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On quantum scattering on magnetic monopole
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For infinite dimensional representations$#/(2) an addition theorem is found and used to obtain an analytic expression for the quantun
mechanical scattering amplitude for an electrically charged particle moving in the field of a pointlike magnetic monopole.
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Se construyen las representaciones acotadas, de domen§nita, deSU(2) y se obtiene una exprési anaitica para la amplitud de
dispersbn cuantica correspondiente a una fieuta ebctricamente cargada mévidose en el campo de un monopolo né&mo puntual.
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The representations of the rotation group are widely used in e Neitherjy — m nor 3 + m are integers. This type of
guantum mechanics. However, as in common rotationally representation is callashbounded
invariant quantum mechanical applications the Hilbert space
is finite dimensional, most popular representations are alsyen if only irreducible representations are considered, for
finite dimensional. This has not always been the case: ifixed ; all of them are infinite dimensional.
the late 60’s, complex angular momenta where considered
fqr some applications n particle physics [1, 2] and |nf|n|tet e action of the groupU (2) on any function of the complex
dimensional representations where used, among others. Su\(; . )

e 9 . riablez [5, 6]:
approaches were left and darkness fell on infinite dimensional
representations &#U (2). However, recently we have found

For therepresentation bounded abovelet us consider

that working out a magnetic monopole problem with the gen- T,f(2) = (a—B2)*f (M) ,
eralized quantization condition forces us to use precisely such a- Bz
representations [3,4]. In the present paper, using our previous a B ) )
results and bounded infinite dimensional representations of 9= < -5 a ) , ol #1617 =1

SU(2), we look for an analytical expression for the scattering
amplitude in the monopole problem with arbitrary magneticSO’ in particular for the basis staten) = N, 2" such that
charge. . 32[3,n) = 3(3+ 1)|5, n) and.Js|3, n) = (3 n)|3,n) one has
As is well known, the generators of the rotation group
satisfy thesu(2) algebra
[Ju']_]] :igijk‘]k7 i7jak: 172a3' (1)

_ - ()
The casimir operator is = E A ()2, k),
k=0

T(I‘]?n> = Nn(d - 52)2]_"(5 + OéZ)n

J2=(JJ_+J_J)/2+ T3 Jr=J £il,

i ; @ g
and one can choose, as a basis for the Hilbert space, simult4ith the matrix elementsl;;, given by

neous eigenvectors df and.Js, say

Dy VoL d* s
I23,m) = 32+ Vlg,m),  Jalg,m) = mlz,m). Anl9) = Jo g gFpl@ - A7 B F a2
Infinite dimensional representations 8t/ (2) are classified
as follows [1, 2, 5]: where the normalization factor is
e 5 + m integer. This case is known d®unded be- _1/2
low. It means that there exists a state—7) such that Ny = (nl|0(27 = n+1)]) [4].
J_|3,—3) =0. _
] ] . o Introducing the Euler angles, 6, as
e j—m integer, in which case the representation is known

asbounded abovkecause there exists a stgtg) such _ 0 , 9
thatJ, |y, 7) = 0. o =& T¥)/2 cos 2 B =ie¥=¥)/2gin 3



2 A.l. NESTEROV AND F. ACEVES DE LA CRUZ

we find that charged particle of chargeand massn moving in the field

N of a pointlike magnetic monopole of strenglis [9]
AE},ﬁ(g) — Jin—kgk—yeiw(k—a)eiw(n—J)(1 _ $)(n—k)/2

N n H —

2 2 2
=— . Je— =
(29—n—k)/2 p(n—Fk,2)—n—k) 2mr2 ((p r)”+ M )7 M= eq,
X (14 z)=™ " P (z), n>k, (2)

where

r
wherez = cos 8 andP\**? (z) areJacobi polynomial{s, 6]. J=rx(p-ecA)- - @
The matrix elements obtained have the following symmeis the total angular momentum, being the vector potential.

try properties: Following Dirac we choosd as [7]
AEIJ) () = (71)0—(71,19)ei(nfk)(gofw)A(f’)L(g)7 _ 1 —cosf
k k A(r) T end ¥ 8)
AB(g™Y) = (~1)7 P AL (), wheref andy are, respectively, the usual polar and azimuthal
) ) angles taken about theaxis. The components of the opera-
whereo (n, k) = sgn(sinm (25 — n))/sgn(sin 7 (27 — k)). tor version of (7) become
For therepresentation bounded belowT, acts on com- 5 5 "
plex functions as [5, 6] _etiv (12 L, d  psin
Jr =et 89—HCOt98¢ 1T cos6 )
1,50 = G+ (572 ). lec @ o
g B+az) ’ Js = —ig— —p, ©)
ot
and the matrix elements of the representation are given by Solutions to the Scisdinger equation are of the form
N, R N s —i
BY)_(g) = Jhin kot erteth g v U(r,t) = e PRE)Y (0. ),
% (1 . w)(n_k;)/Q(l + x)(Qj_n_k)/gplgn—k,zg—n—k)7 (4) where
R(r) = (kr)~"'2J, (kr),
wherek > n and againV,, = (n!|'(2) — n + 1)|)~'/2 [4].
The matrix elements obtained have the following symme- k=+v2mE,
try properties:
y prop v=1/(1+1/2)2 — 2
(@) _ (1o (n,k) a—i(n—Fk) (p—1) p2) i i i )
B k= (=1) e ‘ Bl ®) and the functions depending on angular variables are written
B P ey s e as [3,4]
BY, (7Y = (=17 BY, _ (g), (6) |
Y el(mJ”L)“"z”(l —2)4F(a,b;c; z), (10)
whereo(n, k) = sgn(sin7(2y — n))/sgn(sin w(2) — k)).
Note by comparing (4) with (2), that one can be changed (p+a)(p—q) =mu,

into the other by the transformatiogs — —, ¥ — —¢.  \hare. sin(0/2), and F(a, b; ¢; z) is a hypergeometric
Thus the properties of this representation are similar to thos]e . .
unction with parameters

of the one bounded above; one just need to make the changes
mentioned in (5) and the other relations. a=p+q—j b=p+qg+y+1, c=2p+1.

By expressing Jacobi polynomials in terms of hypergeo-
metric functions [6], properties of the latter can be used to oblf a or b are negative integers then the hypergeometric se-
tain expressions for matrix elements with different index val-ries reduces to a polynomial and (10) are cafjetieralized
ues. According to this procedure, the representation boundeionopole harmonicf3]. The equality in (10) is recovered

above has the block structure when the normalization factor is included [4].
Any wave function can be expressed as a linear com-
A= ( A 0 ) bination of monopole harmonics (10). Expansion must be
Ao Aygy made over all available values gfm. For our case, in hav-

ing single-valued eigenfunctions from (10), one must impose
m+p integers. In standard qguantum mechanical calculations,
B__ B_, only positive half integer or integer values adre considered
B = ( 0 B, ) and—j < m < 3. However, in our case, such selection im-
plies . = n/2, which is Dirac’s quantization rule, precisely
In any of both expressiond;, _ = (A, _x) and so on. the case we wish to avoid. So, from nowon we shell ueed

Now let us apply these results to scattering on a mags, not integers or half integers. This forces us to use infinite
netic monopole. The classical Hamiltonian for an electricallydimensional representations of the rotation group. Solutions

while the representation bounded below,
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(10), with parameters corresponding to each bounded repréave the asymptotic behavior [9]
sentation, are given in [4]. Note that for the representation

. . eikr
bounded above; + € Zf while for. that bounded below, Uscatt~ €57 + £(6,¢) 7
7— i € Z4. Then any arbitrary solution must have the form kr
() where f (0, ¢) is known as scattering amplitude; by using a
(+) Jy(k"") + Hym |
Ur)= Y C Y (0,¢)

m e similar procedure to that in [9], one finds that asymptotically
coefficients in (11) as

oy S (k) =)
+ > O =Y, (69, (11 | -
J—HK,m e k’l’ ! Cj(;ntzl = eil(VJrl/Z)ﬂ—/ZY]mu (7T - 0/7 T+ 90/)3 (12)

where+ corresponds teepresentations bounded aboaed  where one appeals to (11) as a valid expansion for any solu-
below respectively [4]. tion.
Under the scattering condition, a wave function must  Substitution of (12) in (11) leads us to

_ i +(pm) ~ +(pm) iy _(pom) ~ _(p,m)
£(0,0) = Z e z(u+1/2)77/2yj (6, 3) Y, (0, ¢) + Z e l(l/+1/2)7r/2yj (X)) Y, 0, 0), (13)

Jtp,m J—H,m

wherefl = m — 6 and@ = 7 + ¢; 6 and are obtained from
9, p andd, ¢ with the standard rules for the addition of an- !
gles [9]. Thus in (13), the first problem is making sums over .

m, so one needs to find addition theorem for monopole Representation bounded below
harmonics In the case of working only with unitary repre- i
sentation, such an addition theorem is know [9], so here wE°r = —j+nand0 <n < j— u, one finds
consider specifically infinite dimensional bounded represen-

N _(pym)
tations. Yj’ AL it (we) gO) o
Analyzing these cases, one concludes that correspon- 4w TremUTH

dence between solutions (10) and matrix representations (%md ifn > 5 — u, then
4) is established as ’
_(pym)
. Yy o — 2+ 1infa+ue*iweiw(2n+u72j)B(J) .
Representation bounded above J 4 —(3—n),—n
If m=j7—mnand0 <n <3+ pu,then +(p,m) o
() Finally, form = —j—n—1,Y, Ag_f“f)
}ﬁj — 4 /wiu+a—ne—iwew(u+2a—2n)Ag)ﬁw Note that for all our cases, correspondence between solu-
. 4m ’ tions to th Schivdinger equation and matrix representations
while forn > j+ p, then of SU(2) are made not over the whole matrices if not only
(1,m) over such blocks which under consecutive group transforma-
+ [204 1 s pi—n ) group
Y, = in " el )(ww)Aﬂm,w tions go into a block with the same structure as the original

() one (specificallyd ; . andB__). This fact will be important

In the casen=y+n, one hay, NB(—J;U where in calculating scattering amplitude.
- 77n . - - - . .
as harmonic has norm zero so the matrix element. Substituting these relations in (13), and using properties
|  such as (5, 6) we obtain the formula

1— 0 H .
£(0) ( n > (=1)7(2+ 1) /22 PO (cos )
J—n=0
1—cosf\ " & —i(v+1/2)7/2 p(0,—24)
~(F52E) S @+ne Py (cos(m — 6)) (14)
J+p=0

which in contrast with the usual results [9, 10] includes two contributions which may give different results from those know
at the present time. The results obtained by working out specific calculations using (14) will be presented elsewhere.
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