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Noncommutative chiral gravitational anomalies in two dimensions
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Gravitational anomalies in a noncommutative space are examined. The analysis is generic and independent of a particular noncommutative
theory of gravity, and it depends only on how gravity is noncommutatively coupled to chiral fermions. Delbourgo-Salam computation of the
gravitational correction of the axial ABJ-anomaly is studied in detail in this context. Finally, we show that the two-dimensional gravitational
anomaly does not permit noncommutative corrections in the parameterΘ.
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Se examinan las anomalı́as gravitacionales en un espacio no conmutativo. El análisis es general e independiente de alguna teorı́a de gravedad
no conmutativa especı́fica y depende śolo de ćomo la gravedad se acople a los fermiones quirales. El cálculo de Delbourgo-Salam de la
correcccíon gravitacional a la anomalı́a axial ABJ se estudia en detalle en este contexto. Finalmente se muestra que la anomalı́a gravitacional
en dos dimensiones no admite correcciones no conmutativas en el parámetroΘ.
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1. Introduction

An important effect in quantum field theory are the anoma-
lies. Axial and gauge anomalies in various dimensions, in
particular in four dimensions, have been discussed in the
context of noncommutative gauge theories by various au-
thors [1–13].

On the other hand, recently, various noncommutative the-
ories of gravity have been proposed by a number of authors,
providing different Moyal deformations of Einstein gravity
in four dimensions (for a recent review of noncommutative
gravity, see [14]). In this context, a noncommutative proposal
for a topological gravity generalizing Euler and the signature
topological invariants was given in Ref. 15.

However, at the present time there is not a definitive, well-
defined, realistic noncommutative theory of gravity. In this
note we will not deal with any specific noncommutative the-
ory of gravity. This is because at the end we will not con-
sider a specific theory of pure gravity, but we will be inter-
ested only in the interactions of a linearized noncommutative
gravitational field with chiral fermions. However, to be con-
crete, we will briefly review a particular proposal of noncom-
mutative Einstein gravity [16] given by the noncommutative
Einstein-Hilbert action:

ÎEH = − 1
16πGN

∫

X

d4x(−e) ∗ ea
µ(x) ∗ eb

ν(x) ∗Rµν
ab (x),

where

gµν(x) = ea
µ(x) ∗ eb

ν(x)ηab,

and

Rab
µν(x) = ∂µωab

ν (x)− ∂νωab
µ (x) + [ωµ(x), ων(x)]ab

∗ ,

with ωab
µ (x) being the noncommutative spin connection as-

sociated with the tetradea
µ(x), and[A,B]∗ ≡ A ∗B−B ∗A

is the Moyal bracket. Here the∗-product is defined by

F ∗G(x) ≡ exp
(

i

2
Θµν ∂

∂yµ

∂

∂zν

)
F (y)G(z)

∣∣∣∣
y=z=x

.

From now on, in order to avoid causality problems, we will
takeθ0ν = 0.

Noncommutative perturbative gravity is defined by a per-
turbative expansionI = I(0) + I(1) + I(2) + O(κ4) of the
noncommutative Einstein-Hilbert action generated by a per-
turbative expansion of the metric as follows:

gµν = ηµν − κhµν + κ2hα
µ ∗ hαν

− κ3hα
µ ∗ hαβ ∗ hβ

ν +O(κ4).

This note is organized as follows: In Sec. 2 we give
the relevant Feynman rules for linear gravity coupled to chi-
ral fermions in a theoryD=2k dimensions. Sec. 3 dis-
cusses the noncommutative correction to the Delbourgo-
Salam anomaly. In Sec. 4 we describe the pure noncom-
mutative anomaly in two dimensions.

2. Coupling Gravity to Chiral Fermions

Reference 17 gave the Feynman rules of this pure noncom-
mutative gravity theory. Let us consider the theory inD = 2k
dimensions. The coupling of the gravitational field with chi-
ral fermions is given as usual by

Iint=
∫

d2kx e ∗ eµa(x) ∗ 1
2
ψ(x)

∗ iΓa
←→
D µ

(
1− Γ̄

2

)
ψ(x), (1)
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wheree stands fordet(e) andDµ is the covariant derivative
with respect to the spin connectionωab

µ given by

Dµψ(x)=∂µψ(x)+
1
2
ωµcdσ

cdψ(x),

with

σcd=
1
4
[Γc, Γd], Γ̄=Γ1 . . . Γ2k

and theΓ’s are the Dirac matrices in euclidean2k dimen-
sions.

Expandingea
µ around flat spaceeµa=ηµa+(1/2)hµa, our

noncommutative action splits into two parts,Iint=I1 + I2,
where

I1 =
1
2

∫
dx e∗eµa(x)∗ψ(x)∗iΓa

↔
∂ µ

(
1− Γ̄

2

)
ψ(x) (2)

and

I2=
1
4

∫
dx e ∗ eµa(x) ∗ ωcd

µ (x)

× ∗iψ(x) ∗ Γacd

(
1−Γ̄

2

)
ψ(x), (3)

whereΓacd = 1/6(ΓaΓcΓd±permutations). The lineariza-
tion of our noncommutative actionIint given by Eq. (1) leads
to the Moyal deformation of linear gravity given by the la-
grangians

L1 = −1
4
ihµν(x) ∗ ψ(x) ∗ Γµ

↔
∂ ν

(
1− Γ̄

2

)
ψ(x), (4)

L2 = − 1
16

ihλα(x) ∗ ∂µhνα ∗ Γµλν

(
1− Γ̄

2

)
ψ(x). (5)

The corresponding noncommutative Feynman rules can be
obtained from the lagrangiansL1 andL2, giving

− i

4
εµνΓµ

(
1− Γ̄

2

)
(2p + p′)ν exp

(
− i

2
Θρσpρp

′
σ

)
, (6)

and

− i

16
Γλµν

(
1− Γ̄

2

)
ε(1)
ναε

(2)
λα exp

(
i

2
Θρσpρp

′
σ

)

×
[
k1µ exp

(
i

2
Θρσk1ρk2σ

)

−k2µ exp
(

i

2
Θρσk1ρk2σ

)]
, (7)

respectively. We have introducedε
(i)
µα for the polarization ten-

sors from the graviton field.

3. Noncommutative Delbourgo-Salam Gravi-
tational Anomaly

Gravitational anomalies in four dimensions were studied first
by Delbourgo and Salam [18] as a gravitational correction
to the violation of a global symmetry responsible for the de-
cay: π0 → γγ. This idea was further developed in Refs. 19
and 20. Here we shall discuss the noncommutative counter-
part of Delbourgo and Salam work [18], which showed that in
addition to the fermion triangle diagram with three currents,
the triangle diagram with one currentJ of a global symmetry
and two energy-momentum tensorsT is also anomalous. The
corresponding contribution from the anomalous Ward iden-
tity is given by

1
384π2

RκλρσRρσ
µνεκλµν . (8)

This is precisely proportional to the signature invariantσ(X)
(or the first Pontrjagin class) which, with the Euler number
χ(X), are the classical topological invariants of the smooth
spacetime manifoldX.

Now we shall discuss in detail the derivation of the non-
commutative counterpart of Eq.(8). The scattering amplitude
of the process in 4 dimensions is given by

Tr
∫

d4p{Γ · p, Γκλµν}
exp

(− i
2Θρσ(p− k2)ρ(p + k1)σ

)

[Γ · (p + k1)−M ]

×ερ1σ1p
ρ1Γσ1

exp
(− i

2Θρσ(p + k1)ρpσ

)

(Γ · p−M)
ερ2σ2p

ρ2Γσ2

×exp
(− i

2Θρσpρ(p− k2)σ

)

[Γ · (p− k2)−M ]
, (9)

where we have used the Feynman rule Eq. (6) in each vertex
of the triangle diagram and the corresponding fermion prop-
agators. In order to evaluate this amplitude we promote the
integral from 4 to2` dimensions

∫
d2`p

(Γ · (p + k1)+M)[
(p + k1)2−M2

] · exp
(
− i

2
Θρσ(p− k2)ρ(p + k1)σ

)
ερ1σ1p

ρ1Γσ1
(Γ · p + M)[

p2−M2
]

× exp
(
− i

2
Θρσ(p + k1)ρpσ

)
(Γ · (p− k2)+M)[
(p− k2)2−M2

] ερ2σ2p
ρ2Γσ2 exp

(
− i

2
Θρσpρ(p−k2)σ

)
. (10)
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To calculate this integral, we introduce Feynman’s parame-
tersx, y andz, in the usual way, integrating out the variablez,
keeping only the divergent terms and integrating out the mo-
mentum variablep. We finally obtain

2`+1(`− 2)kρ1
2 kρ2

1 εσ1σ2αβεκλαβk1αk2β

× exp
(
− i

2
Θρσk1ρk2σ

)
(4π)−`Γ(2− `)

×
∫

(k2
3xy −M2)

`−2
ixy θ(1− x− y)dxdy + . . . , (11)

whereθ(z) is the usual Heaviside function. In the last expres-
sion we have used the trace identity given by:

Tr
(
ΓκλµνΓσ1Γσ2ΓαΓβ

)
=2`δ

[σ1

[κ δσ2
λ δα

µδ
β]
ν]=2`εσ1σ2αβεκλµν .

Performing the expansion of the gamma functionΓ(ε) for
small values ofε with ε = 2 − `, taking the limit` → 2 and
evaluating the integral inx andy, we finally get

−i
kρ1
2 kρ2

1

12π2
εσ1σ2αβεκλαβk1αk2β

× exp
(− i

2
Θρσk1ρk2σ

)
. (12)

Now, taking into account the most general Lorentz invariant
amplitude, the last expression becomes

− i

192π2
ερ1σ1(k1)ερ2σ2(k2)k1αk2βεσ1σ2αβ

(
ηρ1ρ2k1 · k2

−kρ2
1 kρ1

2

)
εκλαβ exp

(
− i

2
Θρσk2ρk1σ

)
. (13)

In the coordinate space, this equation can be rewritten as

εσ1σ2αβ(∂α∂γhρ1σ1 ∗ ∂β∂γhρ1
σ2
−∂α∂ρ2hρ1σ1 ∗ ∂β∂ρ1hρ2σ2)

× εκλαβ , (14)

which finally we recognize as the invariant

1
384π2

Rκλρσ ∗Rρσ
µνεκλµν . (15)

This is precisely the noncommutative signature invariant

τ̂(X) =
∫

R ∗ R̃ d4x,

where the tilde overR stands for the Hodge dual with respect
to the tangent space indices. Compare this with the noncom-
mutative signaturêσ(X) of Ref. 15, where the Hodge duality
was associated with the tetrad indices.

4. Noncommutative Pure Gravitational
Anomaly in Two Dimensions

In Sec. 2, we introduced Feynman rules for noncommutative
perturbative quantum gravity relevant to computing the chiral

gravitational anomalies. In this section, we are going into the
details of the computation of the pure gravitational anomaly
in two dimensions. We shall follow the notation and conven-
tions of Ref. [21] (for further work, see [22]). We shall not
consider global gravitational anomalies [23] here.

In two dimensions, the noncommutative action for a
Majorana-Weyl fermion in a gravitational field is given by
I =

∫
d2x e∗eµa(x)∗ 1

2 ψ̄(x)∗ iΓa∂µψ(x). At the linearized
level, the lagrangian is

Lint = −1
4
hµν(x) ∗ iψ̄(x) ∗ Γµ∂νψ(x). (16)

The corresponding energy-momentum tensor is given by

Tµν(x) =
1
2
iψ̄(x) ∗ Γµ∂νψ(x). (17)

In order to facilitate the computation, as usual, we intro-
duce light-cone coordinates

x± =
1√
2
(x0 ± x1).

Dirac matrices are decomposed into

Γ± =
1√
2
(Γ0 ± Γ1),

with (Γ±)2 = 0 andΓ+Γ− + Γ−Γ+ = 2. In these coordi-
nates, the energy-momentum tensor takes the form

T++(x) =
1
2
iψ̄(x) ∗ Γ+∂+ψ(x), (18)

while the interaction action (16) of the gravitational field with
fermions in the light-cone coordinates reduces to

Lint = −1
4
ih−−(x) ∗ ψ̄(x) ∗ Γ+∂+ψ(x). (19)

Only the componenth−−(x) of the graviton is coupled to
chiral matter described by the componentT++(x) of the
energy-momentum tensor. The effective action to the second
order in the metric perturbationh is encoded in the two-point
correlation function

U(p) =
∫

d2x exp
(
ip·x)〈Ω|T (T++(x)∗T++(0)|Ω〉. (20)

The naive Ward identity is given byp−U(p) = 0. This
should implyU(p) = 0 for all p−; thus, it should be an
anomaly. We are going to computeU(p) by evaluating the
corresponding one-loop diagram with two external gravitons;
this yields

U(p) = −1
4

∫
dk+dk−
(2π)2

(2k + p)2+
1

k− + iε/k+

× exp
(− i

2Θρσp′ρpσ

)

(k + p)− + iε/(k + p)+
δ(p + p′)

× exp
(
i(p + p′)x

)
, (21)
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where we have again used the Feynman rule Eq. (6) to com-
puteU(p). In light-cone coordinates, the Moyal product is
given by

exp
(
− i

2
Θρσp′ρpσ

)
= exp

(
−1

2
Θ+−(p′+p−−p′−p+)

)
.

Thus, by analytic methods, the computation of the inte-
grals gives

U(p) =
i

24π

p3
+

p−
exp

(
− i

2
Θρσp′ρpσ

)

× exp
(
i(p + p′)x

)
δ(p + p′). (22)

Then the anomalous gravitational Ward identity is given by

p−U(p) =
i

24π
p3
+ exp

(
− i

2
Θρσp′ρpσ

)

× exp
(
i(p + p′)x

)
δ(p + p′). (23)

The computation of the two-graviton diagram coupled
with chiral fermions in the noncommutative theory is given
by the effective action

Leff
+ (hµν) =− 1

192π

∫
d2pd2p′

p3
+

p−
h−−(p)

× exp
(
− i

2
Θρσp′ρpσ

)
h−−(p′)

× exp
(
i(p + p′)x

)
δ(p + p′). (24)

Similarly to the usual commutative case, there is no way to
add generic counterterms∆Leff

+ such thatLeff
+ + ∆Leff

+ is
invariant under general coordinate transformations.

Thus, let us consider a Dirac fermion in1 + 1 dimen-
sions. Then we have the corresponding actionLeff

D , which is
the superposition ofLeff

+ , and its corresponding parity con-
jugateLeff

− resulting in

Leff
D (hµν) =− 1

192π

∫
d2pd2p′

×
[
p3
+

p−
h−−(p) exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′)

+
p3
−

p+
h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h++(p′)

]

× exp
(
i(p + p′)x

)
δ(p + p′). (25)

This action is not invariant under infinitesimal general
coordinate transformationsδxµ=εµ, hµν transforms as
δhµν(x)=− ∂µεν(x)− ∂νεµ(x), or in the momentum space

δh++(p) = −2ip+ε+, δh+−(p) = −ip−ε+ − ip+ε−,

δh−−(p) = −2ip−ε−.

However, in this case there exists a counterterm∆Leff
D

which can be added toLeff
D so that it becomes invariant un-

der general coordinate transformations

∆Leff
D =− 1

192π

∫
d2pd2p′

[
p3
+

p−
h−−(p) exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′)

+
p3
−

p+
h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h++(p′) + 2p+p−h++(p) exp

(
− i

2
Θρσp′ρpσ

)
h−−(p′)

− 4p2
+h−−(p) exp

(
− i

2
Θρσp′ρpσ

)
h+−(p′)− 4p2

−h++(p) exp
(
− i

2
Θρσp′ρpσ

)
h+−(p′)

+ 4p+p−h+−(p) exp
(
− i

2
Θρσp′ρpσ

)
h+−(p′)

]
δ(p + p′). (26)

It is easy to see that this action can be rewritten in a compact form as the following:

∆Leff
D = − 1

192π

∫
d2pd2p′

R(p) exp
(− i

2Θρσp′ρpσ

)
R(p′)

p+p−
δ(p + p′), (27)

which after integration in the variablep′ gives precisely the usual correction to the commutative counterpart of [21],

∆Leff
D = − 1

192π

∫
d2p

R(p)R(−p)
p+p−

, (28)

whereR(p) is the linearized term of the noncommutative scalar cuvature, which is given by

R(p) = p2
+h−− + p2

−h++ − 2p+p−h+−.

There is a quantum correction toT+−(p) = 0 which holds classically due to the introduction ofh+− in the counterterm
lagrangian∆Leff

D and we have an expectation value ofT+− different form zero, which gives rise to the gravitational anomaly

〈2T+−(p)〉 = −2
δ∆Leff

D

δh+−(−p)
= − 1

24π
R(p). (29)
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124 H. GARĆIA-COMPEÁN AND C. SOTO-CAMPOS

By momentum conservation, we have in the above analy-
sis thatp′ = −p through theδ(p + p′), and the phase factor
exp

(− iΘρσp′ρpσ

)
is equal to one, and therefore there is no

modification to the gravitational anomaly in two dimensions
in a noncommutative space.
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