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Noncommutative chiral gravitational anomalies in two dimensions
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Gravitational anomalies in a noncommutative space are examined. The analysis is generic and independent of a particular noncommutative
theory of gravity, and it depends only on how gravity is noncommutatively coupled to chiral fermions. Delbourgo-Salam computation of the
gravitational correction of the axial ABJ-anomaly is studied in detail in this context. Finally, we show that the two-dimensional gravitational
anomaly does not permit noncommutative corrections in the para@eter
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Se examinan las anonias$ gravitacionales en un espacio no conmutativo. &lisis es general e independiente de algundaete gravedad
no conmutativa espéa y depende@o de ®@mo la gravedad se acople a los fermiones quirales.alelito de Delbourgo-Salam de la
correccodn gravitacional a la anonialaxial ABJ se estudia en detalle en este contexto. Finalmente se muestra que lésag@vigdcional
en dos dimensiones no admite correcciones no conmutativas eragigien®.

Descriptores:Anomalias gravitacionales; anorfeable Delbourgo-Salam; tdas de campo nonconmutativas.

PACS: 04.50.+h; 11.30.Rd

1. Introduction with w? () being the noncommutative spin connection as-
) ) ] sociated with the tetrae (z), and[A, B]. = Ax B—Bx A

An important effect in quantum field theory are the anoma-is the Moyal bracket. Here theproduct is defined by

lies. Axial and gauge anomalies in various dimensions, in

particular in four dimensions, have been discussed in the F . G(z) = exp (i@uva o )F(y)G(z)
context of noncommutative gauge theories by various au- 2 Oyt 0zv

thors [1-13]. ) ) From now on, in order to avoid causality problems, we will
On the other hand, recently, various noncommutative thegegor — .

ories of gravity have been proposed by a number of authors, - Noncommutative perturbative gravity is defined by a per-
providing different Moyal deformations of Einstein gravity yrphative expansiod = 1® + 1) + 1) 4 O(k*) of the
in four dimensions (for a recent review of noncommutative,oncommutative Einstein-Hilbert action generated by a per-

gravity, see [14]). In this context, a noncommutative proposa;pative expansion of the metric as follows:
for a topological gravity generalizing Euler and the signature

topological invariants was given in Ref. 15. Guv = M — Khyy + K2R % hay
However, at the present time there is not a definitive, well- 370 4

defined, realistic noncommutative theory of gravity. In this = W Pag by + ().

note we will not deal with any specific noncommutative the-  This note is organized as follows: In Sec. 2 we give

ory of gravity. This is because at the end we will not con-the relevant Feynman rules for linear gravity coupled to chi-

sider a specific theory of pure gravity, but we will be inter- ral fermions in a theoryD=2k dimensions. Sec. 3 dis-

ested only in the interactions of a linearized noncommutativeusses the noncommutative correction to the Delbourgo-

gravitational field with chiral fermions. However, to be con- Salam anomaly. In Sec. 4 we describe the pure noncom-

crete, we will briefly review a particular proposal of noncom- mutative anomaly in two dimensions.

mutative Einstein gravity [16] given by the noncommutative

Einstein-Hilbert action:

Y=z=x

2. Coupling Gravity to Chiral Fermions

~ 1 .
Ten = — 167Gy /d4$(_e) * e () e (x) * Rhy (), Reference 17 gave the Feynman rules of this pure noncom-
X mutative gravity theory. Let us consider the theoryin= 2k
where dimensions. The coupling of the gravitational field with chi-
ral fermions is given as usual by
G () = €%(x) * ep () Nav, Imt:/d%x o e (z) 4 %@(x)
and

o [(1-T
R () = B () — 0,020 () + [ (), wy ()] *ila D (2)“}‘””)’ @)

nz * )
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wheree stands fordet(e) andD,, is the covariant derivative

with respect to the spin connectiaﬁb given by

1
D;L¢(£):auw(x)+§W;Lcd0'6dw(x)7
with

acd:i[ra rd,  I=I;...Ty
and thels are the Dirac matrices in euclide@& dimen-
sions.

Expandingey; around flat space;,.=1.a+(1/2)h.q, OUr
noncommutative action splits into two parts,,=1; + Io,
where

I — %/dm exel(x)*)(z)*il, 5# (I;F)w(x) 2
and
b:i/dw exel(x) * wffl(x)
x *itp(x) * Lgeq (1;F> Y(x),  (3)

wherel',.q = 1/6(T,I'.I'; = permutations). The lineariza-
tion of our noncommutative actiah,,; given by Eq. (1) leads

to the Moyal deformation of linear gravity given by the la-

grangians

b= = @) 0w +0, 0 (5 o, @

Ly = —1—16ih,\a(x) * Ophya * rHAv (1;F>1/J(a:) (5)

The corresponding noncommutative Feynman rules can be

obtained from the lagrangiards and L., giving
i oy (1T i o
_ZEl Ly <2>(2p—|—p/)u exp (— 5@;} p,;pf,), (6)

and
i 1-T i
—TGFA“” (2 > el exp (2@”1),)1)2)
X |:k1# exp (;@pgklpk20>

1
_k2u exp (26paklpk2a> :| ) (7)
|

/dze (L (p+ k1)+M)
[(p+ k1)2—M?]

i
- exp (—2@”"(19 —k2),(p + kl)a> €p1o PPIT

(T (p—ko)+M)
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respectively. We have introduceb;)l for the polarization ten-
sors from the graviton field.

3. Noncommutative Delbourgo-Salam Gravi-
tational Anomaly

Gravitational anomalies in four dimensions were studied first
by Delbourgo and Salam [18] as a gravitational correction
to the violation of a global symmetry responsible for the de-
cay: 7 — ~v. This idea was further developed in Refs. 19
and 20. Here we shall discuss the noncommutative counter-
part of Delbourgo and Salam work [18], which showed that in
addition to the fermion triangle diagram with three currents,
the triangle diagram with one curresitof a global symmetry
and two energy-momentum tensdrss also anomalous. The
corresponding contribution from the anomalous Ward iden-
tity is given by

1

PO KAV 8
38472 Rf'ﬂ)\PU R/Lu5 . ( )
This is precisely proportional to the signature invariatX’)
(or the first Pontrjagin class) which, with the Euler number
x(X), are the classical topological invariants of the smooth
spacetime manifold .

Now we shall discuss in detail the derivation of the non-
commutative counterpart of Eq.(8). The scattering amplitude
of the process in 4 dimensions is given by

exp (— £0°7(p — ko), (p + k1))
T (p+ ki) — M]

Tr / d*p{T - p, T}

exp (= £077(p + k1) ppo)
I-p—M)

P17 01 P21 02
XEPlalp r EPzUzp r

exp ( - %@papp(l) - k2)ﬂ)
T (p—ke)—M]

9)

where we have used the Feynman rule Eq. (6) in each vertex
of the triangle diagram and the corresponding fermion prop-

agators. In order to evaluate this amplitude we promote the
integral from 4 ta2¢ dimensions

I-p+M)
[p?— 2]

7
X exp (—2@”‘7(}9 + kl)pp,,>

[(p — k2)?—M2]

i
€ppoy P72 exp (—2@”"pp(p—kz)o) . (10)
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To calculate this integral, we introduce Feynman’s paramegravitational anomalies. In this section, we are going into the

tersx, y andz, in the usual way, integrating out the variable

details of the computation of the pure gravitational anomaly

keeping only the divergent terms and integrating out the moin two dimensions. We shall follow the notation and conven-

mentum variable. We finally obtain

2é+1(1€ — 2)]€§1 k?nglgzaﬁgnAaﬁklakQﬂ
X exp ( — ;@‘wkmk%) (47()_ZF(2 —{)

X /(k%xy - M2)2_2ixy 01—z —y)dzdy + ..., (11)

tions of Ref. [21] (for further work, see [22]). We shall not
consider global gravitational anomalies [23] here.

In two dimensions, the noncommutative action for a
Majorana-Weyl fermion in a gravitational field is given by
I = [d?z exel(z)* 31 () xil 0, (x). Atthe linearized
level, the lagrangian is

Lins = —ih"’”(m) v id(z) * T, 00(x).  (16)

wheref(z) is the usual Heaviside function. In the last expres-The corresponding energy-momentum tensor is given by

sion we have used the trace identity given by:

T (Do T D727 ) =205]7 652050 =217 722,y

12087

Performing the expansion of the gamma funcfign) for
small values ot with e = 2 — £, taking the limit{ — 2 and
evaluating the integral im andy, we finally get

KRS
" on2

60102a6

Eriaf kla k2ﬁ

X exp (—%@P%lpk%). (12)

Ty () = 5i0(x) * T (). (17)

In order to facilitate the computation, as usual, we intro-
duce light-cone coordinates

1
= —(%+ah).

V2
Dirac matrices are decomposed into
r = oL
\/i I

Now, taking into account the most general Lorentz invariant

amplitude, the last expression becomes
)

~Tgo2Cror (F1)Epos (k2)k1akape™ 72 (0192 ky - ky

— K2k ) erap XD < - ;@P%kaw). (13)
In the coordinate space, this equation can be rewritten as

galazaﬁ(aaavhmm * 6687]1?2 —0,,0" hmol * aﬁaplhpzaz)

X Exrafbs (14)
which finally we recognize as the invariant
1 T _KAUV
WR’Q)WU * RZ}/‘C: K . (15)

This is precisely the noncommutative signature invariant

T(X) :/R*Ed‘%,

with (T*)2 = 0 andT*T~ + I'"T't = 2. In these coordi-
nates, the energy-momentum tensor takes the form
1 -
Ty (z) = 5“/)(1') * 1 0,19(x), (18)
while the interaction action (16) of the gravitational field with
fermions in the light-cone coordinates reduces to

Line =~ ih——(2) +0(x) « T4 0,0(r). (19

Only the componenk__(z) of the graviton is coupled to
chiral matter described by the componéht, () of the
energy-momentum tensor. The effective action to the second
order in the metric perturbatidnis encoded in the two-point
correlation function

Utp) = [ o exp (ip) (QUT(T 4 (@) (0)]9). (20)

The naive Ward identity is given by_U(p) = 0. This
should implyU(p) = 0 for all p_; thus, it should be an

where the tilde oveR stands for the Hodge dual with respect anomaly. We are going to comput&p) by evaluating the
to the tangent space indices. Compare this with the noncontorresponding one-loop diagram with two external gravitons;
mutative signaturé (X ) of Ref. 15, where the Hodge duality this yields
was associated with the tetrad indices. U dhdh
U) = -7 [ T 2k )2

1) (2m)2 Yk +ie/ky

exp (= 50"7p)p)
k+p)- +ic/(k+ )y

x exp (i(p + p)z),

4. Noncommutative Pure Gravitational

Anomaly in Two Dimensions 5(p+p)

“
In Sec. 2, we introduced Feynman rules for noncommutative

perturbative quantum gravity relevant to computing the chiral (21)
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where we have again used the Feynman rule Eq. (6) to con&imilarly to the usual commutative case, there is no way to
puteU(p). In light-cone coordinates, the Moyal product is add generic counterterndsZ%// such that."// + AL/ T is

given by invariant under general coordinate transformations.
i ) 1 ) ) Thus, let us consider a Dirac fermion in+ 1 dimen-
exp <—2@p”pppo) = exp (-2@+_(p+p —Pp+)> - sions. Then we have the corresponding acfiéff’, which is

the superposition oLiff, and its corresponding parity con-

Thus, by analytic methods, the computation of the |nte-jugateLiff resulting in

grals gives
U(p) = er? exp ( - ;@‘”’p;pa> L (hy) = = ﬁ d*pd?p’
X exp (Z:(p +p’)x)5-(p +?’): .(22) « iji h_(p)exp < N ;@pgp:}po) he ()
Then the anomalous gravitational Ward identity is given by ; .
p-U(p) = ﬁpf’r exp ( — ;@”"p’ppg) + %h++(p) exp ( - ;@pdp/ppa> h++(p/)]
xexp (i(p +p)z)d(p+p'). (23) x exp (i(p +1)7)0(p + 7). (25)

The computation of the two-graviton diagram coupledThis action is not invariant under infinitesimal general
with chiral fermions in the noncommutative theory is given coordinate transformationgz*=c*, h,. transforms as

by the effective action Ohy ()= — Ouer (x) — Oye, (), Or in the momentum space
3
e p ) . .
L+ff(h;w) = 102n d2pd2p/ih——(1’) Shit(p) = —2ipyes, 6hy_(p) = —ip_eq —ipie—,
X exp ( - ;@””p;)pg> h—_(p") 6h——(p) = —2ip_e_.

s« exp (i(p + 7)) (0 + ) (24) However, in this case there exists a counterteli’//
PARP TP IT)OP TP - which can be added tb%// so that it becomes invariant un-
| der general coordinate transformations

1 p3 i
ALeff:——/deQ’ih,, — S0P po | (pf
D T99n pdp |- (p)exp | — 5O p,p (")

p3

3 i i
+ Eh++(p) exp ( - 597 p;pc,) hy s (p') + 2p1p_hy 4 (p) exp ( -5’ p;pa> h——(p)

i i
— 4pih——(p) exp ( - 2@”“p’ppa) hi(p'") — 4p> hy i (p) exp ( - 2@”"192100) hi—(p)

+4pip_hy—(p) exp ( - %@” ”p;pa> hy— (p’)} S(p+p). (26)

Itis easy to see that this action can be rewritten in a compact form as the following:

R — 107 pe ) R(p'
argf =~ [ gy BR R (= 5O B W) 5y (27)
1927 PLp—
which after integration in the variab}é gives precisely the usual correction to the commutative counterpart of [21],
. 1 g _
ALgf = 77/d2pw, (28)
1927 Pyp—

whereR(p) is the linearized term of the noncommutative scalar cuvature, which is given by
R(p) =p2h_— +p>his —2pp_hy_.

There is a quantum correction Ta._ (p) = 0 which holds classically due to the introduction/of _ in the counterterm
IagrangiarALgff and we have an expectation valuelof_ different form zero, which gives rise to the gravitational anomaly

SALYY 1

(214~ (p)) = *2m = *%R(P)' (29)
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sis thatp’ = —p through thed(p + p’), and the phase factor

H. GARCIA-COMPEAN AND C. SOTO-CAMPOS

By momentum conservation, we have in the above analyAcknowledgments

exp ( — i@""p/ppg) is equal to one, and therefore there is no This work was supported in part by CONACyTéMico grant
modification to the gravitational anomaly in two dimensionsNo. 33951E. C.S.-C. is supported by a CONACyT&Rito)
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a noncommutative space.
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