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On quantum scattering on magnetic monopole
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For infinite dimensional representations ofSU(2) an addition theorem is found and used to obtain an analytic expression for the quantum
mechanical scattering amplitude for an electrically charged particle moving in the field of a pointlike magnetic monopole.
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Se construyen las representaciones acotadas, de dimensión infinita, deSU(2) y se obtiene una expresión anaĺıtica para la amplitud de
dispersíon cúantica correspondiente a una partı́cula eĺectricamente cargada moviéndose en el campo de un monopolo magnético puntual.
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The representations of the rotation group are widely used in
quantum mechanics. However, as in common rotationally
invariant quantum mechanical applications the Hilbert space
is finite dimensional, most popular representations are also
finite dimensional. This has not always been the case: in
the late 60’s, complex angular momenta where considered
for some applications in particle physics [1, 2] and infinite
dimensional representations where used, among others. Such
approaches were left and darkness fell on infinite dimensional
representations ofSU(2). However, recently we have found
that working out a magnetic monopole problem with the gen-
eralized quantization condition forces us to use precisely such
representations [3,4]. In the present paper, using our previous
results and bounded infinite dimensional representations of
SU(2), we look for an analytical expression for the scattering
amplitude in the monopole problem with arbitrary magnetic
charge.

As is well known, the generators of the rotation group
satisfy thesu(2) algebra

[Ji, Jj ] = iεijkJk, i, j, k = 1, 2, 3. (1)

The casimir operator is

J2 = (J+J− + J−J+)/2 + J2
3 , J± = J1 ± iJ2,

and one can choose, as a basis for the Hilbert space, simulta-
neous eigenvectors ofJ2 andJ3, say

J2|, m〉 = ( + 1)|,m〉, J3|,m〉 = m|, m〉.
Infinite dimensional representations ofSU(2) are classified
as follows [1,2,5]:

•  + m integer. This case is known asbounded be-
low. It means that there exists a state|,−〉 such that
J−|,−〉 = 0.

• −m integer, in which case the representation is known
asbounded abovebecause there exists a state|, 〉 such
thatJ+|, 〉 = 0.

• Neither  − m nor  + m are integers. This type of
representation is calledunbounded.

Even if only irreducible representations are considered, for
fixed  all of them are infinite dimensional.

For therepresentation bounded above, let us consider
the action of the groupSU(2) on any function of the complex
variablez [5,6]:

Tgf(z) = (ᾱ− βz)2f

(
β̄ − αz

ᾱ− βz

)
,

g =
(

α β
−β̄ ᾱ

)
, |α|2 + |β|2 = 1

So, in particular for the basis state|, n〉 = Nnzn such that
J2|, n〉 = ( + 1)|, n〉 andJ3|, n〉 = (−n)|, n〉 one has

Tg|, n〉 = Nn(ᾱ− βz)2−n(β̄ + αz)n

=
∞∑

k=0

A
()
kn(g)|, k〉,

with the matrix elementsA()
kn given by

A
()
kn(g) =

Nn

Nk

1
k!

dk

dzk
[(ᾱ− βz)2−n(β̄ + αz)n]

∣∣∣∣
z=0

,

where the normalization factor is

Nn = (n!|Γ(2− n + 1)|)−1/2 [4].

Introducing the Euler anglesϕ, θ, ψ as

α = ei(ϕ+ψ)/2 cos
θ

2
, β = iei(ϕ−ψ)/2 sin

θ

2
,
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we find that

A
()
kn(g) =

Nk

Nn
in−k2k−eiϕ(k−)eiψ(n−)(1− x)(n−k)/2

× (1 + x)(2−n−k)/2P
(n−k,2−n−k)
k (x), n > k, (2)

wherex = cos θ andP
(α,β)
n (x) areJacobi polynomials[5,6].

The matrix elements obtained have the following symme-
try properties:

A
()
nk(g) = (−1)σ(n,k)ei(n−k)(ϕ−ψ)A

()
kn(g),

A
()
nk(g−1) = (−1)σ(n,k)A

()
kn(g),

whereσ(n, k) = sgn(sinπ(2− n))/sgn(sin π(2− k)).
For therepresentation bounded below, Tg acts on com-

plex functions as [5,6]

Tgf(z) = (β̄ + αz)2f

(
ᾱ− βz

β̄ + αz

)
, |z| ∈ C, (3)

and the matrix elements of the representation are given by

B
()
−k,−n(g) =

Nk

Nn
in−k2k−e−iϕ(k−)e−iψ(n−)

×(1− x)(n−k)/2(1 + x)(2−n−k)/2P
(n−k,2−n−k)
k , (4)

wherek > n and againNn = (n!|Γ(2− n + 1)|)−1/2 [4].
The matrix elements obtained have the following symme-

try properties:

B
()
−n,−k = (−1)σ(n,k)e−i(n−k)(ϕ−ψ)B

()
−k,−n, (5)

B
()
−n,−k(g−1) = (−1)σ(n,k)B

()
−k,−n(g), (6)

whereσ(n, k) = sgn(sinπ(2− n))/sgn(sin π(2− k)).
Note by comparing (4) with (2), that one can be changed

into the other by the transformationsϕ → −ψ, ψ → −ϕ.
Thus the properties of this representation are similar to those
of the one bounded above; one just need to make the changes
mentioned in (5) and the other relations.

By expressing Jacobi polynomials in terms of hypergeo-
metric functions [6], properties of the latter can be used to ob-
tain expressions for matrix elements with different index val-
ues. According to this procedure, the representation bounded
above has the block structure

A =
(

A−− 0
A+− A++

)
,

while the representation bounded below,

B =
(

B−− B−+

0 B++

)
,

In any of both expressionsA+− = (An,−k) and so on.
Now let us apply these results to scattering on a mag-

netic monopole. The classical Hamiltonian for an electrically

charged particle of chargee and massm moving in the field
of a pointlike magnetic monopole of strengthq is [9]

H =
1

2mr2

(
(p · r)2 + J2 − µ2

)
, µ ≡ eq,

where
J = r× (p− eA)− µ

r
r

(7)

is the total angular momentum,A being the vector potential.
Following Dirac we chooseA as [7]

A(r) = q
1− cos θ

r sin θ
eϕ (8)

whereθ andϕ are, respectively, the usual polar and azimuthal
angles taken about thez-axis. The components of the opera-
tor version of (7) become

J± = e±iϕ

(
±∂

∂θ
+ i cot θ

∂

∂ϕ
− µ sin θ

1 + cos θ

)
,

J3 = −i
∂

∂ϕ
− µ, (9)

Solutions to the Schrödinger equation are of the form

Ψ(r, t) = e−iEtR(r)Y (θ, ϕ),

where

R(r) = (kr)−1/2Jν(kr),

k ≡
√

2mE,

ν =
√

( + 1/2)2 − µ2

and the functions depending on angular variables are written
as [3,4]

Y ∝ ei(m+µ)ϕzp(1− z)qF (a, b; c; z), (10)

(p + q)(p− q) = mµ,

wherez ≡ sin2(θ/2), andF (a, b; c; z) is a hypergeometric
function with parameters

a = p + q − , b = p + q +  + 1, c = 2p + 1.

If a or b are negative integers then the hypergeometric se-
ries reduces to a polynomial and (10) are calledgeneralized
monopole harmonics[3]. The equality in (10) is recovered
when the normalization factor is included [4].

Any wave function can be expressed as a linear com-
bination of monopole harmonics (10). Expansion must be
made over all available values of, m. For our case, in hav-
ing single-valued eigenfunctions from (10), one must impose
m+µ integers. In standard quantum mechanical calculations,
only positive half integer or integer values of are considered
and− ≤ m ≤ . However, in our case, such selection im-
pliesµ = n/2, which is Dirac’s quantization rule, precisely
the case we wish to avoid. So, from nowon we shell use and
m, not integers or half integers. This forces us to use infinite
dimensional representations of the rotation group. Solutions
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(10), with parameters corresponding to each bounded repre-
sentation, are given in [4]. Note that for the representation
bounded above, + µ ∈ Z+ while for that bounded below,
− µ ∈ Z+. Then any arbitrary solution must have the form

Ψ(r) =
∑

+µ,m

C(+)
mµ

Jν(kr)√
kr

+

Y
(µ,m)

 (θ, ϕ)

+
∑

−µ,m

C(−)
mµ

Jν(kr)√
kr

−
Y

(µ,m)

 (θ, ϕ), (11)

where± corresponds torepresentations bounded aboveand
below, respectively [4].

Under the scattering condition, a wave function must

have the asymptotic behavior [9]

Ψscatt∼ eik·r + f(θ, ϕ)
eikr

kr
,

wheref(θ, ϕ) is known as scattering amplitude; by using a

similar procedure to that in [9], one finds that asymptotically
coefficients in (11) as

C(±)
mµ = e−i(ν+1/2)π/2

±
Y mµ (π − θ′, π + ϕ′), (12)

where one appeals to (11) as a valid expansion for any solu-
tion.

Substitution of (12) in (11) leads us to

f(θ̄, ϕ̄) =
∑

+µ,m

e−i(ν+1/2)π/2
+

Y
(µ,m)

 (θ̃, ϕ̃)
+

Y
(µ,m)

 (θ, ϕ) +
∑

−µ,m

e−i(ν+1/2)π/2
−
Y

(µ,m)

 (θ̃, ϕ̃)
−
Y

(µ,m)

 (θ, ϕ), (13)

whereθ̃ = π − θ andϕ̃ = π + ϕ; θ̄ andϕ̄ are obtained from
θ, ϕ and θ̃, ϕ̃ with the standard rules for the addition of an-
gles [9]. Thus in (13), the first problem is making sums over
m, so one needs to find anaddition theorem for monopole
harmonics. In the case of working only with unitary repre-
sentation, such an addition theorem is know [9], so here we
consider specifically infinite dimensional bounded represen-
tations.

Analyzing these cases, one concludes that correspon-
dence between solutions (10) and matrix representations (2,
4) is established as

Representation bounded above

If m = − n and0 ≤ n ≤  + µ, then

+

Y
(µ,n)

 =

√
2 + 1

4π
iµ+−ne−iµψeiϕ(µ+2−2n)A

()
n,+µ,

while for n >  + µ, then

+

Y
(µ,n)

 =

√
2 + 1

4π
in−−µei(−n)(ϕ+ψ)A

()
+µ,n.

In the casem=+n, one has
−
Y

(µ,n)

 ∼B
(−−1)
−(+µ),−n where

as harmonic has norm zero so the matrix element.

Representation bounded below

Form = − + n and0 ≤ n ≤ − µ, one finds

−
Y

(µ,n)

 =

√
2 + 1

4π
i−µ−nei(n−)(ψ+ϕ)B

()
−n,−(−µ);

and ifn > − µ, then

−
Y

(µ,n)

 =

√
2 + 1

4π
in−+µe−iµψeiϕ(2n+µ−2)B

()
−(−µ),−n.

Finally, for m = −− n− 1,
+

Y
(µ,n)

 ∼ A
(−−1)
−µ,n .

Note that for all our cases, correspondence between solu-
tions to th Schr̈odinger equation and matrix representations
of SU(2) are made not over the whole matrices if not only
over such blocks which under consecutive group transforma-
tions go into a block with the same structure as the original
one (specificallyA++ andB−−). This fact will be important
in calculating scattering amplitude.

Substituting these relations in (13), and using properties
such as (5, 6) we obtain the formula

f(θ) =−
(

1− cos θ

2

)µ ∞∑
−µ=0

(−1)−µ(2 + 1)e−i(ν+1/2)π/2P
(2µ,0)
−µ (cos θ)

−
(

1− cos θ

2

)−µ ∞∑
+µ=0

(2 + 1)e−i(ν+1/2)π/2P
(0,−2µ)
+µ (cos(π − θ)) (14)

which in contrast with the usual results [9, 10] includes two contributions which may give different results from those known
at the present time. The results obtained by working out specific calculations using (14) will be presented elsewhere.
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