dy X, = _E(XCDC)\)%b real massless scalar_ fiel, and in this work we shall limit
3 ourselves to two particular cases:
+ %(X,ZDZ,)\ + XpDoN), (7) «) @ is minimally coupled to gravity,
1 B) @ is conformally coupled to gravity.
DaXb - DbXa = 7(Xan)\ - XbDa/\)a (8) ) . .
3A For the first case, we recall that the relevant equations are:
VY*D A= -3\Y*D,V, 9 1 .
G =k[V, 2V, 0 — 5g,“,V OV, P, (14)

where in the last equatioli stands for any smooth vector "
field perpendicular toX. In terms of a new vector field VIEV,® =0, (15)
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while for the case tha® is conformally coupled, the corre- conditions can be worked out explicitly (see Ref. 6). How-

sponding system is described by: ever for the present paper we shall not need their explicit
forms. Rather we shall need the integrability conditions that
(1 - a®®)R,, = a(4V,V,d will arise by assuming ot that the functiong®,V) and

(®,U) resp are functionally relatede. F(®,V) = 0 and
F(®,U) = 0, resp. Under the assumption that the gradient
VEV,® =0, w,v=0,1,2 3, 17) ofF andE resp is notidentically zero, smooth configurations
(v,V,@(V)) and (v, U(®), ®) resp. are compatible with the
wherea = 87G/c*6. For a static spacetim@\/, g, ®) with  set (18-20) (22-24) resp only for specific form Bfand F
(g, ) satisfying either (14) or the above equations, the metricesp. To construct those functions, let us first consider the
g admits a hypersurface-orthogonal timelike Killing vector system (18-20). Imposing the ansdiz= ®(V'), Eq. (19),
field ¢’ such that:L¢ g = 0, and moreovels:® = 0. Rel-  combined with the absence of critical pointsi6fin £ im-
ative to the coordinate gauge of (1), afay ) obeying (14)  plies: ®(V) = alnV + 3 with «, 3 arbitrary constants. For

—20V,V,® — g, V' OV,P), (16)

satisfies on any = const hypersurface: such® (V') the remaining equations implies th@at, V') sat-
ISTY:
Ruy =V 'D,D,V + kD, ®D,®, (18) v
V2Rap(v) = VDDV + ka? D,V D,V, (25)
D*D,® = -V~ 'D*VD,®, (19)
DD,V = 0. (26)
DD,V =0, (20)

It is advantageous to conformally defosso that the result-
where (R, , D) stand for the Ricci tensor and covariant ing metric A possesses zero scalar curvature. Even though
derivative operator ofy,;, respectively. On the other hand, there exist an infinite parameter family of conformal factors
for the case of the conformal coupling, it is convenient to() fulfilling this requirement, our choice @t is related to the
work with the metricA = e2U~ whereU is related tol via  red-shift factor. We defind via: A = Q2y = V2"~, where
V = eY. Thus for the conformal system we shall be working . is a free parameter. Rewriting (25) and (26) in terms\of

with the following representation @f. and associated covariant derivative yields:
g:=—e?Vdt? + e 2V A gpda®dab, (21) V2Rab(A) = (1 =n)VD,DyV
2 2
and relative to this gauge, the covariant Egs. (16) yield [3,5]: + (ko™ +3n —n")D.V DyV, (27)
VD*D,V —nD*VD,V =0. (28)

(1=®2)(Ray—2DoUDyU)=4Do ® Dy ®—28 D, D, ®

Taking the trace of (27) in view of (28), we arrive at:
—20D,®D,U—-20D,UDp®—2A,, D°PD. P, (22)

VZR(A) = (ka? +4n — 2n?) DV D,V, 29
(1 - ®2)D*D,U = D*®D,® + 26D ®D,U, (23) () = (ko™ +4n —2n7) (@9

o _ and thus, requiring tha(A) = 0, the parameter is chosen
D"Da® =0, (24) so that:2n? — 4n — ka?® = 0. This algebraic equation, as
where currently(R,;, D) stand for the Ricci tensor and co- long ask > 0, admits a positive:,. and a qegat|va_ root.
variant derivative computed using the positive definite met.ereafter we sh_all assume thahas been fixed as one of the
ric A. Following the same reasoning as for the vacuum casé\,’vo roots, implying via (29) thaR(A_)_: 0.

we view the systems (18)-(20) resp (22)-(24) as being de- From the _system (27-28) specifies the componemzs of
fined on a three-manifoldl equipped with the metrig case ~ a"d the functiort’. Let(A, V) be a smooth solution of those

of minimal coupling, orA, a case of conformal coupling. equa'lt}ons Fj|ﬁerent|at|0n of (27), antlsymcztrlzatlon, use of the
Smooth configurationgy, V, ®) on X satisfying (18)-(20) Ricel |dent|tyl_)anXc N DbD“.XC = Rabe “Xa _and the fa.‘Ct
generate a static spacetirié/, g, ®) obeying the covariant that a_t th_ree dlmen5|9ns the Riemann tensor is determined by
Egs. (14), while a tripletA, U, ®) satisfying (22)-(24) on the Ricci curvature, it follows thaR,,.(v), Rap(y) andV

3, generates via (21) a spacetifié/, g, ) satisfying the ~ °OPEY:
conformal Egs. (16). Even though currently we are dealing VR
with systems more complex and different from the vacuum
system (2), nevertheless we shall apply the same lines o_f ar- Ay Rog DV — AacRbdDdV} . (30)
gument as for the vacuum case. On a smooth three-manifold

3, we are interested in constructing solutiqasV, ®) and  a relation which for our purpose is identical to relation (4).
(A, U, ®) resp so that theR.; (), Rap(A) resp , are alge- Accordingly we shall use it in the same manner as for the
braically special orx:. These requirements upon the Ricci vacuum case. We inquire whether (27-28) admits solutions
require the satisfaction of integrability conditions in addition (A, V') so thatR,,(A) = A\(3X, X, — Agp), XX, = 1.

to (18)-(20) and (22)-(24) respectively . Those integrability Combining this Ricci with (30), and via identical algebraic

abc = (1 - 'fL) 2(RachV — RaCDbV)
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manipulations as those for the analysis of (4), it follows thatconstruct the field by appealing to the above-mentioned re-
A admits a hypersurface-orthogonal, conformal Killing vec-lation in conjunction with the dynamical Eqgs. (33-34). To the
tor field ¢ which obeys conditions (a-c) introduced earlier on.triplet (X, A, ®) we associate the spacetifie, g, ), where
Moreover,V and the eigenvalug of Ricci are either related M = IR x X, while the spacetime metrigis described by:

to each other via = A\(x) & V = V(z) or they satisfy the g2

following relation: 9= ap + (1 + @)?A. (37)
2
AF = Gli(;rn)’ (31) The analysis so far demonstrates that §Ry~y) obey-
14 ing conditions (a-c) can be used as a seed to construct space-

where the positive functioi&2(z) has the same meaning times (2, g, ®) where(g, ®) are particular solutions of the
as (13),i.e. it exhibits a gradient only along the integral Einstein massless scalar field equations. Naturally, the con-
curves of the vector field. From this analysis it is clear Siderations so farlead us to ask: how many sighy) exist?

that manifolds(X, A) obeying conditions (a-c) are becom-

ing relevant for system (14) as well. Forany sizhA),the 2 On Riemannian Manifolds admitting a con-
funct.ian is determined via (31) whil&? () is specified by formal Killing field

requiring A andV to obey (27) and (28). Once suck(r)

has been determined, a static solution of (14) is immediatelyn this section we shall determine all manifolds, ) obey-

available. The space-time manifold is defined Ma-1x Y,  ing conditions (a-c). In order to carry out this task we need to
the metricg is defined byy = —V?dt* + V=2"A, while the  puild a suitable coordinate chart and here Egs. (10-11) is the
field @ is specified viab = alnV + . starting point. As a consequence of it we have:

Let us now shift our considerations to the conformal cou- | emma: There exists a local coordinate chdut, z', 2:2)
pling, i.e. the set (22)-(24). Reasoning as for the case of minsuch thatt=0/9x, ©=D*¢,=—\"¢D,\, and the compo-
imal coupling, we look fofA, U(®), @) satisfying (22)-(24).  nents ofy can be written in the form:

This requirement fixes th& () [3, 6]: 2 o

v =A"3 (dz? + 4;;da’ da?)
U(®) = —In(1+ @) + Oy, (32) A gylat,a?)
i P = o2 T T gy dtda,
and for thisU (®) the set (22)-(24) implies that\, ®) obey: S2(x,at,2?)  S2(x, 2!, 2?)

i,j =12, (38)

(1 - ®*)Ry, = 6D, DD, ®

2 .3 i -

90D, Dy® — 2A,,D°DD, D, 33) vv_herex € (a,b) € IR and (z*, z°) are arbitrary local coor

dinates on any: = const two surfaces.

D*D,® =0, (34) It may be easily verified that, whit respect to this chart,

& = 0/0z is a conformal Killing field ofy obeying the
whereR,;,, D stand for the Ricci tensor and covariant deriva- conditions of the lemma. (The proof of this Lemma is dis-
tive operators associated with However, the structure of cussed in Ref. 4). Making use of this coordinate we view
those equations implies that, for any smooth soluidn®), Ray = M3X.X, — 745) as the dynamical equations deter-

the York-Cotton tensor, Ricci tensor afand® obey: mining~, A andX. ProjectingR,, = A\(3X,X,—~as) along

9 and perpendicular to = const coordinate surfaces yields [7]:
®(1 — ®°)Rupe = 4Dy PR, — 4D . PRy,

—R® — KV[K;; + K =483, (39)
— 2D DRy Apy + 2D ®RgpAca, (35) ! 4
D,K — D; K? =0, 40
i.e. a relation functionally identical to the fundamental re- o (40)
lation (4). Again we are interested in constructing solutions _SaKiJ’ +2K; K — KK;: + ER(2>%,
(A, @) of (33-34) so thatR,,(A) = M(3X, X, — Agy). For O ’ 72 !
this Ricci, the content of this integrability condition (35) 1 2 3
requires thatA admit a hypersurface-orthogonal confor- +§DiDjS B ?DiSDjS L (41)
mal Killing field ¢ obeying (10, 11), and moreover either 1,0y,
A = A(z) & ®(z) or in any region wheré? # 1, the field %%, = Kii» (42)
® and )\ obey:
L G2 (2)®? where(R(?), D;) stand for the scalar curvature and the co-
AT = 1_92 (36)  variant derivative of the intrinsic two metrig;; = S™2%,5,

L . . while K;; are the components of the extrinsic curvature of
whereG?(x) stands for a non-vanishing function having the *J P . .
thex = const surfaces described by:

same property as the previously discussed cases. Thus again
the manifolds(%, A) obeying conditions (a-c) evidently are .. 1. lsgh _ 95 _ 95 (43)
of importance here as well. Starting from any sgehA), we T T 90 52 S2 dx oz
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Rewriting (39-42) in terms of;; yields: The integration of (44)-(47) eventually yields the following

R o classes of three metrics. For the cé@se- 0:
S2R® 1+ 28D'D;S

d 2
N , 95\ 2 y=—L gt p>oM >0, (53)
—2D'SD;S +45° — 2 () =0, (44) -
or
%5 | g+ €(0,0), M >0, (54)
- = 1,7 =1,2 4 V2 = g, r » 00), )
3x3x’ 07 Za.] P ( 5) 1 _|_ %
, whereg™ stands for a two metric of positive Gaussian curva-
2 A N ture. For th herg < 0, the int ti ields:
25@_4 [ L2581 S2R®) 125D D, S ure. For the case whei® < e integration yields
ox? Ox 0
o . V3= g 12", 0<r<2M. (55)
_4Dkspks] 448D, D;8=0, (46) M
928 95\ 2 o o whereg~ stands for a two metric of negative Gaussian cur-
2 S@— <8x> —S3| +SD'D;S—2D'SD;S=0 (47)  vature. And finally for,B = 0 the result is:

. . ~ i i R = rd 2 2 0 56

in which the scalar curvatuig® and derivative operatoD; Ya=rart 4y r € (0,00), (56)
H “r H PR 7 Y 1 2 i . i

are formed using the “intrinsic” metrig;; = ¥;;(z", z%) on iy ¢° aflat two metric. By constructiory; — 4) possess

eachz = const 2-surface. Despite the fact that this system, degenerate traceless Ricci where= S® and its unique
is a coupled system of partial differential equations, to OureigenvectorX is parallel to the conformal Killing field. If

pleasant SUrprise, 'F can be |n.tegrat.ed explicitly and the MO%e assume that the= const spaces to be connected, simply
mentum constraint is the starting point. The general solutio

. . "Yonnected and geodesically complete, the metrigs— v4)

Of (45) is described by: can be considered to be defined on the product manifolds

2 2 2 3

S , .17 2 — 1’ 2 , A8 (RXS 771)' (RXS a’?/2)! (BXH 773)'anq(R 574)'

(@,27,27) = f(z) +o(z’,27) (48) Every one of those manifolds generates solutions to the vac-

wheref ande are smooth functions of their arguments. This uum, Einstein-Klein-Gordon and conformal system respec-

form of S(z, z', %) suggests a classification of the metrics tively. In the concludlng section, we s_hall commgnt on the
satisfying (44)-(47) in accordance with one of the following local and global properties of the resulting spacetimes.

choices: For the choiceS = S(z',2?), the integration of (44)-
(47) is rather lengthy. We have been able to complete the in-
a) S=S8(z)= f(z), tegration by introducing a coordinaterelated toS(z?, z2)
(49) viay = S(«',2?) and using the freedom in the® coordi-
b) S =S(z', 2?) =o(zt,2?), nate to diagonalize the intrinsic metric of eack= const two
(50)  spaces. Leaving technicalities aside, the resulting matisc
¢) S =S8z 2t 2%) = f(x)+o(zt, z?). described by (see Ref. 4 for details):
(51)
Since, on the other hand is related to the Ricci eigen- 1 2 dy® 2 2
value A\, and in turn\ determines the expansigd of &, A= y? de” + 22y + C) Ty Ry O, (57)

conditions (49-51) are restrictions upon the behavioPof ) .

along the integral curves of. Any solution to (44-47) whergC Is a rea_l constant anq the rangey)fs restricted
with S = S(z) implies thaty admits a conformal Killing t© suitable domains. This family of metrics possesses a de-
field ¢ so that the gradient of the expansiénis parallel ~9enerate Ricci with the eigenvalve = S° = y° and ad-

to £&. On the other hand, any solution of (44)-(47) subjectMits ¢ = 9/0x and¢, = 0/0z as commuting Killing vec-

to S = S(z',z?) implies thaty admit¢ as a hypersurface- tor fields. MoreoverR®R,, = 61* = 6y°, implying that
orthogonal Killing vector field, while for any solution of (44)- Curvature singularities take place g@s— oco. Accordingly

(47) with S = S(z, 2!, %), the gradient 0® is no longer the singularities in the components of the metric occurring at
parallel to¢. Below we shall only highlight the integration ¥ = C/2 and aty = 0 ought to be mere coordinate singu-
procedure of (44)-(47). For the choi®e= S(z), equations, larities. Settingb(y) = (2y + C)y?, thenA possesses the

(44) implies that any: = const surface is a space of constantEuclidean signature provided the domain whertakes its
curvatureR(® = 2B with B a real constant. The remaining Values is restricted. For the case wheére- 2¢2, with c real,

equations imply thaf(z) satisfies: A possesses a right signature provided eithet < y < 0,
or0 < y < oo. On the other hand, for the case where

ds\? 3 ) C = —2¢2, A has the right signature provided < y < oo.
(d:r) —25" - B5" =0. (52) Finally there exist a “degenerate” case arising by choosing
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¢ =0, and herd) < y < co. Amongst those possibilities be- a Killing vector field. The Ricci tensor of (61) has the

low, we shall briefly discuss a few properties/ofunder the
assumption that’ = 2¢?> and—c? < y < 0. For this choice,
at first we show extendability of aty — —c? andy — 0~.
For this it is convenient to define a new coordingtéy) via:

dy

dy*(y) = —=————1—, ye(=c0). (58)
V2(y + )2 [y
In terms ofy* we have
1
lim A=— [dx2 + dy*? + y*zcsdzﬂ . (59)
y——c? C

Applying the criterion of “elementary flatness”, it follows

that A is regular aty* = 0 providedz is periodically iden-
tified, i.e.

1
0<2z<2r—, (60)
c

and thus the singularity ok asy — —c? behaves as the

origin (r,0) of the Euclidean 2-plane andl is extendible
up to and including the poing = —c?. As long asz is
restricted in the domain specified by (60), the= const
two spaces will be regular two spaces, ahydz is an ax-

form R, = MBX.Xp — Agp) With \ := (2 + y)? and
X = X%0/0x%) = (z + y)a*/?(z)(9/0z). Via the lin-
ear transformationz = AcyZ + ¢1,y = Acogy — ¢1,2 = Z
with A, ¢y ande; non vanishing constants, the functiar(s)
andb(y) can be put in the form:

a(z) = —2Ama® + 2? — 1,

bly) = —24my® — y? + 1, (63)

where A andm are arbitrary real parameters and for conve-
nience we have dropped the over bar from they) coordi-
nates. Due to the property thatz) = —b(—z), the roots

of a(z) = 0 are related to the roots &fy) = 0 and vice-
versa. Moreovera(z) = 0 may admit three real distinct
rootsz; < xo < xs wheneverd?m? < 1/27, two multiple
rootsr; = zo < x3 wheneverd?m? = 1/27, or a single
real rootz; case ofA?m? > 1/27. Accordingly there exist

a number of domains where tlie metrics possess the right
signature. Here we shall consider properties of the family of
C' metrics subject to the condition that the coordindtes))

are restricted byzrs < z < 23 < Y2 < y < ys. At first we

shall discuss extendability @f as the root of:(x) andb(y)
are approached. Let us for the moment consider the induced
metricCy on anyz = ¢, ¢ € (z2, x3) Surface:

ial Killing vector field. At the other extremum, i.e. as
y — 07, it would be sufficient to analyze the behav-
ior of the induced metric\, on anyz = const slice. In
terms of the coordinatg*, the induced metric\, takes the 1 dy?
form: A = [1/y2(y*)] [dz? + dy**]. Extendability ofA, as Coy = EFENE L)(y)
y—0~, can be accomplished by passing to a suitable set of

isothermal coordinate&(z, y*) 7(z, y*)), and details of this ~ Setting for the moment
extension is discussed in Ref. 4. In summary, and as long as
(60) holds trueA is one parameter family of metrics admit-
ting two commuting Killing fields with one of them axial. wherey; < y, < ys3 are the roots 0(y) = 0, it follows that:
The fact thatA admits an axial Killing vector field would be

+ b(y)dﬂ . (64)

b(y)=1—y*—2Amy’=—2Am(y—y1) (y—y2) (y—v3),

of crucial importance in understanding the structure of the &) = —2Am(ys — y1)(ys — y2),
resulting spacetimes and issue that will be discussed further dy Y3
below. db(y)
Finally the integration of (44)-(47) for the case where Oy |, =2Am(y2 — y1) (Y3 — Y2). (65)

S = S(x,x!, 2?) has been discussed in detail in the appendix
| of Ref. 3 (see also [4]). It yields the following family of Via identical reasoning as for the case of the metjove

metrics: introduce a new coordinatg (y) defined by:
1 [(da?  dy? . dy
C=— 7+7+by d2;2> , 61 dy (y): ’ Y€ (y27y3)7 (66)
= (i iy +o ©D b0)
where: thus casting’s in the form:
1
S(x,y) =2 +y, Co= ———[dy*? + b(y(y*))dz?], 67
l 2 (I+y(y*))2[ y (y(y*))d="),  (67)
a(r) = 22° + 53:2 +mz +n, from which it follows that:
1
! lim Cy = ———— |dy*> + K?(y2)y*d2> 68
by) =2y — Sy +my —n, (62) i 2 (@)’ [ Y K y2)y™dz } » (68)

where I,m,n are arbitrary for the moment free parame- WhereK?(yz) = 24Am(y2 — y1)(ys — y2). Regularity ofCy
ters and the ranges of ther,y, z) are restricted so that asy” — 0 is established by periodically identifying the
C possesses the right signature. This family of metricscoordinate

admit ¢ = 0/0x as a hypersurface-orthogonal confor- 2w 2w

mal Killing vector field and additionally, = 9/9z as Oszs [24m(ys — y1)(ys — y2)] - K(y2)

(69)

N
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Even though this restriction guarantees extendability’of A straightforward computation in the coordinate gauge

up to and including thg = y-, problems arise at the extend- of (57) shows:

ability of y — y3. At this limit, C5 is reduced to : G2(z)
D,DyV = D,Dy(

) ) = SV (3Xa Xy — Aap)
lim CQ =

- d*2 K *2d2 70
Jm ($+y3)2[y + K(ys)y Z} (70)

+8(G2, + CG*) X, Xy, (72)

) and thus satisfaction of (2) requir€g () to obey:
where K (y3) = 2a(ys — y1)(ys — y2). Since however the

range ofz has been fixed by (69), and since the roots of G2, +CG*=0. (73)
by) arlel_zlstmct, :t f_c:llows that’s e)ih'b'ts_r?]r.] |rr_emo|va_kzle For the case wher€=2c?, we chooseG?(z)=sin(v/2cz),
conical-like singularity occurring af = ys. This singularity and the resulting spacetime metric denoted hereaftay, &s

in the gauge of (61) would appear as one-dimensional singtﬁ ibed by:
lar line. In this respect, th€-metrics exhibit different be- escribed by-
havior than theA-metrics considered earlier, and the impli- Ay e 7202 sin?(v/2c|z) g2
cations of this difference will be clarified in the next section. 4= y?
Extendability of theC'—metric at the zero of the + y factor 1 dy?
is discussed in Ref. 4. +— |dz? + ——F—— +2(y + 2)y?dz?],
y? 2(y + ?)y? b+
™
—0o<t<oo, O0<er<—
. . V2¢
3. Discussion )
—? <y <0, 0<z§£, (74)

In the last section, we have established the existence of ) )
manifolds (£, ~) obeying the conditions (a-c) of the intro- Where the range of the—coordinate has been restricted
duction section, and in this section we shall briefly discuss© that the Killing ;'eldf = 6/82 is timelike. 1t follows
properties of the resulting spacetimes. Using the manifold&©m (74) thatR*" Ra .5 = 48y”, and thus the curvature
(IR x S2,71), (IR x S, 72), (IR x H?,~3), and(IR®, v4) de- of A4 is regular over the domain specified by the coordinate

fined earlier on, we constructed vacuum spacetifdésg; ), chart specified in (74). Mp.reover, the behgvior of .the cur-
i = 1 — 4 belonging to the clasg in the Ehlers-Kundt [8] vature_suggests extendability acrgss the S|ngular|t|eA4qf
classificationj.e. all (M, g;) i = 1 — 4 possess a degener- 9cCUMng asy — 0 andy — < and also extendabil-
ate four-Ricci. Moreover, the correspondifiiy, g, ®) with |ty2across the Kllllng hprlzon occurring at thg point where

(g, ®) satisfying the minimal or conformal equations are a¥~ (¢ ¥) = 0. SinceA is a vacuum, static, axially symmet-
generalization of the family of vacuum spacetini@s, ¢;) ric metnf:, it can be cast |rjto the Weyl form. Leaving aside
i = 1 — 4 belonging to class! in the Ehlers-Kundt classi- the details, (74) can be written in the form:
fication. All constructed spacetimes admit four linearly in- A, — _¢22 g2 4 2= (@2 4 d22) + r2e~ 2 dp?, (75)
dependent Killing vector fields, and additional properties are
discussed in Ref. 4. For the remaining part, we shall diswhereA = X; + A; and
cuss a few properties of the vacuum spacetimes generated 1 5 5
using the metric$A, C') derived and discussed in the last sec- A(r,2) = glog(z +1+ V2 + (2 + 1)),
tion. These metrics can be used in two distinct ways: either 1
one may maximally extend them consistently with conditions Aa(r,2) = Slog(l — 2+ /12 + (2 = 1)%)  (76)

a-c) andR,, = A\(3X,X, — \sp) and subsequently use the . . e
t(axte)nded manifolEi to construct zhe spacetin?e, or gne way usd® the Newtoman_ potenuals.of two sem|—|nf|n|Fe line seg-
the incomplete manifolds of the last section to construct aments of uniform linear density = 1,2, extending from
(geodesically incomplete) spacetime but subsequently extend Lup to+o_o (case Of./\2) ar_1dz N .__1 Up to—oo (case of
this spacetime consistently with the relevant field equations/.\l)' The functione(r, z) is defined via:
Here we shall follow the second avenue, and we shall briefly ¢2(»—*)
discuss the properties of the vacuum spacetiti g) ob-

tained by considering th& family defined by (57) and tak- 1 (\/72 +(+1D)24+ 2+ (z-1)2+ 2)2
ing asX the manifold covered by the single chaut y, z), = 3900 = == = (77)
—2 <y <0,0<z<2r(l/c*) while z takes its values ¢ Vit +(z+ 12/ + (2 - 1)

over some interval ofR. As we have seen, the eigenvalle Relative to this Weyl chartj, is well defined on the entire
andV are related via (13), which currently takes the form: (r, 2) plane except at the set points of thexis, where the
potentials\; and A, are singular. Moreover, by application
G*(z) G*z) G*(x) of the elementary flatness criterion, it follows tha is reg-
V=V(zy) = N S(y) - D) ylar along the part of the-axis free of singularities of the
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Newtonian potentialj.e. for —1 < z < 1. Thus in the seemingly simple-looking metrid, expressed in the chart
Weyl formalism,A, is generated by the Newtonian potentials of (72) exhibits a remarkably rich structure once it is maxi-
of two semi-infinite non-overlapping line segments. Furthermally extended. To get more insights into the structuré.gf
properties of (75) can be revealed by going over to Bondiwe shall briefly discuss the properties of the vacuum space-

coordinategr, x, y, ¢) defined via [9]: time generated, using the family 6+-metric analyzed in the
. previous section. After algebra (see [3, 4]), it leads to the
tanh <) = Z, (78)  spacetime metric denoted Iy

5 x . 1

Lo o o .2 Cai= A2(z + y)2
Lhe= oGP ==y =), (79) y
1 o [a@ae + 9 LWy es)
1 1 —alx N TN y)az—|,
r= 5( P+ -Y)E, (80) a(z)  b(y)

wherea(z) andb(y) are described by (62). The ranges of
, (81) the(z,y, =) coordinates have been specified earlier on, while

t € (—o00,00). Sinced/dz is an axial Killing vector field, the
with  an arbitrary parameter. After a little algebra it follows metrics (85) can be cast into the Weyl form. Currently how-

tanp =

IR

that A, transforms into the form: ever the generating potential= \; + )\, is a superposition
5 5 9 of potential A1, due to a semi-infinite line segment of uni-

Ay = %62A2M+2ie*”2% form linear densityp = 1/2 along the negative—axis, and

2c =T B y e the Newtonian potential, of a finite line segment of uniform
L o,y [ (wdz — rdr)?  (ydy + ¢d¢)? density placed along the positive axis [11, 12]. As a conse-

T 166 ¢ 2 y2 + (2 , (82) guence of the conical singularity of tlfe—metric discussed
where: earlier on, there exists a strut singularity either between those
line segments or starting from the one end of the line seg-

A2 =1—z4/r24(2—1)2 ment and extending to infinity. Moreover, by employing the

1 Bondi transformation, the effects of the potentialcan be

=—(A—B+4+/(A+B)?+8(A—B)+16), (83) transformed away and the resulting metric exhibits boost and
26 rotational symmetry [11,12]. In contrast to the case\gf
S(vsn)_ L \/r2+(z+1)2+\/r2+(z_1)2+2 currently o_nly a finite_ part of the rota_tion axis is singular.

€ - 1602( 21 (z-1)2 The analytical extension of the spacetifie, Cy) has been
discussed in various places in the current literature [13, 14].
=F(A,B), (84) The extended manifold can be interpreted as describing two
black holes accelerating in opposite directions with the ac-

F(A,B) : . . : .

celeration mechanism supplied either by the strut lying along
1 \/(A+B)2+8(A—B)+16+B+A+4ﬂ the common symmetry of the holes, or by the struts pulling
16¢2 \/(AJFB)QJFS(A_BHIG ) the holes in opposite directions along the axis of symmetry.

The family of Cy—metrics can be considered as a special
and A : =y?+(¢?, B=2?—72. The transformation (77-81) case of the family of the\,-metrics in the following sense:
has eliminated the effects due to, at the expense of while the A, family in the Weyl chart is generated by the
making A, manifestly time dependent. In the,z,y, () superposition of two semi-infinite line segments, by allow-
chart, A4 exhibits local boost and rotational symme- ing one of them to become of finite extension ttefamily
try [10]. Boost symmetry is generated by the timelike of metrics is recovered. However no sources for the met-
Killing field & = z(0/07) — 7(9/0x), while rotations ric A4 are currently known. Due to space and time limita-
along thex—axis is generated by the spacelike Killing field tions, we shall not discuss any further properties of the ex-
&, = y(0/0z) + z(0/0y). In the new chartg is well de-  tended spacetim@/, A4), nor shall we make a further com-
fined onz > 7 andy > 0, ¢ > 0, except on the part of parison betweeM, A,) and the corresponding\Z, Cy). It
the rotation axis where the singularity of the functiopnhas  should to be mentioned that an important issue left uncovered
been mapped. The timelike Killing vector fiefd becomes concerns the existence, and properties, of the fufUreand
null onz = £, defining two branches of the acceleration past null infinity 7 of the extended spacetimes. Those is-
horizon. The spacetim@/, g) can be analytically extended sues, combined with an analysis of the extended non-vacuum
through the acceleration horizon, and in fact for all valuesspacetimeq M, g, ®) generated by three manifold&, A)
of —co < = < 00, —00 < t < o0. In the extended man- and(Z, C), are discussed in details in Ref. 4.
ifold, there appear two singularities along the rotation axis, We shall finish by recapitulating the main ideas of the
symmetrically placed with respect to the origin and along thevork. Starting from simple considerationsg. by an in-
rotation axis, and moreover four branchesif« IR? accel-  quiry regarding the significance of the fundamental rela-
eration horizons intersecting on tlig, () plane. Thus the tion (4), we have constructed five classes of 3-dimensional
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Riemannian manifold$Y:, v) satisfying conditions (a-c). In for (7 = Q%y, ®; = Q" ®,,i =1,2,... N) admit a degen-
turn those manifolds generate families of non-trivial vacuumerate three Ricdie., R.,(7) = A(3X, X, — 7,,) One arrives
and non-vacuum spacetimes. We may add that this generat an integrability condition analogous to relation (6). Imple-
tion technigue can be extended to the case where the manientation of this procedure for specific field configurations
folds (X, ~) are allowed to become Lorentzians and in thatwill be discussed in a future work. We may only note here
event the generated spacetimes admit a spacelike or a nuHat, in view of the interpretation of th€,-metric, the ex-
Killing vector field (see Ref. 15). Moreover, the three istence of accelerating by a strut hairy black holes is an in-
manifolds(3, v) can be used to construct other non-vacuumtriguing possibility. Such a possibility can be analyzed by
spacetimes as well. Our choice to work with the Einstein-appealing to the main ideas of this work, and currently this
Klein-Gordon massless minimally coupled gravity equationsquestion is under active investigation.

or the Einstein-Conformal scalar field equations was a mat-
ter of convenience. Suppose for instance that, instead %
the vacuum system or equations (14-15) and (16-17) resp.,

we have started with the systefi},, = T}, (g, ®:), Where  The present work was sparked after Prof. Alberto Garcia
Ty (g, ®:) stands for the total energy momentum tensor in-pointed out to us the relevance of Ref. 13 to a generalized
volving N-fields denoted generically by®:,®>...®n).  family of C-metrics constructed in Ref. 3. Our thanks to him
Static  configurations(g, @1, ®»,...,®y) in the gauge anq also to U.Nucamendi for discussions regarding the issues
of (1) would satisfy: V Ray(7) = Sap(7, @1, ®2,...,PN),  raised in this work. The research of TZ was partially sup-
VR(7) = 5(7,®1,Ps,..., ). for a suitable three tensor orted by grant of Coordinaii Cientfica - UMSNH while

Sa» Via a conformal deformation, we can pass to a metricjEp would like to acknowledge financial support through
7 = 0%y so thatR(y) = 0. Requiring that the effective eqs prOMEP via a grant: PTC-74.
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