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A method for generating Gowdy cosmological models
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Numerical methods have been extensively used to investigate Gowdy models, but only recently it has been argued that solutions-generating
techniques can be applied in this case to generate new solutions. In this work, we concentrate onT 3 Gowdy cosmological models and shall
see that a complex coordinate transformation, together with a complex change of metric functions, allows us to apply, in a straightforward
manner, the well-known solution-generating techniques that have been intensively used for stationary axisymmetric solutions.
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Métodos nuḿericos han sido extensamente usados para investigar modelos de Gowdy, pero sólo recientemente se ha propuesto que las
técnicas de generación de soluciones pueden ser aplicadas enéste caso para generar nuevas soluciones. En este trabajo nos concentraremos
en los modelos cosmológicos de GowdyT 3 y mostraremos como una transformación coordenada compleja junto con un cambio complejo
de las funciones ḿetricas nos permite aplicar de una manera sencilla las técnicas de generación de soluciones que han sido extensamente
usadas para soluciones estacionarias axisimétricas.
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1. Stationary axisymmetric solutions and
Gowdy T 3 models

Consider the line element for stationary axisymmetric space-
times in the Lewis-Papapetrou form [13]

ds2 =− e2ψ(dT + ωdφ)2

+ e−2ψ[e2γ(dρ2 + dz2) + ρ2dφ2], (1)

whereψ, ω, andγ are functions of the nonignorable coor-
dinatesρ andz. The ignorable coordinatesT andφ are as-
sociated with the two Killing vector fieldsηI = ∂/∂T and
ηII = ∂/∂φ. The field equations take the form

ψρρ +
1
ρ
ψρ + ψzz +

e4ψ

2ρ2
(ω2

ρ + ω2
z) = 0, (2)

ωρρ − 1
ρ
ωρ + ωzz + 4(ωρψρ + ωzψz) = 0, (3)

γρ = ρ(ψ2
ρ − ψ2

z)− e4ψ

4ρ2
(ω2

ρ − ω2
z), (4)

γz = 2ρψρψz − 1
2ρ

e4ψωρωz, (5)

where the lower indices represent the partial derivative with
respect to the corresponding coordinate.

Consider now the following coordinate transformation
(ρ, t) → (τ, σ) and the complex change of coordinates

(φ, z) → (δ, χ) defined by:ρ = e−τ , T = σ, z = iχ, φ = iδ,
and introduce the functionsP , Q andλ by means of the rela-
tionships:

ψ =
1
2
(P − τ), Q = iω, γ =

1
2

(
P − λ

2
− τ

2

)
.

Introducing the last two equations into the line ele-
ment (1), we obtain

−ds2 = e−λ/2eτ/2(−e−2τdτ2 + dχ2)

+ e−τ [eP (dσ + Qdδ)2 + e−P dδ2]. (6)

Let us takeτ ≥ 0 and “compactify” the new coordinates as
0 ≤ χ, σ, δ ≤ 2π, with the coordinatesτ, χ, σ andδ in the
range given above known as the line element for GowdyT 3

cosmological models [3–6]. Applying the transformations to
the field equations (2)-(5), we obtain the field equations for
the Gowdy cosmological models which, after some algebraic
manipulations, can be written as a set of two second-order
differential equations forP andQ

Pττ − e−2τPχχ − e2P (Q2
τ − e−2τQ2

χ) = 0, (7)

Qττ − e−2τQχχ + 2(PτQτ − e−2τPχQχ) = 0, (8)

and two first order differential equations forλ,

λτ = P 2
τ + e−2τP 2

χ + e2P (Q2
τ + e−2τQ2

χ), (9)

λχ = 2(PχPτ + e2P QχQτ ). (10)
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It should be emphasized that this method for “deriving” the
Gowdy line element from the stationary axisymmetric one in-
volves real as well as complex transformations at the level of
coordinates and metric functions. It is, therefore, necessary
that the resulting metric functionsP, Q, andλ be real. That
means that in general it is not possible to take an axisymmet-
ric stationary solution and apply the transformations to obtain
a Gowdy cosmological model [11]. If the resulting functions
are not real, they cannot be physically reasonable solutions
to the real equations (7)–(10). These transformations can be
used only as a guide, to get some insight into the form of the
new solutions. In any case, the corresponding field equations
must be invoked in order to confirm the correctness of the
solution.

2. The Ernst representation

An alternative approach for exploring the symmetries inher-
ent in the Ernst equation [8–11, 13–16] was explicitly devel-
oped by Sibgatullin [17] and consists in constructing exact
solutions to the Ernst equation from initial data specified only
on a certain hypersurface (submanifold) of the spacetime. For
instance, in the case of stationary axisymmetric spacetimes,
Sibgatullin’s method allows one to construct exact solutions
from their data on the axis of symmetry. Next we shall show
that Sibgatullin’s method can be applied in the case of Gowdy
cosmological models and shall present an example of its ap-
plication.

For the Ernst representation of the main field Eqs. (7)
and (8), we need to introduce a new coordinatet and a new
functionR = R(t, χ) by means of the equations [8,12]

t = e−τ , Rt = te2P Qχ, Rχ = te2P Qt. (11)

Then, the field equation (7) can be expressed as

t2
(

Ptt +
1
t
Pt − Pχχ

)
+ e−2P (R2

t −R2
χ) = 0 , (12)

whereas Eq. (8) for the functionQ turns out to be equivalent
to the the integrability conditionRtχ = Rχt. However, an al-
ternative and convenient equation is obtained by introducing
Eq. (11) directly into Eq. (8). Thus we obtain

teP

(
Rtt+

1
t
Rt−Rχχ

)
−2[(teP )tRt−(teP )χRχ]=0, (13)

an equation which of course becomes an identity if the inte-
grability conditionRtχ = Rχt is satisfied. We can now intro-
duce the complex Ernst potentialE and the complex gradient
operatorD as

E = teP + iR , and D =
(

∂

∂t
, i

∂

∂χ

)
, (14)

which allow us to write the main field equations in theErnst-
like representation

Re(E)
(

D2E +
1
t
Dt DE

)
− (DE)2 = 0. (15)

It is easy to verify that the field equations (12) and (13) can
be obtained as the real and imaginary part of the Ernst equa-
tion (15), respectively. In terms of the Ernst potential, the sys-
tem of first order, partial, differential equations (9) and (10)
take the form:

λt = − t

2
(
C+C∗+ + C−C∗−

)
, (16)

λχ = − t

2
(
C+C∗+ − C−C∗−

)
, (17)

where

C± =
1

Re(E)
(Et ± Eχ)− 1

t
,

and the asterisk denotes complex conjugation.

If the Ernst potentialE is known, then it is easy to re-
cover the metric functionsP, Q andλ which enter the line
element (6) of GowdyT 3 cosmological models. In fact,
from Eq. (14) one can algebraically construct the functions
P and R. Then the functionQ can be obtained by solv-
ing the system of two first order partial differential equations
given in (11). Notice that the integrability condition of this
last system is satisfied by virtue of Eq. (15). Finally, the
system (16) and (17) for the functionλ can be solved by
quadratures since its integrability condition coincides with
the Ernst equation (15). Consequently, all the information
about any GowdyT 3 cosmological model is contained in the
corresponding Ernst potential.

3. Asymptotic Behavior (AVTD)

The AVTD behavior [7] implies that, at the singularity all
spatial derivatives of the field equations can be neglected and
only the temporal behavior is relevant. In the case ofT 3 mod-
els, the transformation seen in Sec. 1 indicates that the limit
τ →∞ is equivalent to the limitρ → 0; however, this is true
only at the level of coordinates and a more detailed analysis
is necessary to make sure that this analogy is also valid at the
level of explicit solutions. If we neglect the spatial depen-
dence onz in the system of partial differential equations for
ψ andω given in Eqs. (2) and (3), which according to the
transformation used is equivalent to the spatial dependence
on χ in Gowdy models, then we obtain a system of differen-
tial equations which can be solved by quadratures, and yields

ψ =
1
2

ln[a(ρ1+c + b2ρ1−c)]

ω =
ib

a(ρ1+c + b2ρ1−c)
+ id, (18)

wherea, b, c andd are arbitrary real functions ofz. If we
now follow the prescription given in the complex change of
coordinates and the relationships betweenP , Q andλ with
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the metric funtions for obtaining Gowdy models, we find that
solution (18) “corresponds” to the Gowdy model

P = ln[a(e−cτ +b2ecτ )] , Q =
b

a(e−2cτ + b2)
+d , (19)

where nowa, b, c andd are to be considered as arbitrary real
functions of the coordinateχ. The solution (19) is known in
the literature as the AVTD solution for GowdyT 3 models [6]
and dictates the behavior of these models near the singular-
ity τ → ∞. Thus, we have “derived” the AVTD solution
starting from its stationary axisymmetric counterpart. This
is a further indication that the behavior of Gowdy models at
the initial singularity is mathematically equivalent to the be-
havior of stationary axisymmetric solutions at the axis. The
value of the functionλ corresponding to the AVTD solution
(19) can be obtained by integrating Eq. (9):λ = λ0−c2 ln t ,
whereλ0 is an additive constant. Furthermore, the corre-
sponding AVTD Ernst potential can be obtained by introduc-
ing Eq. (19) into Eqs. (14) and (15). Then

E = a[e−(1+c)τ + b2e−(1−c)τ ] + iRavtd . (20)

with Ravtd
χ = −2abc. If we define

E(τ →∞, χ) = e(χ)

as the Ernst potential at the singularity, we see from Eq. (20)
that for c ∈ (−1, 1) only the imaginary part remains,
e(χ) = iRavtd. This means that the real part ofe(χ) is ar-
bitrary and, sinceRavtd is given in terms of the real part, it is
also arbitrary. Ifc /∈ (−1, 1), the Ernst potential diverges at
the singularity for arbitrary values of the functionsa andb. In
the limiting casec = ±1, the Ernst potential at the singular-
ity is regular, but again no conditions appear for the behavior
of the functionsa andb. Consequently, the AVTD behavior
does not impose any conditions on the functione(χ). We
shall now see that it is possible to use this function to con-
struct the corresponding Ernst potentialE(τ, χ).

4. Sibgatullin’s method

Sibgatullin’s method [17] was developed to construct exact
stationary axisymmetric solutions starting from their data on
the axis of symmetry. It is based upon the fact that the Ernst
equation possesses symmetry properties associated with an
infinite-dimensional Lie group which transforms one solution
of this equation into another solution of the same equation.
This implies remarkable analyticity properties that make it
possible to reduce the Ernst equation to a system of linear in-
tegral equations which can be integrated explicitly if the ini-
tial data are known, for instance, on the axis of symmetry.
It is clear that the Ernst-like representation (15) possesses
similar symmetry properties. On the other hand, we have
shown that the behavior of stationary axisymmetric solutions
near the axis is mathematically equivalent to the behavior of
GowdyT 3 cosmological models near the singularity. Thus, it

should be possible to construct Gowdy cosmological models
starting from the value of the corresponding Ernst potential at
the singularity. It turns out that Sibgatullin’s method can be
generalized in a straightforward manner to include the case
of Gowdy models.

Assuming that the value of the Ernst potential is known
at the initial singularity, i.e.e(χ) is given, then the Ernst po-
tential can be generated by means of the integral equation

E(t, χ) =
1
π

1∫

−1

e(ξ)µ(ξ)√
1− s2

ds, (21)

where the unknown functionµ(ξ) be found from the singular
integral equation

1∫

−1

µ(ξ)[e∗(η) + e(ξ)]
(s− κ)

√
1− s2

ds = 0 , (22)

with the normalization condition:

1∫

−1

µ(ξ)√
1− s2

ds = π,

whereξ = χ + ts, η = χ + tκ, with s, κ ∈ [−1, 1].
Notice that, for this method, no condition is imposed on

the behavior ofe(χ). This is in accordance with the result
obtained concerning about the AVTD behavior of the Ernst
potential near the singularity. Oncee(χ) is given in any de-
sired form, one need only calculate the integral (21) to find
the Ernst potential. However, to calculate this integral, one
must first find the functionµ(ξ) by means of the singular
equation (22) and the normalization condition. In practice,
for a givene(ξ), one must make a reasonable ansatz forµ(ξ)
that permits solutions to the integral singular equation (22).

5. Example of GowdyT 3 model

The cases where the Ernst potential at the initial singular-
ity behaves as a rational function are relatively easy to ana-
lyze [11,18]. In this section we shall present an example. Let
us consider the following simple example of an Ernst poten-
tial at the singularity

e(χ) =
χ0 − χ

χ0 + χ
,

whereχ0 is a real constant. The first step in the construction
is to find the unknown functionµ according to Eq. (22) and
the normalization condition. A reasonable ansatz is again a
rational function [17]

µ = A0 +
A1

ξ − ξ1
, (23)

whereξ1 is the root of the equatione(ξ) + ẽ(ξ) = 0 (in this
caseξ1 = χ0) andA0, A1 are functions oft andχ.
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Introducingµ into the normalization condition and into
the integral singular equation (22) we obtain

A0 +
A1

r−
= 1 ; A0 − A1(r+ + r−)

2χ0r−
= 0 , (24)

wherer− =
√

(χ− χ0)2 − t2. The last two equations can
be used to find the explicit values ofA0 andA1 which can
then be replaced in the result of the integration of Eq. (21)
and yield

E(t, χ) = −A0 − A1 − 2χ0A0

r+
=

2χ0 − r+ − r−
2χ0 + r+ + r−

, (25)

wherer+ =
√

(χ + χ0)2 − t2. It is easy to check that this
is indeed a solution to the Ernst equation (15). Since the re-
sulting Ernst potential is real, the solution corresponds to a
polarized (Q = 0) Gowdy model [1, 2]. The expression
for metric functionP can be easily obtained from the defi-
nition (14) and Eq. (25), and the remaining functionλ can be
calculated (up to an additive constant) by quadratures from
Eq. (16) and (17):

λ = ln
[
1
t

(r+r−)2

(r+ + r− + 2χ0)4

]
.

The physical significance of this solution becomes plausible
in a different system of coordinatesx andy which we intro-
duce in two steps. Let us first introduce in the (τ, χ)-sector
of the line element (6) by means of the relationships:
e−2τ = t2 = χ2

0(1 − x2)(1 − y2) , χ = χ0xy , or the in-
verse transformation law

x=
r+ + r−

2χ0
, y=

r+ − r−
2χ0

,

so that the metric functions become

P = ln

[
1− x

χ0

√
(1− x2)(1− y2)(1 + x)

]

λ = ln

[
(x2 − y2)2

χ0

√
(1− x2)(1− y2)(1 + x)4

]
. (26)

The second transformation now affects all the sectors of line
element (6) and is defined by

x=
T

χ0
−1, y=cos θ, σ=r δ = φ.

Then, after some algebraic manipulations, the metric can be
written as

−ds2 = −
(

2χ0

T
− 1

)−1

dT 2 +
(

2χ0

T
− 1

)
dr2

+T 2(dθ2 + sin2 θdφ2). (27)

an expression that can immediately be recognized as the
Kantowski-Sachs cosmological model [19, 20]. Thus, we
have shown that the Kantowski-Sachs metric can be con-
structed from the value of its Ernst potential at the singularity.

6. Conclusions

We have shown that it is possible to generate a GowdyT 3

cosmological model starting from the data near the initial sin-
gularity. To this end, we first show that the GowdyT 3 line
element can be obtained from the line element of stationary
axisymmetric solutions by means of a complex transforma-
tion that involves the metric functions and the coordinates.
The behavior of stationary axisymmetric solutions at the axis
of symmetry is shown to be mathematically equivalent to the
behavior of GowdyT 3 models near the singularity. In partic-
ular, we have derived the AVTD solution from its stationary
axisymmetric counterpart. We then use the Ernst represen-
tation of the field equations and apply Sibgatullin’s method
to the Ernst potential, which can be given at the singular-
ity as any arbitrary function of the angle coordinateχ. In
particular, we have shown that the Kantowski-Sachs cosmo-
logical model can be derived in this manner by starting from
a specific form of the Ernst potential in terms of a rational
function.
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