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A method for generating Gowdy cosmological models
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Numerical methods have been extensively used to investigate Gowdy models, but only recently it has been argued that solutions-generating
techniques can be applied in this case to generate new solutions. In this work, we conceriftat@awdy cosmological models and shall

see that a complex coordinate transformation, together with a complex change of metric functions, allows us to apply, in a straightforward
manner, the well-known solution-generating techniques that have been intensively used for stationary axisymmetric solutions.
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Métodos nuréricos han sido extensamente usados para investigar modelos de Gowdyylpeecientemente se ha propuesto que las
técnicas de generdxi de soluciones pueden ser aplicadagsie caso para generar nuevas soluciones. En este trabajo nos concentraremos
en los modelos cosmigicos de Gowdyl™® y mostraremos como una transforntacicoordenada compleja junto con un cambio complejo

de las funciones #&tricas nos permite aplicar de una manera sencilleélasi¢as de generaei de soluciones que han sido extensamente
usadas para soluciones estacionarias arisioas.

Descriptores:Soluciones exactas; geoniatdiferencial chsica; relatividad ésica; cosmoldg.

PACS: 04.20.Jb; 02.40.Hw; 04.20.-q; 98.80.-k

1. Stationary axisymmetric solutions and (¢,z) — (6,x) definedbyp =e ", T = 0, 2z = ix, ¢ = id,

Gowdy T3 models and introduce the functionB, Q and\ by means of the rela-
tionships:
Consider the line element for stationary axisymmetric space- 1 1 \
times in the Lewis-Papapetrou form [13] P = 5(P —7),Q =iw,y = 5 (p -3- 2) .
ds? = — *V(dT + wdg)® Introducing the last two equations into the line ele-

i 6721&[627(dp2 +d2?) + pRde?, 1) ment (1), we obtain

. . _d82 :e—)\/QeT/Q(_e—QTdT2+dX2)
where, w, and~ are functions of the nonignorable coor-
dinatesp andz. The ignorable coordinatég and ¢ are as- + e [P (do + Qdo)* + e P ds?). (6)
sociated with the two Killing vector fieldg; = 9/0T and

nir — 8/0¢. The field equations take the form Let us taker > 0 and “compactify” the new coordinates as

0 < x, o, § < 2, with the coordinates, x,c andé in the

1 et ) range given above known as the line element for Go@dy
Ypp + ;wp + Pz + 272(% +w;) =0, (2)  cosmological models [3—6]. Applying the transformations to
the field equations (2)-(5), we obtain the field equations for
Wpp — lw,, + W + 4wy, + wt.) = 0, (3) the Gowdy cosmological models which, after some algebraic
manipulations, can be written as a set of two second-order
W) e W — o) @ differential equations foP and@
W = ) = 02) = 5 () —wd), 4
P P 4p2 P P,, — e—QTPXX _ 62P(Q‘2r _ 6—27Qi) =0, (7)
1 —27 —27
Yz = prp'(/)z - ?pe4wwpwza (5) QTT —€ 2 QXX + 2(PTQT —€ 2 PxQX) = Oa (8)

oo . L ._and two first order differential equations &
where the lower indices represent the partial derivative with q 4

respect to the corresponding coordinate. A\ = P? 4 6*27135 + 2P (Q% + e*QTQi% 9)
Consider now the following coordinate transformation

(p,t) — (r,0) and the complex change of coordinates A = 2(PPr + 27 Q,Qx). (10)
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It should be emphasized that this method for “deriving” thelt is easy to verify that the field equations (12) and (13) can
Gowdy line element from the stationary axisymmetric one in-be obtained as the real and imaginary part of the Ernst equa-
volves real as well as complex transformations at the level ofion (15), respectively. In terms of the Ernst potential, the sys-
coordinates and metric functions. It is, therefore, necessariem of first order, partial, differential equations (9) and (10)
that the resulting metric function8, @, and\ be real. That take the form:

means that in general it is not possible to take an axisymmet-

ric stationary soluthn and apply the transformayons to qbtaln A = ot (C+C_*; + O Ci) ’ (16)

a Gowdy cosmological model [11]. If the resulting functions 2

are not real, they cannot be physically reasonable solutions

to the real equations (7)—(10). These transformations can be
used only as a guide, to get some insight into the form of the

new solutions. In any case, the corresponding field equationghere
must be invoked in order to confirm the correctness of the
solution. Oy =

t
A =3 (001 —c-cr) (17)

1
RG(E) (Et + EX) - 27

2. The Ernst representation and the asterisk denotes complex conjugation.

An alternative approach for exploring the symmetries inher-  If the Ernst potentialEy is known, then it is easy to re-
ent in the Ernst equation [8-11, 13—16] was explicitly devel-cover the metric function®, ) andA which enter the line
oped by Sibgatullin [17] and consists in constructing exacglement (6) of GowdyI™ cosmological models. In fact,
solutions to the Ernst equation from initial data specified onlylom Eq. (14) one can algebraically construct the functions
on a certain hypersurface (submanifold) of the spacetime. Fof and k. Then the functionl) can be obtained by solv-
instance, in the case of stationary axisymmetric spacetimed}d the system of two first order partial differential equations
Sibgatullin's method allows one to construct exact solutionsgiven in (11). Notice that the integrability condition of this
from their data on the axis of symmetry. Next we shall showlast system is satisfied by virtue of Eq. (15). Finally, the
that Sibgatullin's method can be applied in the case of Gowdyystem (16) and (17) for the functioh can be solved by
cosmological models and shall present an example of its agiuadratures since its integrability condition coincides with
plication. the Ernst equation (15). Consequently, all the information
For the Ernst representation of the main field Egs. (7)2bout any Gowd{™ cosmological model is contained in the
and (8), we need to introduce a new coordinasmd a new  corresponding Ernst potential.
function R = R(¢, x) by means of the equations [8, 12]
t=e", R =t*"Q,, R, =te*Q,. 1) 3. Asymptotic Behavior (AVTD)
Then, the field equation (7) can be expressed as The AVTD behavior [7] implies that, at the singularity all
) 1 Cop s ) spatial derivatives of the field equations can be neglected and
t (Ptt +toh— Pxx) +e (R —Ry) =0, (12)  only the temporal behavior is relevant. In the cas&bdmod-
els, the transformation seen in Sec. 1 indicates that the limit
whereas Eq. (8) for the functia@ turns out to be equivalent - _,  is equivalent to the limip — 0; however, this is true
to the the integrability conditiok;, = R,,. However,anal- only at the level of coordinates and a more detailed analysis
ternative and convenient equation is obtained by introducingg necessary to make sure that this analogy is also valid at the
Eq. (11) directly into Eq. (8). Thus we obtain level of explicit solutions. If we neglect the spatial depen-
1 dence orr in the system of partial differential equations for
te” (Rtt+th_Rxx> —2[(te”) Re—(te”) Ry]=0, (13) 4 andw given in Egs. (2) and (3), which according to the
transformation used is equivalent to the spatial dependence
an equation which of course becomes an identity if the inteon  in Gowdy models, then we obtain a system of differen-
grability conditionR;, = R, is satisfied. We can now intro- tial equations which can be solved by quadratures, and yields
duce the complex Ernst potenti@land the complex gradient
operatorD as = %hl[a(pl""c LRl
b o .9
E=te +:iR, and D(at,zax>, (14) ib

= a(pl+e + b2pl—c)

+ id, (18)
which allow us to write the main field equations in tBmst-

like representation wherea, b, ¢ andd are arbitrary real functions of. If we

now follow the prescription given in the complex change of

1
2 2 _
Re(E) (D E+ th DE) — (DE)"=0. (15) coordinates and the relationships betwdgn) and \ with
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the metric funtions for obtaining Gowdy models, we find thatshould be possible to construct Gowdy cosmological models
solution (18) “corresponds” to the Gowdy model starting from the value of the corresponding Ernst potential at

the singularity. It turns out that Sibgatullin’s method can be
Lﬂi, (19)  generalized in a straightforward manner to include the case
a(e=2e7 +b2) of Gowdy models.

where now, b, c andd are to be considered as arbitrary real As_su_ming_ that th_e v_alue of_the_ Ernst potential is known
functions of the coordinatg. The solution (19) is known in at the initial singularity, i.e(x) is given, th_en the Emst po-
the literature as the AVTD solution for Gowd§ models [6] tential can be generated by means of the integral equation

P= ln[a(e_”—i—b%”)] , Q=

and dictates the behavior of these models near the singular- 1
ity 7 — co. Thus, we have “derived” the AVTD solution Bt x) = l/ e(Onl8) . (21)
starting from its stationary axisymmetric counterpart. This ’ 1—s2

is a further indication that the behavior of Gowdy models at -t

the initial singularity is mathematically equivalent to the be-Where the unknown functioﬂl(f) be found from the singular
havior of stationary axisymmetric solutions at the axis. Theintegral equation

value of the functiom\ corresponding to the AVTD solution

(19) can be obtained by integrating Eq. (8)= \o—c%Int, !

where )\ is an additive constant. Furthermore, the corre- /H(g)[e (n) + e(?] ds =0, (22)
sponding AVTD Ernst potential can be obtained by introduc- i (s —R)V1—s

ing Eq. (19) into Egs. (14) and (15). Then

with the normalization condition:
E = a[ef(lJrc)‘r + b267(lfc)7] + iRavtd ) (20) 1

— , / MO e s
with RY"*" = —2abc. If we define V1= s2 ’

-1

E = .
(1= 00,x) = elx) where¢ = x +ts,n = x + tx, with s,k € [—1,1].

as the Ernst potential at the singularity, we see from Eq. (202 Notice that, for this method, no condition is imposed on
that for ¢ € (—1,1) only the imaginary part remains, the behavior of(x). This is in accordance with the result
e(x) = iR, This, means that the real part efy) is ar- obtained concerning about the AVTD behavior of the Ernst
bitrary and, since?**® is given in terms of the real part, itis POtential near the singularity. Onegy) is given in any de-
also arbitrary. Ifc ¢ (—1,1), the Emst potential diverges at sired form, one need only calculate the mteg_ra_l (21) to find
the singularity for arbitrary values of the functiomandp. In ~ the Ernst potential. However, to calculate this integral, one
the limiting case: = +1, the Emst potential at the singular- Must first find the functionu(¢) by means of the singular
ity is regular, but again no conditions appear for the behaviofduation (22) and the normalization condition. In practice,
of the functionsz andb. Consequently, the AVTD behavior fOr @ givene(¢), one must make a reasonable ansatz.{q)
does not impose any conditions on the functidry). We that permits solutions to the integral singular equation (22).
shall now see that it is possible to use this function to con-

struct the corresponding Ernst potentigr, x). 5. Example of GOWdyT3 model

The cases where the Ernst potential at the initial singular-
ity behaves as a rational function are relatively easy to ana-

Sibgatullin’'s method [17] was developed to construct exac{yze [11218]' In this selct|on.we shall present an example. Let
us consider the following simple example of an Ernst poten-

stationary axisymmetric solutions starting from their data on . .

the axis of symmetry. It is based upon the fact that the Ernstfal at the singularity

equation possesses symmetry properties associated with an _ Xo—X

infinite-dimensional Lie group which transforms one solution ex) = m’

of this equation into another solution of the same equation.

This implies remarkable analyticity properties that make itWheréxo is areal constant. The first step in the construction
possible to reduce the Ernst equation to a system of linear irfS t0 find the unknown functiop according to Eq. (22) and
tegral equations which can be integrated explicitly if the ini-th? normahzqﬂon condition. A reasonable ansatz is again a
tial data are known, for instance, on the axis of symmetryrational function [17]

It is clear that the Ernst-like representation (15) possesses A,

similar symmetry properties. On the other hand, we have p=Ao+ s (23)
shown that the behavior of stationary axisymmetric solutions !

near the axis is mathematically equivalent to the behavior ofvhere¢; is the root of the equatioa(¢) + €(£) = 0 (in this
GowdyT™ cosmological models near the singularity. Thus, itcase¢; = xo) andA4y, A, are functions of andy.

4. Sibgatullin’'s method
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Introducingp into the normalization condition and into Then, after some algebraic manipulations, the metric can be

the integral singular equation (22) we obtain written as
Al Al(’f’+ + 7",) -1
Ag+—=1; Ay———= =0, 24 2 _ 2x0 2 2X0 2
ot~ N (24) _ds? = — (T - 1) dT? + <T —1)dr
wherer_ = /(x — x0)? — t?. The last two equations can

2 2 2 2
be used to find the explicit values df, and A; which can +T7(d0” + sin” 0d¢”).  (27)

then be replaced in the result of the integration of Eq. (21)
and yield an expression that can immediately be recognized as the

Kantowski-Sachs cosmological model [19, 20]. Thus, we
have shown that the Kantowski-Sachs metric can be con-

A; — 2x0A 2x0 — Ty —r_
- = Sl =& , (25)  structed from the value of its Ernst potential at the singularity.

T4 o 2x0 Ty

wherer, = /(x + xo0)? — t2. Itis easy to check that this

is indeed a solution to the Ernst equation (15). Since the re, .
sulting Ernst potential is real, the solution corresponds to 8.6' Conclusions
polarized = 0) Gowdy model [1,2]. The expression
for metric functionP can be easily obtained from the defi-
nition (14) and Eq. (25), and the remaining functiboan be
calculated (up to an additive constant) by quadratures fro

E(tv X) = 7A0

We have shown that it is possible to generate a Gofidy
cosmological model starting from the data near the initial sin-
pQularity. To this end, we first show that the Gowdy line

Eq. (16) and (17): elgment can be objtained from the line element of stationary
axisymmetric solutions by means of a complex transforma-

N |t (rer)? . tion that involves the metric functions and the coordinates.
t(ry+r_+2x0)? The behavior of stationary axisymmetric solutions at the axis

The physical significance of this solution becomes plausibl@®f Symmetry is shown to be mathematically equivalent to the
in a different system of coordinatesandy which we intro- ~ behavior of Gowdﬂﬁ models near the singularity. In partic-
duce in two steps. Let us first introduce in thex)-sector ~ ular, we have derived the AVTD solution from its stationary
of the line element (6) by means of the relationships:2XiSymmetric counterpart. We then use _the Ernst represen-
€2 =2 = 31— 22)(1 — y?), x = xoxy , Or the in-  tation of the field equations and apply Sibgatullin’s method
to the Ernst potential, which can be given at the singular-
o 4 re—r_ ity as any arbitrary function of the angle cogrdinate In

$=W, y:W’ par_tlcular, we have shown tha_lt th_e Kantowskl-Sach'_s cosmo-

_ ) logical model can be derived in this manner by starting from

so that the metric functions become a specific form of the Ernst potential in terms of a rational
function.

verse transformation law

1—z
Xov/ (1 —2?)(1 = y?)(1+ )
)\:ln[ (z* —y")°
Xov/ (1= 2?)(1 —y?)(1+x)*

The second transformation now affects all the sectors of lin
element (6) and is defined by

P—ln[
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