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In this paper, after a brief review of the current observational evidences regarding the phenomenon of cosmic magnetism, we discuss the
problems associated with the generation of electromagnetic fields by conducting fluid flows. In particularl, we examine the electromagnetic
field generated by a conducting fluid flow in the so-called magnetohydrodynamical (MHD) regime in the non-relativistic and general rela-
tivistic limit. Our efforts are directed at the status of Cowlings theorem for the two limits. We show that electromagnetic fields generated
by conducting fluids in an arbitrary spacetime(M, g) are influenced by the conducting and kinematical variables defining the fluid flow, but
also influenced by the curvature and topology of the underlying spacetime. For the particular case of spatially homogeneous and isotropic
backgrounds or stationary-axially symmetric circular spacetimes, we show that the dynamical equations describing electromagnetics fields
generated by particular conducting flows reduce to a form structurally similar to the non-relativistic limit. Despite this siplification, the issue
whether axially symmetric conducting fluid flows can maintain an axisymmetric magnetic field against Ohmic dissipation is still open.
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En este articulo damos una breve revision de las evidencias observacionales relacionadas con el fenomeno del magnetismo cosmico. Se
discute el problema asociado con la generacion de un campo magnetico por el flujo de un fluido conductor en el regimen magnetohidrodi-
namico en el caso no relativista y en relatividad general. El esfuerzo se enfoca en establecer la validez del teorema de Cowling para los dos
limites. Los campos electromagneticos generados por fluidos conductores en un espacio tiempo arbitrario(M, g) son influenciados por las
variables de conduccion y variables cinematicas que definen el flujo del fluido, asi como por la curvatura y topologia de del espacio tiempo.
Para el caso particular de un fondo homogeneo e isotropico o espacios tiempo estacionarios con simetria axial y circular, se muestra que las
ecuaciones dinamicas que describen los campos electromagneticos generados por flujos conductores se reducen a una forma estructuralmente
similar al limite no relativista. Aun asi, queda abierta la cuestion de si flujos de fluidos conductores axial simetricos pueden mantener un
campo magnetico axialsimetrico a pesar de la disipacion ohmica.
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1. Introduction

This paper analyzes some issues raised by century-old ob-
servations that gradually established the existence of electro-
magnetic fields coherent over scales ranging from planetary
up to and including supercluster scales. In particular, we dis-
cuss electromagnetic fields generated by a conducting fluid
flow in a general relativistic setting. In this paper we re-
strict our attention to the so-called magnetohydrodynamical
(MHD) regime and assume a simple form for the conduction
current. However, before we enter into an analysis of that
problem, we shall briefly summarize observational facts re-
garding the phenomenon of cosmic magnetism.

The detection of large-scale electromagnetic fields
spanned a period of a century, but it proceeded at an accel-
erated pace. Up to the arrival of the20th century, the only
large-scale electromagnetic field known to humanity was the
Earth‘s field, which is dominated by a magnetic compo-
nentB. In 1908, Hale, using spectroscopic techniques, was
able to measure the magnetic field of the sunspots, the first
extraterrestrial field ever to be detected. In 1947, Babcock [1]
announced that the 78-Virginis star, an A-type star, posseses
a B-field of the order of500-G. Shortly afterwards, Hiltner
and Hall in 1949 reported the detection of a small degree of
linear polarization of light emitted by a group of stars [2, 3].

Davis and Greenstein [4] attributed the observed polarization
as due to a galacticB-field and their suggestion marked the
first empirical evidence that our Milky way may possesses a
magnetic field. A similar idea, and for different reasons, was
put forward by Fermi [5] in 1949. Motivated by the discovery
of cosmic rays and earlier investigations by Alfven [6], Fermi
postulated that if our Milky Way is threated by aB-field, of a
few µG but coherent over Kpc scale, then such a field would
trap cosmic rays within the spiral arm. As it turned out, the
Milky Way indeed possesses a magnetic field; however, it
took more than a quarter of a century of intense observational
efforts to establish its existence. The efforts of the scientific
community in the post-1950 period were largely focused on
understanding the solar field. In this regard, the development
of the magnetograph by Babcock and Babcock [7] in 1953
offered enormous insights. By monitoring the solar field on
a daily basis, it has been established that the solar field is a
dynamical structure and this realization lead to an avalanche
of theoretical investigations regarding its origin. A key de-
velopment in our understanding of cosmic magnetism took
place with the discovery of the pulsars in 1968 [8]. Their dis-
covery, besides establishing the existence ofB-fields in the
range of1012 G, had another important consequence. As has
been pointed out by Lyne and Smith [9], analysis of the time
arrivals of the radio pulses offered an independent method for



ASPECTS OF COSMIC MAGNETISM 147

determining the electron density along the line of sights and
thus a method for estimating the dispersion measure. Conse-
quently Faraday rotation has become a powerful tool in de-
tecting and studying magnetic fields coherent over galactic,
length scales and beyond. Currently cosmic magnetism is
detected and studied via a number of complementary tech-
niques. Spacecraft missions provide in situ observations of
the planetary and the solar field. Measurements of the Zee-
man splitting of spectral lines is employed for the study of
the solar field and the field of nearby stars. Optical and in-
frared polarization data, observations of the polarized radio
synchrotron emission from the Milky Way and nearby galax-
ies, overall X-ray observations of the sky, as well the detec-
tion and analysis of very high energy cosmic rays, are em-
ployed to detect and study magnetic structure galactic and ex-
tragalactic structures. All of these observational efforts leads
to the conclusion that magnetic fields seem to be an attribute
of our observable universe. Every cosmic object that has
been placed under observational scrutiny exhibits magnetic
activity. Cosmic structures on the planetary, stellar, galactic,
cluster and supercluster scales all exhibit some form of mag-
netic activity. Moreover, the observed fields lack a uniformity
in the sense that their properties vary substantially from one
cosmic object to another, from a dipole-like structure of ap-
proximately1 G for our own earth and planets, to a complex
oscillatory field of our sun. Hot stars in the main sequence
exhibit fields ranging from (102−103)G, while white dwarfs
exhibit fields up to108G. The gigantic field of the pulsars is
inferred to be in the ranges(108−1012)G, while the recently
discovered magnetars and anomalousX−ray pulsars posses
a surfaceB-field of order(1014 − 1015)G. Other galactic
structures posess magnetic fields that exhibit markedly differ-
ent properties than the observed stellar and planetary fields.
Our Milky Way possess a weak field of a fewµ-G coherent
on length scales overKpc. This component is referred to
as the regular or mean field in contrast to a secondary com-
ponentδB which fluctuates over length scales' 100pc, the
characteristic length scale of interstellar turbulence. The field
exhibits a toroidal-like component directed along the spiral
arms while the galactic center exhibits a poloidal-like struc-
ture. A detailed description of galactic field with references
to original articles is discussed in Refs. 10 to 12. In addition
to the field of the Milky Way, the fields of several near-by spi-
ral galaxies have been estimated with high enough resolution.
Their regular fields are in the range of a fewµ-G and exhibit
similar properties to the field of our Milky Way. Elliptical
and irregular galaxies also exhibit magnetic activity, although
their fields become a more difficult entity to detect. A review
of the literature regarding properties of theB-fields associ-
ated with elliptical galaxies can be found in Refs. 11 and 12.
Thus it appears that magnetic activity is a common property
of galactic structures. The next scale where magnetic activity
has been detected involves the galaxy cluster scale. Galaxy
clusters are the largest non-linear systems in the Universe.
DetailedX-ray observations from Einstein, ROSAT, Chandra
and XMM-Newton observatories show that the inter-cluster

medium is filled with hot plasma emittingX-rays with ener-
gies (1 − 10)Kev. Magnetic fields in galaxy clusters have
been detected via Faraday rotation and estimates of the reg-
ular B-field found to be in the range0.2 − 3µG. Details
of those observations and further references can be found in
Refs. 11 and 12. Finally, we shall briefly mention observa-
tional efforts aimed at detecting magnetic activity on a super-
cluster scale. On this scale, the detection of magnetic fields
becomes a very difficult issue. So far, radio emission from
the region between the Coma cluster and the Abell cluster
1367 has been detected. These two clusters are40Mpc apart
and define the plane of the Coma supercluster. The observed
emissivity has been interpreted as being due to the presence
of a magnetic field of the Coma-Abell 1367 supercluster with
strength 0.2 − 0.6µG (for details of those observation see
Refs. 11 and 12).

This brief survey regarding the current status of cosmic
magnetism leads to the conclusion that magnetism is a nor-
mal activity of the observable part of the universe. At the
same time, this conclusion poses a number of interrelated
questions being for an answer: What is the origin of those
fields? Does there exist a single unified principle that under-
lies their existence? Why are they there? Are they telling
us anything about the large-scale structure of the universe?
Below we shall attempt to summarize the current ideas re-
garding the phenomenon of cosmic magnetism.

2. On the origin of cosmic magnetism

The observational evidence mentioned above shows that all
fields observed so far share a common property: They are an-
chored either in a media in a state of plasma and high temper-
atures or in media that are excellent conductors. Maxwell‘s
theory and the absence of any evidence supporting the ex-
istence of magnetic poles offers magnetization and electric
currents as possible sources of cosmic magnetism. Due to
the high temperatures involved, magnetization or its close
relative, ferromagnetism, appear as to be unlike source of
cosmic magnetism. According to all efforts focused on
the electric currents as possible sources for cosmic fields.
However electric currents in conducting media are subject
to Ohmic dissipation and unless an electromotive force is
operating, they are destined to decay. If an initial current
J = σE of length scaleL finds itself in a conducting
medium, it decays exponentially with a characteristic time
scaleTOhm = (4πσL2)/c2 [13]. The existence of thisTOhm

permit to draw some general conclusion regarding the origin
and maintenance of cosmic fields. Let us first consider the
magnetic field of our own earth. Seismological studies sug-
gest that Earth’s interior consists of a solid core made up of
iron and nickel followed by a liquid core of iron and lighter
elements, and finally a solid mantle. An estimate of Ohmic
dissipation yieldsTOhm = 104−years, while Paleomagnetic
studies suggest that the terrestrial field is at least109-years
old, and moreover it exhibits an aperiodic change in its po-
larity (for a detailed modeling of the earth see for instance
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Ref. 14). These observations suggest that, if the earth’s field
originates in some initial current distribution confined in its
interior, then the field could not have survived for such a long
time. Moreover the a-periodic change in its polarity seems
to incompatible with the properties of an exponentially de-
caying magnetic field due, to the action of the Ohmic dissi-
pation. The general consensus of the community is that the
observed properties of the earths field are the results of an
electromotive force operating in its interior. Similar conclu-
sions can be drawn for the solar field. Due to the close prox-
imity of our earth to the sun, the solar field has been studied
extensively and with high resolution. It shows a change in
the polarity every 22 years as well as exhibiting other time-
dependent phenomena such as sun spots, etc. (for a detailed
description of this field, see Refs. 14 and 15). The highly
conducting nature of the solar plasma and large linear dimen-
sions involved yield aTOhm which exceeds the Hubble time.
However, the observed properties of the solar field, as like
in the case of the earth, require the action of an electromo-
tive force. An electromotive force is also required to explain
the properties of the galactic field. Here a naive estimate of
theTOhm using forσ the value of the molecular conductivity
yields TOhm > 1016 years (see for instance [15]). How-
ever, this estimate overlooks the dissipative effects due to the
turbulence motion of the interstellar medium. Using an esti-
mate of turbulent conductivityσtur reducesTOhm to a value
much shorter than the galactic ageTa, and thus the origin
and maintenance of the observedBG would again require
the action of an electromotive force. As is well known, there
exist many candidates for an electromotive force that would
generate electric currents: Thermoeffects, inhomogeneities
in the composition of a conducting medium or the difference
in the mobility between electrons and ions due to acceler-
ation can also generate electric currents. However none of
those has been accepted as a mechanism for explaining cos-
mic magnetism. Motivated by Hale‘s discovery, Larmor pro-
posed in 1918 the motion of conducting fluids in the pres-
ence of a magnetic field as the mechanism for the genera-
tion and maintenance of an electric current. However, in a
landmark paper, Cowling in 1934 pointed out that matters
are not that simple [16]. He presented arguments showing
that an axisymmetric conducting fluid flow cannot maintain
a steady axisymmetric magnetic field against the action of
Ohmic dissipation. His conclusion was verified by a number
of independent investigations and lead to the formulation of
the so-called anti-dynamo theorems. In view of that develop-
ment, the post-Cowling period was marked by intense efforts
to bypass the conclusions of the antidynamo theorems. As an
outcome of all those investigations, it has been gradually re-
alized that even though axisymmetric flows cannot maintain
an axisymmetricB-field, nevertheless small deviations from
axisymmetry may be able to maintain a suitably averaged
magnetic fieldB (for a taste of the various approaches and
references to original works consult [14]). This idea has lead
to the development of mean field electrodynamics (for an in-
troduction see Steenbeck, Krause and Radler (1966) [17,18]).

In this approach, the magnetic fieldB and the velocity field
v are considerd to be the sum of a mean fieldB,v and fluctu-
ating partsδB, δv. The componentδv originates in the tur-
bulent nature of the conducting fluid flow varying over some
characteristic length scalel, while the mean partv of the ve-
locity field varies over some length scaleL, with L À l.
Provided that Reynolds averaging hold true, the mean field
B satisfies an effective induction equation that incorporates
an electromotive force originating in the fluctuating partsδB
and δv respectively. Mean field electrodynamics has been
applied to explain the terrestrial planetary and solar mag-
netisms. For success and the status of those modelings, the
reader is referred to the extensive literature on the subject
(for an update, see Ref. 19. Although in general there are
issues to be overcome, it appears that turbulent conducting
fluid flows act as sources for planetary and solar magnetism.
The turbulent nature of the conducting fluid combined with
the fluctuating part of the magnetic field generate an addi-
tional component of an electromotive force that bypasses the
antidynamo theorems.

However, turbulent dynamo theory has not been success-
fully implemente to provided an explanation of all so far ob-
served fields. No definite theory exists to explain the gigantic
field of the pulsars or the field of the Milky Way and other ex-
tragalactic structures mentioned earlier on. Let us first briefly
consider the magnetic fieldB of the pulsars. So far around
1000 pulsars have been detected, and their magnetic fields,
as inferred from the measurements of the period derivatives,
vary considerably. Young neutron stars appear to be in the
range of(1011 − 1015)G, and this class includes the classi-
cal radio pulsars and magnetars. Old neutron stars possess
weaker fields< 109G, and this category includes the mil-
lisecond pulsars and low mass X-ray binaries. Despite the
fact that direct observational evidence of their global mag-
netic fields is lacking, there exists strong evidence support-
ing the idea that their field is subject to decay. On theoretical
grounds, this decay would depend on the location, strength
and structure of the field. It would also depend upon the equa-
tion of state of the neutron star matter as well as upon the con-
ducting properties of the neutron star matter and, moreover,
thermal history of the star. Moreover, due to the, fact that
gravity is no longer weak, general relativistic effects ought
to be incorporated in to physical processes taking place in
pulsars interiors. Even though their interiors are excellent
conductors, an issue related to their field concerns the Ohmic
decay timescale. What is the impact of relativistic gravity on
this decay? These problems have been addressed in Ref. 20.
The conclusion of the work is that relativistic gravity tends to
decelerate the field decay, but not by much. Even though an
understanding of the physics governing magnetic field decay
in a pulsar still is not completely understood, another impor-
tant open problem is related to the origin of their gigantic
field. Several competing scenarios have been proposed to ex-
plain the inferred strengths of the pulsar fields, and the sim-
plest scenario invokes the fossil field hypothesis. Despite the
supernova explosion, the B-field of the progenitor stars sur-
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vives; and since neutron stars interiors are excellent conduc-
tors, the effects of Ohmic dissipation are insignificant. Since,
as we have mentioned above, direct observations of the pulsar
field is lacking, one cannot really eliminate this hypothesis as
in the case of the terrestrial or solar field. It may be noted that,
even though flux freezing yields magnetic field strengths of
the right order of magnitude, the hypothesis overlooks many
important features of the precollapse and postcollapse state.
It does not take into account either the convective core of the
progenitor star or the convective nature of the newborn neu-
tron star. One would expect in such environments that the dy-
namo action would be fully operational. Blandfordet al. [21]
have proposed that thermoelectric currents driven by temper-
ature gradients during the cooling phase of a neutron star are
responsible for generating the field of the pulsars. A different
scenario has been proposed and elaborated by Thomson and
Duncan [22]. It has been argued in that reference turbulent
dynamo action is the most probable mechanism responsible
for the magnetic field of the young pulsars. The convective
nature of the progenitor as well as the newly-born neutron
star provided ideal environments for a dynamo action. Even
though dynamo action appears as the favorable model, it can
also provide a natural setting to explain the magnetar fields;
nevertheless, it has not been established that this is in fact the
case.

As similar situation prevails for the origin of the very
weak but highly coherentB-field of our Milky Way and other
galactic and extragalacticB-fields. As in the case of a pulsar
B-field, they are the subject of controversy and scientific de-
bate. Regarding the field of the Milky Way, the central issue
is the following: Does this field originate in a process taking
place within the galaxy itself or has it been generated via the
compression or a dynamo process of a primordialB-field?
The first possibility is referred to as the astrophysical res-
olution, are the second one as the cosmological resolution.
If the first alternative holds true, then the observed galac-
tic fields originate in astrophysical processes taking place
within the galaxy itself. Supernova explosions, stellar winds,
and shock fronts are important ingredients for this scenario.
These fields generate a seed field that is subsequently ampli-
fied by the galactic rotation. A concrete materalization of this
idea is based on the so-calleda−Ω turbulent dynamo theory.
The differential rotation and turbulent flow of the interstellar
medium in the spiral arms act as a dynamo that provides the
observedB-field. A detailed discussion of this model is pre-
sented in the Ref. 15, while a recent review of it, in the light
of new observations, is presented in Ref. 23. An alternative
scenario within the astrophysical resolution is based on the
idea that the field of magnetized matter in supernova ejects
combined with the stellarB-fields via reconnection theory
yields the largest scale coherent galactic field (for a review of
this scenario see for instance [24]).

On the other hand, in the light of recent observations and
theoretical advances in the field of cosmology, the cosmologi-
cal resolution of the observed large scale fields is gaining mo-
mentum. The idea that primordialB-fields may be responsi-

ble for the observed large scale was implicit in Fermi’s pos-
tulate mentioned earlier on, although Fermi has not advanced
any specific process or processes to explain such a field. One
possibility is to endow the big-bang singularity with a non-
vanishingB-field. However this hypothesis is rather unsat-
isfactory. One would expect the primordial fieldB to have
been generated via physical processes. Indeed, with the ad-
vent of the inflationary scenario and the infusion of ideas of
particle physics into the physics of the early universe, sce-
narios have been proposed that would provide a mechanism
for the generation of a primordial magnetic field. Broadly
speaking, those scenarios are divided into two classes, sce-
narios operating after inflation or scenarios operating during
inflation. It has been argued that inflation leads also to small
amplitude-long wavelength electromagnetic fields that were
subsequently amplified via a dynamo action, and such fields
may be responsible for the observed magnetism in the uni-
verse (see for instance [25] and references therein). Scenarios
operating after inflation are typically based on phase transi-
tions. An electroweak or QCD phase transition, in the very
early stages of the cosmological expansion may lead in the
creation of a seed magnetic fieldB which is subsequently
amplified via dynamo action, (see for instance [26] and refer-
ences therein). Unfortunately, due to space time limitations,
we shall not have the opportunity to discuss those approaches
in detail.

Although all of the above proposals have their own mer-
its and weak aspects, nevertheless neither the astrophysical
proposal nor the cosmological one are free of shortcomings.
So, for the moment, the origin of the galactic and extragalac-
tic fields is not settled. On the other hand, the discussion
in this and the previous section makes one point clear: con-
ducting fluid and plasma constitute a part of the solution of
the problem of cosmic magnetism. Whether, however, this
component has to be implemented with a turbulent part, and
whether or not dynamo action will be required, and whether
or not the seed fields are primordial in nature or are generated
by an astrophysical process, are issues to be resolved in the
future. Here we shall offer only one comment: it is perhaps
striking to note that both cases where controversy surround-
ing the origin of the observed fields,i.e. the case of pulsar
fields and the case of galactic and extragalactic fields both
settings besides the conducting matter also involve relativis-
tic gravity. For the case of pulsars, the ratio2MG/c2 is close
to unity, while for the case of a large scale fields, if their ori-
gin is primordial, it envolves the background geometry of the
early universe. For the rest of this paper we shall concentrate
on the generation of electromagnetic fields by conducting flu-
ids in an arbitrary spacetime(M, g).

3. Conducting Fluids on a Curved Spacetime

We start by considering an arbitrary smooth spacetime
(M, g). By smooth we shall mean thatM is a nice topo-
logical space, i.e. a Hausdorff space, connected and para-
compact, while(M, g) as a Lorentzian manifold will be as-
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sumed to be chronological, andg a smooth enough tensor
field so that all subsequent operations involving differenti-
ation would be permissible (for a definition of the various
terms see Ref. 27). On this(M, g), we consider a conduct-
ing medium described by an energy momentum tensorTµν

interacting with an electromagnetic fieldFµν . In general, the
interaction of those systems is a complex problem even in
the absence of gravitation. The polarizability and conduct-
ing properties of the medium ought to be accounted for, and
thus the macroscopic form of the Maxwell equations ough
to employed. Moreover, a set of constitutive relations ought
to be specified and their form would reflect the nature of the
medium as well as its thermodynamical state. Fortunately as
we have mentioned earlier on, cosmic fields are defined on
highly conducting fluids or media in a state of plasma. In the
so-called magnetohydrodynamical regime (MHD hereafter),
the collision time scale between the conduction electrons and
ions is much shorter than the time scale characterizing the
variations of the electromagnetic and gravitational field. Con-
sequently, the medium moves as one component fluid and
below we shall denote byV = V µ∂/∂xµ, g(V, V ) = −1
its four velocities defined as the eigenvector of the baryon
current. In the presence of an electromagnetic fieldFµν , in-
ductive effects generate a conduction currentJc, which as we
have mentioned above, exhibits a complex dependence upon
the microscopic and thermodynamical properties of the fluid
as well as upon the strength of the fieldFµν . Below we shall
adopt the MHD regime and shall assume that the dielectric
properties of the fluid are negligible. Moreover we shall as-
sume that the conduction currentJc is described by the gen-
eral relativistic version of Ohm’s law:Jµ

c = σgµνFντV τ ,
whereσ stands for the electric conductivity of the medium.
For this setting, Maxwell equations coupled withJc imply
that the componentsFµν within the fluid obey:

∇µFµν = −4π

c
σgνµFµτV τ (1)

∇µJµ
c = 0, ∇[µFνσ] = 0 (2)

while in the regions free of conducting matter,Fµν obey the
homogeneous version of the above equaions obtained by set-
ting Jµ

c ≡ 0. At the interface separating the conducting re-
gion from the vacuum,Fµν would be required to fulfill suit-
able matching conditions but for the purpose of this paper
we shall not require their specific forms. Note that in (1),
(2) we have augmented the Maxwell equations with a con-
servation equation for the conduction currentJµ

c , since for
an arbitrary velocity fieldV its covariant conservation ought
to be checked explicitly. For a prescribed velocity fieldV
and conductivity scalarσ, the above equations describe the
electromagnetic field generated by the conducting fluid. We
shall be interested in identifing particular solutions to those
equations that would be of relevance to the problem related to
the generation and maintainenace of cosmic magnetic fields.
However it would be worth while at this point considering
the same problem in a non-relativistic setting. For this latter
setting, and relative to some global inertial frame, we assume

that a conducting fluid flow is described by the smooth veloc-
ity field v(x, t) that is confined in an open, connected, sim-
ply connected and bounded subsetV of IR3 with a smooth
boundary∂V . For simplicity, below we shall always assume
that V is the interior of a spere. We may interpret this flow
as describing the solar interior or the smooth component of
the flow of any other cosmic object. Inertial observes at rest
relative to the global frame measure a magnetic fieldB satis-
fying:

∂

∂t
B(x, t) = ∇× (v(x, t)×B(x, t))

−∇× (λ∇×B(x, t)) ,

∇ ·B(x, t) = 0, x ∈ V (3)

∇×B(x, t) = ∇ ·B(x, t) = 0,

x ∈ IR3 − V ∪ ∂V, (4)

whereλ = c2/4πσ stands for the magnetic diffusivity of the
conducting fluid assumed hereafter to be constant. In view of
the above discussion regarding Ohmic dissipation and elec-
tromotive forces, we assume that at an initial timet = t0, a
non-singular seed fieldB0(x) is specified and we primarily
seek non-singular solutionsB(x to t) the above equations so
thatB(x, t) = O(r−3) as|x| → ∞, andB(x, t) is continu-
ous across∂V . If such solutions exist in general, there is no
guarantee that their magnetic energy would remain non-zero
in the infinite future. The challenge posed by the observed
cosmic fields and their properties is captured in the so-called
(laminar) dynamo problem. This problem calls for the formu-
lation of necessary and sufficient conditions upon the smooth
field v(x, t) that would be capable of dynamo action. We are
saying that the fieldv(x, t) acts as a dynamo for a specified
initial distributionB0(x) and magnetic diffusivityλ, for this
prescribedv, andλ (3,4) permits at least one non-singular
solutionB(x, t) so thatlimt→∞

∫
B2(x, t)d3x 6= 0. As we

have mentioned earlier, Cowlings theorem implies that not
everyv(x, t) is capable of dynamo action. Below we shall
outline a proof where for certain families of velocity fields
and diffusivity λ, all axially symmetric non-singular solu-
tions of (3,4) are decaying solutions. In order to see what
is involved, we recall here that any smooth vector fieldF
defined on Euclidean(IR3, 〈|〉) can be decomposed into its
toroidal and poloidal components according to

F = −r̂×∇U + r̂V +∇W = FT + FP (5)

where U , V and W are smooth functions,∇ stands
for the gradient operator,̂r = rer, r2 = x2 + y2 + z2

and er is the unit vector along the position vector
x = xex + yey + zez, The so-called toroidal part is defined
by FT = −r̂×∇U , and the poloidal part is defined by
FP = r̂V +∇W . Using decomposition (5), it follows that
FT andFP satisfy∇× FT = poloidal,∇× FP = toroidal
while FT ×GT = poloidal. For the particular case where
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∇ · F = 0, then (5) implies that at least locally we may write

F = ∇×A = −∇×(r×∇S)+∇×(r̂T ) = FT +FP (6)

and thus any divergence-free vector fieldF is determined by
the scalar functionsS = S(x) andT = T (x),

Let B(x, t) be a non-singular solution of (3,4) so that
both v(x, t) andB(x, t) are axisymmetric about the same
axis andv is assumed to be incompressible. DecomposingB
andv into their toroidal and poloidal parts according to

B(x, t) = BT (x, t) + BP (x, t),

v(x, t) = vT (x, t) + vP (x, t),

the induction equation yields:

∂BT

∂t
= ∇× (v ×B)P −∇× (λ∇×BT ) (7)

∂BP

∂t
= ∇× (v ×B)T −∇× (λ∇×BP ) (8)

SinceBP is solenoidal, it may be represented in the form:
BP = ∇×AT for some toroidal fieldAT . It follows from (8)
thatAT obeys

∂AT

∂t
= (v ×B)T + λ∇2AT (9)

Introducing cylindrical coordinates(r, z, ϕ) so that
the symmetry axis, is along thez-axis and setting
AT = A(r, x)eϕ = (x(r, z)/r)eϕ, the “flux function”
x(r, z) obeys

∂x

∂t
+ uP · ∇x = λD2x, (10)

where the operatorD2 is defined by:D2=∇2−(2/r)(∂/∂r),
with ∇2 the flat Laplacian operator acting on scalars. Upon
multiplicaying (10) byx(r, z) and integrating overIR3, tak-
ing into account the asymptotic behavior of the fieldB it fol-
lows that a steady state withx 6= 0 is not possible, and thus
ultimatelyBP → 0. However, onceBP → 0, then by ap-
pealing to (7) it follows that the toroidal partBT satisfies a
sourceless equation and by an argument similar to the case
of (8), ultimatelyBT decays to zero as well. Thus, as long as
v is incompressible and axisymmetric and the diffusivityλ
is constant, any non-singular axisymmetric solution of (2,3)
is destined to decay. In view however of the importance of
Cowling’s theorem to cosmic magnetism, and with reference
to the set (1,2), naturally we are led to ask: does one expect
axisymmetric solutions of (1,2) generated by special velocity
field V to behave like those of (3,4)? What is the impact of
the curvature and topology of(M, g) upon such solutions? Is
there a relativistic version of Cowling’s theorem?

Below we shall briefly discuss some of these issues; how-
ever, at the start we expect difficulties. At first the covariant
form of Maxwell’s equations involve, as primary variables,
the components of the Maxwell tensorFµν and the four cur-
rentJµ. Moreover, and in contrast to Minkowski spacetime

where the Poincaré group singles out the family of inertial ob-
servers, in an arbitrary(M, g) preferred families of observers
may not exist and thus the concept of the electric or magnetic
fields in general require the specification of a family of fidu-
cial observers. Therefore they become observer-dependent
concepts, and thus special care is required to draw physical
conclusions. One option is to work with manifest covariant
objects, and below we shall explore this option. Let us return
to the system (1,2,) and suppose that a prescribed velocity
field V and a conductivity scalarσ have been defined. Via
manipulations of the Ricci identities, it can shown that any
solutionFµν also satisfies [28]:

∇α∇αFγδ =
4πσ

c
[V α∇aFγδ + Fδ

α (ŵαγ + σ̂αγ

+
1
3
θ̂ĥαγ − âαVγ

)
− Fγ

α (ŵαδ + σ̂αδ

+
1
3
θ̂ĥαδ − âαVδ

)]
+ RγδαµFαµ

+RγµFδ
µ −RδµFγ

µ, (11)

while the part of(M, g) free of conducting fluid and currents,
Fµν , obeys:

∇α∇αFδγ = RγδαµFαµ + RγµFδ
µ −RδµFγ

µ, (12)

where the tensorŝwαβ , θ̂, σ̂αβ andâµ stand for the rotation,
expansion, shear and four-acceleration of the flow lines, de-
fined via the invariant decomposition:

∇µVν = ω̂νµ + σ̂νµ +
1
3
Θ̂ĥνµ − âνVµ, (13)

while ĥαβ(V ) = gαβ + VαVβ is the projection tensor associ-
ated with the four-velocityV .

Equations (11-12) show that, besides the scalarσ, the
field Fµν is influenced by two classes of factors: factors de-
scribing the state of the conducting fluid and secondly by the
curvature ofg manifesting itself via the coupling ofFµν to
the Ricci and Riemann tensor. Thus, and in contrast to non-
relativistic settings, in an arbitrary spacetime the study of the
electromagnetic field generated by a conducting fluid is a dif-
ficult problem to settle. Eqs. (11-12) ought to be analyzed
in combination with Eqs. (1,2) and this requirement com-
plicates the matter. Whether conducting fluids are capable
of dynamo action and whether curvature or global topology
of (M, g) can be influential factors for the maintenance of an
initial electromagnetic field are open questions. An answer to
these questions would require the understanding of the long
term behavior of solutions of the system (1,2, 11- 12), a task
that is by no means trivial.

On the other hand, the discussion of sections (1,2) in-
dicates that, as far as issues of cosmic magnetism are con-
cerned, the relevant background spacetimes are either station-
ary axisymmetric spacetimes (case of pulsar) or spatially ho-
mogeneous and isotropic cosmological spacetimes (case of

Rev. Mex. F́ıs. S53 (2) (2007) 146–156



152 T. ZANNIAS

galactic or extragalactic fields). Both families of those space-
times permit a family of time-like world lines, and this prop-
erty is very helpful. For such spacetimes we shall show below
that Eqs. (1,2) can be cast into an equivalent form so that they
are reminiscent of the Eqs. (3,4). For purposes of general we
start with a background(M, g), permitting a smooth timelike
congruence of world lines defining a non-singular, timelike
unit vector fieldu possessing complete orbits. Making use
of this field u, the Maxwell tensorFµν can be decomposed
according to [27]:

Fµν = uµEν − uνEµ + εµνστuσBτ

⇔ Eµ = Fµνuν , Bµ = −1
2
εµν

στFστuν (14)

Denoting byhµ
ν(u) = δµ

ν + uµuν the projection tensor
associated with the fieldu the fieldsEµ andBµ are spatials,
i.e. Eµ = hµ

νEν , Bµ = hµ
νBν , and are interpreted as the

electric and magnetic field measured by theu-observers. As
before, the decomposition

∇µuν = ωνµ + σνµ +
1
3
Θhνµ − aνuµ (15)

defines the rotationωµν , shearσµν , expansionΘ and ac-
celerationaµ of the world lines of theu observers. Form-
ing uν∇µFµν = −(4π/c)Jνuν , making use of (14) and
straightforward algebra in view of (15) yields:

∇µEµ = −εµνστωµνuσBτ + aµEµ + 4πρ (16)

wherecρ = −Jµuµ is identified as the charge density mea-
sure byuµ. Projecting the first pair of Maxwell’s equations
on the rest space ofu, yields:

hσ
ν∇µFµν = hσ

ν∇µ(uµEν − uνEµ + εµνρτuρBτ )

= −4π

c
Jνhσ

ν ,

which can eventually be rearranged so that

uµ∇µEν − (ων
µ + σν

µ − 2
3
hν

µΘ + uνaµ)Eµ

+ ενµστ (uµaσBτ + uµ∇σBτ + ωµνBτ )

+ uνεαβµτuαωβµBτ = −4π

c
hµ

νJµ. (17)

The decomposition of∇[µFνσ] = 0 ⇐⇒ εµνστ∇µFνσ = 0
can be worked out analogously. Projectingεµνστ∇µFνσ = 0
alongu, we obtain

∇µBµ = εµνστωµνuσEτ + aµBµ, (18)

while the combinationhρ
τ εµνστ∇µFνσ = 0 yields

uµ∇µBν − (ων
µ + σν

µ − 2
3
hν

µΘ + uνaµ)Bµ

−ενµστ (uµaσEτ + uµ∇σEτ + ωµνEτ )

+uνεαβµτuαωβµEτ = 0 (19)

The current conservation equation∇µJµ = 0 implies
that the charge densityρ = −Jµuµ/c and spatial current
Jν

(u) = hν
µJµ seen by theu observers obey

uµ∇µ(ρc) + Θρ +∇µJµ
(u) = 0. (20)

The system (16-19), with (20), added to it, constitutes a first-
order system of equations equivalent to the content of covari-
ant Maxwell’s eqs. For the particular case whereJµ is iden-
tified as the conduction currentJµ

c = σgµνFντV τ , taking its
componentsJµ

c along and perpendicular touµ we obtain:

Jµ
c = σ(EνV ν)uµ + σ(εµνστuνBσVτ − uνVνEµ)

= −ρcuµ + Jµ
(u). (21)

This current and (16-19), adding suitable conditions across
the hypersurface separating the fluid from the vacuum region,
provide a framework for the description of the electromag-
netic field generated by the flow of the conducting fluid. In
fact bellow we shall show that the above framework leads to
an effective set of equations that under suitable conditions on
the flow are structurally similar to the set (3,4).

4. Conducting fluids on Cosmological space-
times

In this section, we shall adapt the previous formalism to an
(M, g) to permit a smooth timelike congruence of world lines
so that

ωµν = σµν = aµ = 0 and Θ 6= 0. (22)

Spacetimes (M, g) consistent with (22) include the
Friedman-Robertson-Walker (FRW) family and the family
of the maximally symmetric spacetimes, i.e. de Sitter, anti-
de Sitter and Minkowski spacetimes. Although we are not
aware of any theorem guaranteeing that any(M, g) allow a
smooth congruence that obeys (22) is necessary locally or
globally isometric to an FRW spacetime or a spacetime of
constant curvature, in this section we assume that the back-
ground(M, g) belongs either to an FRW family or is a space-
time of constant curvature. Making use of the symmetries of
the background, we employ a coordinate gauge so thatg is
described by

g = −(dx0)2 + a2(x0)γabdxadxb = −(dx0)2 + a2(x0)

× [dχ2 + Σ2(χ)(dθ2 + sin2 θdϕ2), ] (23)

wherea(x0) is for the moment a smooth function, andΣ(χ)
stands forsin χ, χ andsinhχ depending on whether the sur-
faces of homogeneity and isotropy have a positive, zero re-
spectively negative curvature. We shall assume those sur-
faces to be simply connected and geodesically complete (with
respect to the induced Riemannian metrica2(x0)γab), and
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thus are isometric to EuclideanIR3, the sphereS3, and hy-
perbole spaceH3, respectively. Relative to (23), it is easily
seen that the velocity fieldu = (∂/∂x0) satisfies (22), with
Θ = 3(1/a)(da/dx0) = 3H(x0), whereH(x0) stands for
the Hubble constant. Specializing Eqs. (16-19) for the con-
gruence satisfying condition (22), we obtain

∇µEµ = 4πρ,

uµ∇µEν+
2
3
ΘEν+ενµστuµ∇σBτ=−4π

c
hν

µJµ, (24)

∇µBµ = 0,

uµ∇µBν +
2
3
ΘBν − ενµστuµ∇σEτ = 0, (25)

whereEµ and Bµ are the components of the electric and
magnetic fields seen by theu-observers. Since the latter fields
are spatial, the above equations can be rewritten in the form

DaEa = 4πρ, DaBa = 0, (26)

∂Ea

∂x0
+

3
a

da

dx0
Ea − εabcDbBc = −4π

c
Ja,

∂Ba

∂x0
+

3
a

da

dx0
Ba + εabcDbEc = 0, (27)

where currently(D, εabc) stands for the covariant deriva-
tive and coordinate components of the three dimensions
Levi- Civita density associated with the spatial metric
a2(x0)γab. By introducing the scale factors,hχ=a, hθ=aΣ
and hϕ = aΣsin θ, so that the intrinsic metricγ on each
x = const surface takes the form

γ = a2(x0)
[
dχ2 + Σ2(χ)(dθ2 + sin2 θdϕ2)

]

= h2
χdχ2 + h2

θdθ2 + h2
ϕdϕ2. (28)

and we also note that the fields

e0 =
∂

∂x0
, eχ =

1
a(x0)

∂

∂χ
,

eθ =
1

a(x0)Σ
∂

∂θ
, eϕ =

1
a(x0) Σ sin θ

∂

∂ϕ
, (29)

constitute an orthonormal, parallel basis propagated along the
world lines of theu-observers. Relative to this anholonomic
basis, the spacetime metricg and the three metricγ’s can be
written in the form

g = −(dx0)2 + dχ̃2 + dθ̃2 + dϕ̃2,

c = dχ̃2 + dθ̃2 + dϕ̃2, , (30)

where the forms{dx0, dχ̃, dθ̃, dϕ̃} are dual to the basis vec-
tors {e0, eχ, eθ, eϕ}. The fieldsE andB can be expanded
according toE = Eâeâ, B = Bâeâ, â = (χ, θ, ϕ) where
Eâ, Bâ, stand for the physical components of the electric
and magnetic field as measured by theu-observers. It fol-
lows then easily from (26-27) that the frame componentsEâ,
Bâ, J â satisfy

∇ ·E = 4πρ, ∇ ·B = 0, (31)

∇×B =
4π

c
J+

1
a2

∂a2E
∂x0

, ∇×E = − 1
a2

∂a2B
∂x0

, (32)

∂ρ

∂x0
+ 3

ȧ

a
ρ +∇ · J = 0, (33)

whereuµ∇µ ≡ (∂/∂x0) and(∇·,∇×) stand for the diver-
gence and curl operators formed in terms of the scale fac-
tors (h1, h2, h3) appearing in (28). Above, bold-type sym-
bols stand for the wet of frame components taken relative to
the basis{eχ, eθ, eϕ}, while∇· and∇× are defined by

(∇ · F) =
1

h1h2h3

×
[

∂

∂x1
(h2h3F1)+

∂

∂x2
(h1h3F2)+

∂

∂x3
(h1h2F3)

]
(34)

∇× F = (∇× F)iei =
εijk

h1h2h3
hi

[
∂

∂xj
(hkFk)

]
ei, (35)

wherei, j, k = 1, 2, 3, (x1, x2, x3) = (χ, θ, ϕ), while the
totally antisymmetric Levi-Civita symbolεijk has been nor-
malized according toε123 = 1. Due to the dependence of the
scale factorshi, i = 1, 2, 3 uponx0, the operators∇·, ∇×
anduµ∇µ ≡ (∂/∂x0) no longer commute. A straightfor-
ward computation using (34, 35) shows that

[
∂

∂x0
, ∇×

]
F = − ȧ

a
∇×F

[
∂

∂x0
, ∇·

]
F = − ȧ

a
∇·F,

which establish the compatibility of (31-33).

We now consider a conducting fluid flow confined within
an open, and for simplicity “spherical-like”, regionV of, say,
thex0= const hypersurface with a smooth boundary∂V . We
readjust the coordinate gauge (30) so that the regionV is de-
scribed by0 ≤ χ < χ0, 0 ≤ ϕ ≤ 2π, and0 ≤ θ ≤ π and
denote byn = (∂/∂x) the outward point normal∂V , defined
by χ = χ0. Due to the co-moving nature of the coordinates,
the motion of the fluid remains within this “spherical region”
for all subsequent times. Taking the frame components of the
fluid four-velocity with respect to the basis (31) we obtain

V ≡ 1√
1− v2

c2

e0 +
vi

c
√

1− v2

c2

ei, (36)

wherevi(t, x), i = 1, 2, 3 are the components of the three-
velocity as measured by theu-observers relative to their or-
thonormal frames,v2 = (v1)2 + (v2)2 + (v3)2, and by as-
sumptionv · n = 0, wheren = (∂/∂x) is the outward nor-
mal of∂V . In view of (36), the conduction currentJc defined
in (16) can be written in the form:

Jc=
σ√

1−v2

c2

(
E · v

c
e0+E+

v
c
×B

)
=−ρce0+J, (37)
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where we have expressed the spatialJ part of Jc in terms
of the frame components of the electric and magnetic field.
In close analogy to the conditions underlying the deriva-
tion of (3,4) below, we shall restrict our attention to fluid
flows which are “non-relativistic”,i.e. flow so that the three-
velocity v as seen by theu-observers satisfies|v|/c ¿ 1.
Under such conditions, terms|v|2/c2 or higher will be ne-
glected. Besides this; we shall also neglect the time compo-
nent ofJc. The reasoning for this is identical to that involved
in the non-relativistic MHD. The proper charge density in
the fluid is leadingly described by∇ · (v ×B/c), which is
of the order|v|/c. In contrast, the volumen charge density
in (36) is a second-order effect, a point that will be elabo-
rated below. Accordingly, the conduction current relative to
theu-observers will be described byJc = σ(E + v ×B/c).
In this approximation, Colomb’s law will be of secondary
importance. It will be imposed after the solution has been
constructed, and the source term in∇ ·E will specify the ef-
fective volume charge density of the fluid. Under these con-
ditions, the fieldsE andB within the fluid satisfy

∇ ·B = 0 ∇×E = − 1
a2

∂

∂x0
(a2B) (38)

∇×B =
4πσ

c

(
E +

v
c
×B

)
+

1
a2

∂

∂x0
(a2E), . (39)

Based on those equations an order of magnitude estimate
shows that the fieldsE and fieldB in Faraday’s law are re-
lated via

|E| ≈ L

c
(
1
T

+
1

Texp
)|B|,

where(L, T ) are the length (resp time scale) over whichE
(respB) varies appreciably, whileT−1

exp = c(1/a)(da/dx0)
corresponds to the expansion time scale of the background
spacetime. For the particular case whereTexp À T , ∂E/∂x0

in Ampere’s law can be neglected in comparison to∇ × B;
moreover, the term2ȧ/aE has been incorporated into the
current. Under these conditions, after taking another curl in
Eq. (39) and rearaging, it follows that the field within the fluid
satisfies

1
a

∂(a2B)
∂x0

= ∇×
(

B× v
c

)
+∇×

( c

4πσ
∇×B

)
,

∇ ·B = 0 0 ≤ χ < χ0 (40)

while in the region exterior toV , field B would be assumed
to obey

∇ ·B = ∇×B = 0 χ > χ0. (41)

As long as conductivity is finite, fieldB would be contin-
uous across thex = x0 timelike hypersurface and thus if
by [B] we denote the jumb ofB across∂V we shall require
that the any non singular solution of (40, 41) ought to sat-
isfy

[
B

]
∂V

= 0. The set of Eqs. (40, 41) are structurally
identical to the set (1,2). It is however important to realize
that a solution to (40, 41) would require the specification of

the behavior of the fieldB asχ → ∞, case ofIR3, H3 or
specific behavior of theB-field at the antipodal point ofS3.
Implementation of such conditions leads to the existence to
global solutions of (40, 41) possessing properties markedly
different from their non-relativistic counterpart. A detailed
analysis of the behavior of solutions of above system will be
discussed elsewhere.

5. Conducting fluids in a stationary-
axisymmetric and circular spacetime

In this second application, we shall briefly discuss the form
of (18-24) for a stationary-axisymmetric and circular back-
ground spacetime(M, g). For such spacetimes, there exists a
local coordinate chart(t, ϕ, x1, x2) so that(t, ϕ) are adapted
to the Killing fields, whileg takes the form [27]

g = gttdt2 + 2gtϕdtdϕ + gϕϕdϕ2 + gijdxidxj

= −V 2dt2 + gϕϕ(dϕ− ΩBdt)2 + gijdxidxj ,

i, j = 1, 2 (42)

whereV = V (x1, x2), ΩB = ΩB(x1, x2), gij = gij(x1, x2)
and (x1, x2) are for the moment arbitrary coordinates of
the family of 2-planes perpendicular to the planes spanned
by the commuting Killing vector fieldsξt = (∂/∂t) and
ξϕ = (∂/∂ϕ), andV andΩB are defined invariantly by [26]:

V 2 = −g(ξt, ξt) +
g2(ξt, ξϕ)
g(ξϕ, ξϕ)

,

ΩB = − g(ξt, ξϕ)
g(ξϕ, ξϕ)

(43)

The functionΩB is related to the so-called dragging of in-
ertial frames, but as we shall see shortly it also plays a very
important role in the description of electromagnetic phenom-
ena. Any stationary-axisymmetric circular spacetime accepts
the so-called ZAMO family of observers, defined by the re-
quirement that their four-velocityu be described by:

u =
1
V

(ξt + ΩBξϕ); (44)

and note that
∇µuν = σνµ − aνuµ, (45)

implying that the world lines of the ZAMO’s are acceler-
ated, shearing, non-expanding and possess zero rotation. On
the other hand, (42) implies that the intrinsic geometry any
t = const family of hypersurfaces is described by

γ = gϕϕdϕ2 + γijdxidxj = e2λdr2 + e2µdθ2 + e2ψdϕ2

= h2
rdr2 + h2

τdθ2 + h2
ϕdϕ2,

where we fixed the in the choice of the(x1, x2) coordinates
freedom by introducing an arbitrary orthogonal set(r, θ), and
scale factorshr, hτ andhϕ in (46) have been introduced for
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later use. We introduce a field of orthonormal tetrads carried
by ZAMOS, defined by

e(t) = u = e−ν

[
∂

∂t
+ ΩB

∂

∂ϕ

]
, e(ϕ) = e−ψ ∂

∂ϕ
,

e(r) = e−λ ∂

∂r
, e(θ) = e−µ ∂

∂θ
, (46)

and adopt Eqs. (16-19) to the congruence of ZAMOS
[see (45)]. After some algebra, we find

∇µEµ − aµEµ = 4πρ, ∇µBµ − aµBµ = 0, (47)

uµ∇µEν − σν
µEµ − uνaµEµ

= −ενµστ (uµaσBτ + uµ∇σBτ )− 4π

c
hµ

νJµ (48)

uµ∇µBν − (σν
µ + uνaµ)Bµ

= ενµστ (uµaσEτ + uµ∇σEτ ), (49)

where(Eµ, Bµ) are the components of the electric and mag-
netic fields as seen by ZAMOS. Above,uµ∇µ = d/dτ,
whereτ is the proper time measured along the world lines of
ZAMOS. However those equations simplify considerably if
we introduce the Killing timet. To transform the set (47-49)
into this new time coordinate, we first consider an arbitrary,
smooth, vector fieldX defined in the region of spacetime
covered by the(t, ϕ, r, θ) chart. In view of the fact

V u =
∂

∂t
+ ΩB

∂

∂ϕ
,

it follows that the Lie derivativeX alongV u satisfies

LV uX = L ∂
∂t +ΩB

∂
∂ϕ

X, (50)

from which we infer

[V uµ∇µXν −Xµ∇µ(V uν)]
∂

∂xν
= L ∂

∂t +ΩB
∂

∂ϕ
X. (51)

Developing the left hand side further, we arrive at

V (uµ∇µXν)
∂

∂xν
= L ∂

∂t +ΩB
∂

∂ϕ
X

+[(Xµ∇µV )uν + V Xµ∇µuν ]
∂

∂xν
. (52)

Identifying X as the electric fieldE (respectively magnetic
field B) we, obtain

(uµ∇µEν)
∂

∂xν
=

1
V
L ∂

∂t +ΩB
∂

∂ϕ
E

+[Eµaµuν + Eµ(σν
µ − aνuµ)]

∂

∂xν
, (53)

and of course a similar expression holds true onceE is re-
placed byB. Accordingly, the set of Eqs. (47-49) takes the

form

∇µEµ − aµEµ = 4πρ, ∇µBµ − aµBµ = 0, (54)

1
V

(L ∂
∂t +ΩB

∂
∂ϕ

E)ν = −ενµστ (uµaσBτ

+ uµ∇σBτ )− 4π

c
hµ

νJµ (55)

1
V

(L ∂
∂t +ΩB

∂
∂ϕ

B)ν = ενµστ (uµaσEτ + uµ∇σEτ ), (56)

where it should noted that, as a consequence of stationarity,

(L ∂
∂t

E) =
∂E î

∂x0
eî.

As in the previous section, we rewrite those equations in
terms of the quantities referring to the intrinsic geometry of
the t = const slice [see (46)]. Leaving intermediate compu-
tation aside, we find that they reduce to the form

∇ ·E = 4πρ, ∇ ·B = 0 (57)

∇× (V B) =
4π

c
JV +

1
c
L ∂

∂t +ΩB
∂

∂ϕ
E (58)

∇× (V E) = −1
c
L ∂

∂t +ΩB
∂

∂ϕ
B, (59)

where the operators∇· and∇× are formed using the scale
factor (hr, hτ hϕ) introduced in (46). Moreover, using the
properties of the Lie derivatives, the set (30-32) can be cast
in the form

∇ ·E = 4πρ, ∇ ·B = 0 (60)

∇× (V B) =
4π

c
JV +

1
c

∂E
∂t

+ΩB(ξϕ · ∇)E− hϕ(E · ∇ΩB)eϕ̂ (61)

∇× (V E) = −1
c

∂B
∂t

− ΩB(ξϕ · ∇)B

+hϕ(B · ∇ΩB)eϕ̂. (62)

The above form of Maxwell’s equations describes the or-
thogonal components of the electric and magnetic field
generated by a charge densityρ and a spatial cur-
rent J. For axially symmetric sources and fields,i.e.
LξϕE = LξϕB = LξϕJ = Lξϕρ = 0, after introducing the
decomposition of all fields into their poloidal and toroidal
parts, we find that Ampere’s and Faraday’s law can be writen
in the form

∇× (V BP ) =
4π

c
JT +

1
c

∂ET

∂t
+ hϕ(EP · ∇ΩB)eϕ̂. (63)

∇× (V BT ) =
4π

c
JP +

1
c

∂EP

∂t
(64)

∇× (V EP ) = −1
c

∂BT

∂t
+ hϕ(BP · ∇ΩB)eϕ̂. (65)

∇× (V ET ) = −1
c

∂BP

∂t
. (66)

The analysis so far is general and poses no restriction
upon the structure of the four-current. In principle, the above

Rev. Mex. F́ıs. S53 (2) (2007) 146–156



156 T. ZANNIAS

eqs can be adopted to a conduction current associated with a
conducting fluid. Moreover, in order to be applied to a con-
crete case, a background geometry needs to be chosen. A
physically important geometry would corespond to the ge-
ometry associated with a stationary rotating star. As is well
known, the equations of a relativistic stellar structure for such
a system is rather complex and, due to space limitations, we
shall not discuss the form of the above equations in such a
background. We shall however make comments regarding
the structure of Faraday’s and Ampere’s law as described
by (62,63). Their right-hand side shows a coupling of the
termΩB , responsible for the dragging of inertial frames, to
the electric and magnetic fields. This coupling acts as an ef-
fective current term and expresses an aspect of gravitomag-
netism. Due to this coupling, the induction equation would
contain additional “electromotive terms“. Whether then a
Cowling’s theorem holds true for the resulting system is for
the moment an open question.

6. Discussion

In this paper, we have concentrated on some problems that
arise from the existence of the phenomenon of cosmic mag-
netism. Our treatment has been restricted to the dynamical
equations describing the electromagnetic field generated by a

conducting fluid described by a single component. An issue
that needs to be addressed concerns the status of Cowling’s
theorem. Does some version of this theorem hold true in a
general relativistic setting? The work of the last three sec-
tions offers a framework where this question can be properly
addressed. On the other hand, and as the observational ev-
idences make clear, large-scale magnetism appears to be an
attribute of our observable universe. As we have seen, tur-
bulent conducting fluid flows are of relevance. Understand-
ing the properties of these flows in an arbitrary background
spacetime and their impact on the generation of electromag-
netic fields is also a relevant issue. Extension of the above
work beyond the MHD regime, inclusion of additional terms
in conduction current, and their relevance to the electromag-
netic fields generated are problems worth pursuing and of rel-
evance to the phenomenon of cosmic magnetism.
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