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The study of the so called brane world models has introduced completely new ways of looking at standard problems in many area
theoretical physics. Inspired in the recent developments of string theory, the Brane World picture involves the introduction of new ex
dimensions beyond the four we see, which could either be compact or even open (infinite). The sole existence of those new dimens
may have non-trivial observable effects in short distance gravity experiments, as well as in our understanding of the cosmology of
early Universe, among many other issues. The goal of the present notes is to provide a short introduction to Brane World models, to 1
motivations and consequences. We cover some of their basic aspects. The discussion includes models with flat compact extra dimensic
well as the so-called Randall-Sundrum models.

Keywords:Brane world; extra dimensions; Randall-Sundrum models.

En dlos recientes, el avance en el estudio de los llamados Mundos Brana ha provisto de nuevas formas de mirar viejos problsitas de la
tedrica. Los modelos de mundo brana se inspiran en desarrollos recientes deldeenrerdas (la teoria de branas), y suponen la existencia
de nuevas dimensiones espacialésmlla de las cuatro que vemos cotidianamente, las cuales pueden ser tanto compactas como infini
La existencia de dimensiones extras pader identificable en el comportamiento de la intekatgravitacional a peqii@s distancias. Su
presencia puede, adés) impactar de manera importante nuestra actual compredsl Universo temprano y su cosmdlagentre otras
cosas. A lo largo de las presentes notas, cuyoéstes servir como una introduoni breve al estudio de los mundos brana, revisamos
algunos aspectos de estos modelos. Se discuten tanto los modelos con dimensiones extra planas y compactas, como los llamados moc
Randall-Sundrum.

Descriptores: Mundos Brana; dimensiones extra; cosmaog

PACS: 04.50.+h; 98.80.-k; 11.10.Kk

1. Introduction however, matter should be localized on a hypersurface (the
brane) embedded in a higher dimensional world (the bulk).

In the course of the last five years there has been conside’?ﬁgam’ the main motivation for these models comes from

T , string theories where the Horava-Witten solution [8] of the
able activity in the study of models that involve new, extranon erturbative reqime of thex x E string theorv pro
dimensions. The possible existence of such dimensions has b =9 s x L sSlring yp

S . . vided one of the first models of this kind. To answer the
got strong motivation from theories that try to incorporate . . .

. . : . . ; second question many phenomenological studies have been
gravity and (gauge) interactions in a unique scheme, in a re; . o
X ! ) done in a truly bottom-up approach, often based on simpli-
liable manner. The idea dates back to the 1920's to the wor ied field theoretical models, trying to provide new insights
of Kaluza and Klein [1], who tried to unify electromagnetism » ying to p 9

with Einstein gravity by assuming that the photon originatesto the possible implications of the fundamental theory at the

from the fifth component of the metric. With the advent of observable level, although it is unclear whether any of those
' r?odels are realized in nature. Nevertheless, they may help to

string theory, the idea has gained support since all versions cfind the way to search for extra dimensions, if there are any
string theory are naturally and consistently formulated only ' '

in a space-time of more than four dimensions (actually 10D, It is fair to say that similar ideas were proposed in the
or 11D for M-theory). Until recently, however, it was con- 80’s by several authors [9]; nevertheless, they were missed
ventional to assume that such extra dimensions were confor some time, until recent developments on string theory,
pactified to manifolds of small radii with sizes of the order of basically the rise of M-theory, provided an independent real-
the inverse Planck scalép = M;' = G]l\{z ~ 10733 cm. izationto such models [8, 10-12], given them certain credi-
or so, such that they would remain hidden to the experimen®ility.

It was only during the last years of the 20th century when It is the goal of the present notes to provide a brief in-
people started to ask the question of how large these exttaoduction for the beginner to the general aspects of theories
dimensions could be without coming into conflict with ob- with extra dimensions. Many variants of the very first model
servations, and even more interesting, where and how thedw Arkani-Hammed, Dimopoulos and D'vali [2] have been
extra dimensions could manifest themselves. The intriguingproposed over the years, and there is no way we could com-
answer to the first question points towards the possibility thaient on all those results in a short review such as the present
extra dimensions as large as millimeters [2] could exist andne. We shall rather concentrate on some of the most gen-
yet remain hidden to the experiments [3-7]. To allow that,eral characteristics shared by these models. With particular
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interest, we shall address dimensional reduction, which probe dimensionless, s@ )] = [length =2 or [Energy® in
vides the effective four dimensional theory on which mostnatural units.
calculations are actually based. The determination of the ef- Now, in order to extract the four dimensional gravity ac-
fective gravity coupling, and the also effective gravitationaltion, let us assume that the extra dimensions are flat; thus, the
potential in four dimensions will be discussed in the notesmetric has the form
We will also cover some aspects of the cosmology of models » o
in more than four dimensi(fns. Of particular intge)r/est in our ds’ = Guv ()" dz” — dapdly dy’, ()
discussions are the models of Randall and Sundrum [13-16}here g, gives the four-dimensional part of the metric
for warped backgrounds, with compact or even infinite extravhich depends only on the four-dimensional coordinates
dimensions. We will show in detail how these solutions arisefor 1 = 0,1,2,3; and é,,dy®dy® gives the line element
as well as how gravity behaves in such theories. Some furthein the torus, whose coordinates are parameterizeg®by
ideas include: why and how the size of the compact extra dia = 1,..., 4. Itis now easy to see tha¥[g(s+s) | = /[9(1)]
mensions remain stable; graviton localization at branes; andnd R, 5y = R(4), SO that one can integrate over the extra
brane cosmology are also covered. The interested reader thditnensions in Eq. (1) to obtain the effective action
would like to go beyond the present notes can consult any of Vs
the excellent reviews that are now in the literature, some of Sgrav = — /d45€ V09| Ry (4)

. . . 167G,
which are given in Ref. 17.

whereV; stands for the volume of the extra space, for the
. . torusV = (27 R)°. This last equation is precisely the stan-
2. General Aspects: Flat Extra Dimensions dard gravity action in 4D if one makes the identification

2.1. Planck versus the Fundamental Gravity Scale Gy =G./Vs. (5)

The possible existence of more than four dimensions in naThe newton constant is therefore given by a volumetric scal-

ture, even if they were small, may not be completely harmIng of the truly fundamental gravity scale. Thdgy is in fact

less, and in principle, they could have some visible mani&" effectlve quantity. Notice that, evendi, were a Iar_ge
festations in our (now effective) four-dimensional world. To coupling, one can still qnderstand the smallness-qf via
look for such signals, one has first to understand how the eft—he vqumanc suppression. . .
fective four dimensional theory arises from the higher dimen- To obtain a more physical meaning of these observations,

sional one. Formally, this can be achieved by dimensionall)}et us consider a simple experiment. Let us assume a couple

reducing the complete theory, a concept that we shall discu pﬁrticles Off ma}lss_eml andd ma, respgt;tively, IoEater(]j Og
further in the following section. One of the first things we the hypersurfacg® = 0, and separated from each other by

should notice is that since gravity is a geometric property of?: distance. The gravitational flux between these two parti-

space, in a higher dimensional world, where Einstein gravit)F!eS would spread over the entifé + J) D space; however,

is assumed to hold, the gravitational coupling does not nec2'Nce the e_xtrgdimen_sions are compact, the eff_ec_tive strength
essarily coincide with the well-known Newton constéh, of the gravity interaction would have two clear limits:
which is, nevertheless, the gravity coupling we do observe. (i) If the two test particles are separated by a distance

To explain this more clearly, let us assume as in Ref. 2 that r > R, the torus would effectively disappear for

there are) extra space-like dimension which are compactified the four-dimensional observer; the gravitational flux
into circles of the same radius R (so the space is factorized as s then diluted by the extra volume and the observer
an M, x T° manifold). We will call the fundamental grav- would see the usual (weak) 4D gravitational potential
ity couplingG.., and then write down the higher dimensional mims

gravity action: Un(r)= -Gy . (6)

1 ars (i) However, ifr < R, the 4D observer would be able to
Sgrav = 167G, ,/d z ylgasol Bave . 1) feel the presence of the bulk through the missing flux

that goes into the extra space, and thus, the potential

where g, stands for the metric in the whol@ + 6)D between each particle would appear to be stronger:
space, m
1M2

ds* = gaynda™daN 2 Uir) = =G~ 7
for which we will always use thé+, —, — —, ... ) sign con- Itis precisely the volumetric factor which matches both
vention, andV/, N =0, 1,...,d + 3. The above action must regimes of the theory. The change in the short distance
have the proper dimensions, meaning that the extra length di- behavior of Newton’s gravity law should be observable
mensions that come from the extra volume integration must in the experiment when measuribgr) for distances
be equilibrated by the dimensions on the gravity coupling. less thanR. The current search for such deviations has
Notice that in natural unitg; = 2 = 1, S has no dimensions. reached as low as 200 microns, with no signs of extra
We are also assuming for simplicity thgt,, ;) is taken to dimensions so far [3].
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AN INTRODUCTION TO THE BRANE WORLD 87

We should now recall that the Planck scalép, usually  theory [8]. We may also imagine our world as a domain wall
assumed to be the fundamental energy scale typically asso®f size M_ !, where the particle fields are trapped by some
ated with the scale at which quantum gravity (or string the-dynamical mechanism [2]. A hypersurface or brane would
ory) should make itself manifest, is defined in terms of thethen be located at a specific point on the extra space, usually,
Newton constant, via at the fixed points of the compact manifold. Clearly, this pic-

. 112 f[ure violates fcranslationa_l invariance, which may be reflected
Mpc® = [ he } ~ 2.4 %108 GeV . 8) in two ways in the physics (_)f the model, affecting the flaj[—
831G N ness of the extra space (which compensates for the required
flatness of the brane), and introducing a source of violation
f the extra linear momentum. The first would drive us to
instead. We then define the string he RandaII-Su_ndrum Models, that we shall discuss Iatt_er on.
* ' The second will be a constant issue throughowt our discus-

In the present picture, it is clear then thefts is not funda-
mental anymore. The true scale for quantum gravity shoul
be given in terms of7

scale as .
140 5+6 7 1/ (249) sions.
M,c* = {] 9) What we have called a brane in our previous paragraph is
G actually an effective theory description. We have chosen to

Switching to natural unitse(= h = 1) from here on, both think of them as topological defects (domain walls) of almost

scales are then related to each other by [2] zero width, which could have fields localized on its surface.
) 542 String theory D-branes (Dirichlet branes) are, however, sur-
Mp = M""Vs . (10)  faces where an open string can end on. Open strings give rise

From the particle physics world we already know that theret.o all kinds of fields Ioc.al|zed on .the prane, including gauge
fields. In the supergravity approximation, these D-branes will

is no evidence of quantum gravity (either supersymmetry, of Iso appear as solitons of the supergravity equations of mo-

string effects) well up to energies around one hundred Ge\? .
. tion. In our approach, we shall care little about where these
which means thaf\/, > 1 TeV. If the volume were large g :
branes come from, and rather simply assume there is some
enough, then the fundamental scale could be as low as the ~ : . .
consistent high-energy theory that would give rise to these

electroweak scale, and there would be no hierarchy in the, . )
. : .0bjects, and which should appear at the fundamental scale
fundamental scales of physics, which so far has been consu%[

ered a puzzle. Of course, the price of solving the hierarchy . *’ Thus the natural cutoff of our models would always be

problem this way would be now to explain why the extra di- given by the quantum gravity scale_.
mensions are so large. Usiig ~ R9, one can reverse the D-branes are usually characterized by the number of spa-

above relation and get a feeling of the possible valugs fof tial dimensions on the surface. Hence, a p-brane is described

a givenM,. This is done precisely for our above-mentioned by a flat space time with p space-like and one time-like coor-

wish for having the quantum aravity scale as low as OSSi_dinates. Unless otherwise stated, we shall always work with
g d 9 y P odels of 3-branes. We need to be able to describe theories

ble, although the actual value is unknown. As an example, i ; . )
one takes\Z, to be 1 TeV then, fob — 1, R turns out to be mat live both in the brane (as the Standard Model) and in the

about the size of the solar systef & 10'! m)!, whereas for bulk (like gravity), as well as the possible interactions among

0 = 2 one getsk ~ 0.2 mm, that is, just at the current limit g;ssé two theories. To do so we use the following prescrip-

of the experiments. More than two extra dimensions are in
fact expected (strings predict six more), but in the final theory (i) Bulk theories are, as usual, described by the higher
these dimensions may turn out to have different sizes, or even dimensional action, defined in terms of a Lagrangian

geometries. More complex scenarios with a hierarchical dis- density of¢(z, y) fields valued on all space-time coor-
tribution of the sizes could be natural. To have an insight into dinates of the bulk

the theory, however, one usually relies on toy models with a 4

single extra dimension, compactified into circles or orbifolds. Souik[¢] = /d zd®y \/1ga+s)|L(o(z,y)), (11)

where, as before; stands for the (3+1) coordinates of
the brane ang for thed extra dimensions.

While submillimeter dimensions remain untested for gravity, (i) Brane theories are described by the (3+1)D action of
particle physics forces have certainly been accurately mea- the brane fieldsy, which is naturally promoted to a

H 18
sured up to weak scale distances (abput™ cm). There- higher dimensional expression by the use of a delta
fore, the matter particles cannot freely propagate in those density:

large extra dimensions, but must be constrained to live in a

fo.ur—d.imensional subm{:mif_old. Then_the sc_enario we have in Shranc [(p]:/d%d&y /Ig(4)|£(¢(x))65(g'—go), (12)
mind is one where we live in a four-dimensional surface em-

bedded in a higher dimensional space. Such a surface shallbe  where we have taken the brane to be located at the posi-
called a “brane” (a short name for membrane). This picture is tion ¢ = 4, along the extra dimensions, and the metric
similar to the D-brane models [12], as in the Horava-Witten g(4) Stands for the 4D induced metric on the brane.

2.2. Brane World theory prescriptions

Rev. Mex. 5. S53 (2) (2007) 85-102



88 A. PEREZ-LORENZANA

(i) Finally, the action may contain terms that couple bulk  Notice that all excited modes are fields with the same
to brane fields. The latter are localized on the spacespin, and quantum numbers @s But they differ in the KK
thus, itis natural that a delta density would be involvednumbern, which is also associated with the fifth component
in such terms, say for instance of the momentum. From a formal point of view, KK modes

are only a manifestation of the discretization of the (other-
o /d45€ d°y \/19eate)| 0°(z,y) o(x) 8°(F — Fo) wise continuum) extra momentum of the particle. We would
see particles with a different higher dimensional momentum
_ /d4x 9| 6%(x, 0), () . (13) @as haying different.mass.es. This can also be u_nderstood from
the higher dimensional invariapt'p 4, = m?, which can be
rewritten as the effective four-dimensional squared momen-
tum invariantp#p,, = m? + p, 2, wherep’, stands for the
extra momentum components.

The presence of delta functions in the previous actions does Dimensionally reducing any higher dimensional field the-
not allow for a transparent interpretation, nor for an easyry would indeed give a similar spectrum for each particle.
reading of the theory dynamics. When they are present it i§0rm = 0, itis clear that, for energies beloly R, only the
more useful to work in the effective four-dimensional theory massless zero mode will be kinematically accessible, making
which is obtained after integrating over the extra dimensionsthe theory looking four-dimensional. The appreciation of the
This procedure is generically called dimensional reductionimpact of KK excitations thus depends on the relevant energy
It also helps to identify the low energy limit of the theory Of the experiment, and on the compactification salg:
(where the extra dimensions are not visible).

To get some insight into what the effective 4D theory () For energiess < 1/R, physics would behave purely
looks like, let us consider a simplified five-dimensional toy four dimensionally.
model where the fifth dimension has been compactified on a
circle of radiusR. The generalization of these results to more (i) At larger energies] /R < E < M,, or equivalently

2.3. Dimensional reduction: Kaluza-Klein Decomposi-
tion

dimensions would be straightforward. Legbe a bulk scalar as we do measurements at shorter distances, a large
field for which the action on flat space time has the form number of KK excitationsr~ (ER)°, become kine-
1 matically accessible, and their contributions relevant
S[¢] = = /d‘lz dy (aA¢aA¢ —m2¢?); (14) for physics. Therefore, right above the threshold of the
2 first excited level, the manifestation of the KK modes
where nowA = 1,...,5, andy denotes the fifth dimension. will start showing the higher dimensional nature of the

The compactness of the internal manifold is reflected in the theory.
periodicity of the field,¢(y) = ¢(y + 27 R), which allows

for a Fourier expansion of the field as (iii)y Atenergies abové/,, however, our effective approach
1 S ny must be replaced by the use of the fundamental theory
z, = o) + —— |¢p(z) cos [ == that describes quantum gravity phenomena.
. . /ny Furthermore, natice that the five dimensional figldie con-
+ on () sin (f)} (15  sidered before has mass dimensiga, in natural units. This

The very first term,¢o, with no dependence on the fifth can be_ easily see from_the kl_netl_c part of the_ Lagrangla_n,
which involves two partial derivatives, each with mass di-

dimension, is usually referred to as the zero mode. Other . . .
. “ . mension one, and the fact that the action should be dimen-
Fourier modes¢,, and¢,,; are called the excited or Kaluza-

Klein (KK) modes of the field. Notice the different normal- sionless. In cpntra;t, by similar .argl_Jments., all exu_ted modes
L . - . have mass dimension one, which is consistent with the KK
ization on all the excited mode#,, and ¢,,, with respect to

the zero mode expansion (15). In general, férextra dimensions we get the
. : L . . mass dimension for an arbitrary field to g8 = d4 + §/2,
By introducing the last expansion into the action and in- . . . .
. . . : whered, is the natural mass dimension ¢fin four dimen-
tegrating over the extra dimension, one obtains . . : ) . .
sions. Because this change in the dimensionality,ahost
<1 " s 9 .o interaction terms on the Lagrangian (apart from the mass
Slgl = Z 9 /d @ (0" Gn0pudn — My y,) term) would all have dimensionful couplings. To keep them
n=0 dimensionless, a mass parameter should be introduced to cor-
<1 4 " R 9 49 rect the dimensions. Itis common to use as the natural choice
+ Z 5 /d r (8 Pn0uPn — mn¢n) +(18) " for this parameter the cut-off of the theory/,. For in-
n=1 stance, let us consider the quartic couplings of 5D. Since
where the KK mass is given as? = m? + n?/R?. There-  all potential terms should be of dimension five, we should
fore, in the effective theory, the higher dimensional field ap-write down(\/M.,)¢*. After integrating the fifth dimension,
pears as an infinite tower of fields with masses. this operator will generate quartic couplings among all KK
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AN INTRODUCTION TO THE BRANE WORLD 89

modes. Four normalization factors containing/R appear ~ where the induced metrig{y® = 0) now includes the small
in the expansion ofy*. Two of them will be removed by metric fluctuationsh,, x over the flat space, which are also
the integration; thus, we are left with the effective couplingcalled the graviton, such that

A/M,R. By introducing Eg. (10), we observe that the effec-

. . 1
tive couplings have the form gM.N =N + YR BN - (19)
M.\ 2 "
A (M*) Ok PLOMPh+1+m, (17) The source of those fluctuations are of course the en-
P

ergy on the brand,e. the matter energy momentum tensor

where the indices are arranged to respect the conservationd?"” = 05/4g,.,, that apperars on the RHS of the Einstein
of the fifth momentum. From the last expression, we con£fquations:

clude that, in the low energy theor' (< M.,), even at the 1

zero mode level, the effective coupling appears suppressed Ry, n — 53(4+5)9M,N =
with respect to the bulk theory. Therefore, the effective four- *
dimensional theory would be weaker interacting compared tqhe effective linearized coupling of matter to graviton fields
the bulk theory. Let us recall that same happened to gravitys then described by the action

on the bulk, where the coupling constant is stronger than the

effective 4D coupling, due to the volume suppression given in Siny = /d4x by THY (20)
Eq. (5), or equivalently in Eq. (10). Similar arguments apply " Mn/2 +1

in general for the brane-bulk couplings. We shall use thes? is ¢l hat f he effective four-di ional point of
facts when considering gravity interactions more carefully for t. IS clear that, from the efiective four-dimensional point o

test particles on the brane, which we shall do throughout th¥'€W: the fluctuations., v would have different 4D Lorentz
next section. components.

Different compactifications would lead to different mode ;) h,.., clearly contain 4D Lorentz tensors, the true, actual
expansions. Eq.(15), would had to be chosen accordingtothe  foyr-dimensional gravitons.
geometry of the extra space, by typically using wave func-
tions for free particles on this space as the basis for the ex- (ii) h,, behaves as a vector, the graviphotons.
pansion. Extra boundary conditions associated with specific .
topological properties of the compact space may also help(ii) Emally, hap beha\(es as a group of scalars (grawscalar
for a proper selection of the basis. A useful example is the  fields), one of which corresponds to the partial trace of
one dimensional orbifold; (1)/Zs, which is built out of the h (hg) that we shall later call the radion field.
circle, _by identifying the opp05|te_ points _around zero. The_ o count the number of degrees of freedomiigy y We
operations can be seen as reducing the interval of the origi- . . : '
nal circle to[0, 7] only. Operatively, this is done by requir- should first note thak is ann x n a symmetric tensor, for

» y- 2P Y. y req n = 4 4+ §. Next, general coordinate invariance of general

ing the theory to be invariant under the extra parity symme-_,_..°. ) . o
iry Zow — —y. Under these symmetries, all fields should relativity can be translated int®n independent gauge fix

pick up a specific parity. Even (odd) fields would then be eX-Ing hcjgnd_nl?ln/sé) 2al}flﬁsular1]né”c htﬁZ?g ;:F: _ha;)r)r;zo rilrl]c(;jeg_auge
panded into only cosine (sine) modes. Thus, odd fields do noét)]e”ndem_de reesNofva?eedom, Clearly fo 4. one has the
appear at the zero mode level of the theory, which also mearPs 9 ) Y, '

e . Usual two helicity states of a massless spin-two particle.
thaptamseic())rr]bﬁoldmg projects half of the modes out of the KK All those effective fields would of course have a KK de-

Ty (y) -

composition,
2.4. Graviton couplings and the effective gravity inter- B ()
action law han(z,y) = Z ]‘\4/1\%) eI/ R (21)

One of the first physical examples of a brane-bulk interac- ~ _ )

tion one may be interested in analyzing with some care ig1€re7 = (n1,...,ns), with all n, integer numbers. Once
the effective gravitational coupling of particles located on theVe Insert the above expansion back istg, it is not hard
brane, which needs to understand the way gravitons couple {8 S€€ that the volume suppression will exchangeltheby

brane fields. The problem has been extensively discussed 3 /> suppression in the effective interaction Lagrangian

Giudice, Ratazzi and Wells [18] and independently by Han,Of a single KK mode. Therefore, all modes Couple with the

Lykken and Zhang [19], assuming a flat bulk. Here we sum-Strength of standard gravity. Briefly, only the 4D gravitons,
and the radion field, are coupled at the first order level

marize some of the main points. Starting from the action thaf”
describes a particle on the brane to the brane energy momentum tensor [18, 19]

1

- (v _ 8 ) uv
5= [yl =L, 18) L= 50 2 [0 = Loy T, (22)

7
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90 A. PEREZ-LORENZANA

Here, x is a parameter of order one. Notice that"*” present picture lies completely on the brane. How much
is massless since the higher dimensional gravitgny has  of this energy could have gone into the bulk without affect-
no mass itself. That is the source of long range, fouring cosmological evolution? For large extra dimensions, the
dimensional gravity interactions. It is worth remarking that splitting between two excited modes is pretty smiglR. For

on the contrary,c(®) would not be massless, otherwise § = 2 and M, at the TeV scale this means a splitting of just
it should violate the equivalence principle, since it wouldabout10~3 eV! For a process where the center mass energy
mean a long-range scalar (gravitational) interaction a§8.  is E, up toN = (ER)® KK modes would be kinematically
should get a mass from the stabilization mechanism thaaccessible. During Big Bang Nucleosynthesis (BBN), for in-
keeps the extra volume finite. We shall come back to thistance, wherds was about a few MeV, this already means
problem later on. From supernova constraints, such a massore than0'® modes. So many modes may be troublesome,
should be larger that0—3 eV [6]. and one has to ask the question how hot the Universe could go

Above Lagrangian runs over all KK levels, meaning thatwithout losing too much energy. By looking at the effective
brane particles can release any kind of KK gravitons into thd.agrangian in Eq. (22), one can immediately notice that the
bulk. KK index1i is also the extra component of the momen-graviton creation rate, per unit time and volume, from brane
tum, so they leave the brane, taking its energy away, in a cledhermal processes at temperatilires
violation of the 4D conservation of energy. This could appear 5 5
in the future high-energy collider experiments, for instance, Ctotal = TR? _ L
as missing energy [5, 7]. Mg MIT?

We started the section asking for the actual form of the efThe standard Universe evolution would be conserved, as far
fective gravitation interaction among particles on the branegs the total number density of KK gravitons produced re-
Now that we know how gravitons couple to brane matter, Wemains small when compared to photon number density. This
can use this effective field theory point of view to calculatejs g sufficient condition that however can be translated into a
what the effective graVitationaI interaction law should be. KK bound for the reheating energy, Since the hotter the medium

gravitons are indeed massive, thus, the interaction mediatafie more gravitons can be excited. It is not hard to see that
by them is short-range. More precisely, each KK mode conthjs condition implies [2]

tribute to the gravitational potential between two test parti-

cles of massesi; andms located on the brane, separated by g T+ Mp <1. (26)
a distancer, with a Yukawa potential Ty MOt?
AU() ~ —Gn AN gy Un(r)e—™" . (23) Equwalgntly, the maximun temperatu're our Unlverge could
T reach without producing to many gravitons must satisfy
The total contribution of all KK modes, the sum over all KK oo MO
massesn? = 7>/ R, can be estimated by the continuum KK < i (27)
modes limit, to get P
mam To give numbers, consider for instangé, = 10 TeV and
17762

UT(T) >~ —GNV(s((S - 1)'

S ~ U(r) . (24) 6 = 2, which meansl;, < 100 MeV, just about to what
T

is needed to have BBN working. The brane Universe with
Experimentally, however, for just below R, only the very large extra dimensions is then rather cold. This would be
first excited modes would be relevant, and so, the potentialeflected in some difficulties for those models trying to im-
one would see in short distance tests of Newton's law [3]plement baryogenesis or leptogenesis based on electroweak

should rather be of the form energy physics or higher.
/R As a complementary note, we should mention that, since
U(r) = Un(r) (1 +ae ) ; (25)  thermal graviton emission is not restricted to the early Uni-

verse, one can expect this to be happening in any other en-
vironment. We have already mentioned colliders as an ex-
ample. But even the hot astrophysical objects can be sources
of gravitons. Gravitons emitted by stellar objects take away
3. Cosmology in models with flat extra dimen- energy, which contribute to cooling the star. The stringent

sions bounds onM, actually come from the study of this pro-
cess [6].

where« is to account for the multiplicity of the very first
excited level.

3.1. Limits on Reheating Temperature due to Graviton
emission 3.2. Dimensional reduction and the radion field

Graviton production by brane processes may not be such e are now ready to postulate the model that should de-
harmless phenomenon. It may rather possess strong cogeribe the brane Universe evolution where the 4D Friedmann-
straints on the theory when considering that the early UniRobertson-Walker model must now be obtained as the effec-
verse was an important resource of energy, which in theive zero limit, after dimensional reduction. To simplify the
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discussion, we will assume the extra space compactified int®bviously, the physical volume of the extra space is dynami-
an orbifolded torus?™® /Z2, such that the extra coordinates cal, and given as
y® take on values in the interv@), 1], and the theory is in-

variant under the mapping.:i — —i. As before, the brane Volphys = Vh = (t) .
should be located at* = 0. Consider the metric i + § } ) ] )
dimensions parameterized by If the bulk is stable, meaning that# b(¢), the physical size

of the extra dimension is given by the identificatior= R.
ds? = gapdzdz® = g, dz'dz” — hapdy®dy®.  (28)  This turns out to be the stabilized condition, when one as-
sumes the volume to have some dynamics, which should be
Note that since we have tak@)ﬁ to be dimensionlessy,; reached at some g|Ven finite time
has length dimension two. Also note that we are not con-  The action can be simplified by defining the radion field
sidering in our parameterization the presence of vector-llk%
connectionAy, pieces, which are common in Kaluza Klein 305+ 2) b(t)
theories. This is because we would only be interested in the o(t) = Mp 1 (R)
zero mode part of the metric, and}; is odd underz, par-

ity transformation, and therefore it vamshes at the zero modéhis has a straightforward physical interpretation: it is related
level. to the variation of the physical size of the volume. Notice that

Next, let us reduce the Einstein-Hilbert action set to zero when the stabilized volume is reached. In these
terms one gets the effective action

1 4. 5
= 2
IS T /d v d’y\/|9are)| Riats) (29) < /d4 _9(4 (=

(36)

Ruy+ [d* Y"1 (9"5) (9,0) . (37)
, . . 2k2
to four dimensions, considering only the zero mode level.
Here,1/k? = M?*<. One then obtains The very first term corresponds precisely to the 4D gravity
1 action of the FRW model. On the other hand, last term can be
ab ; £ ; ; ;
S = 2k2 A /—g(4 {R(4) — Z8ﬂh O hap identified as the action of a running mode. Itis unstable under

perturbations, which means that any small perturbation on the
radion field can make the volume of the extra space expand
or contract without control. This is what is called the radion
stabilization problem, and it is a particular case of the more
wherel/k* = M. HereV; stands for the stable volume of general moduli problem inherited from string theory. Under-
the extra space that corresponds to relationship (10). standing the stability of the volume of the compact space can
In order to obtain thet dimensional scalar curvature term pe seen as finding the mechanism that provides the force that
in canonical form, we need to perform a conformal transfor-keeps the radion fixed at its zero value. Thus, one must find
mation on the metric, the potentiab- which provides such a force. The origin of this
potential is largely unknown so far, although some ideas can

1
—Zh“bauhab : tha“hcd} , (30)

2¢
G = €7 G (31) be found in the literature, see for instance [20, 21]. We shall
designed to cancel the extxdh/V; coefficient of Riy) in ~ NOt comment on this here, but rather assume that such a po-
Eq. (30). We take» such that tential should exist. As we shall discuss later on, the detailed
form of U(o,) may also be important to understanding the
e Vh/Vs=1. (32)  dynamics of the radions during and after inflation. As a par-

enthetical note, the physical mass of the radion is actually re-

The action in Eq. (30) is then transformed into lated to the second derivative of the potential at its minimum,

. ab A and certainly, to avoid violation of the equivalence principle,
S= ka d'x\/— {R(4) - —8 h®” 0" hap it should be larger than aboub =3 eV.
As already mentioned, radion couples to matter fields.
+}habaﬂhab . hcdauhcd} _ (33)  This is regardless of whether they are brane or bulk fields.
8 After dimensionally reducing the action in Eqg. (11), and in-

cluding the conformal transformation that we performed on
the metric, we get for the scalar field the effective action at
the zero mode level

Next, for the four-dimensional part of the metrig,,, we
can now assume the standard Friedmann-Robertson-Walk
(FRW) metric with a flat geometry.e.

Guv = diag(lv 70“(07 7a(t)a 7(1(25)) ’ (34) S[¢]:/d4$ \Y4 _9(4) |:;6#¢au¢_eagﬂupv(¢) ) (38)

for an isotropic and homogeneous (brane) Universe, whereas

we consider a diagonal form for tiepart of the metric: where the coupling constant is given by= /2/5(6 + 2).
The case of a brane scalar field turns out to have the same
hap = b(t)25,,,b (35) functional form for the effective action as above.
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3.3. Inflation dimensions(dp/p) ~ A\'/2. Assuming Hybrid inflation [24],

with the potential
It is still possible that, due to some dynamical mechanism,

the extra dimension gets stabilized long before the Universe Vg, o) = 1 (Mz _ )\02)2 n }mz(bg + $2p20?
exited from inflation, as in some scenarios in Kaluza-Klein ’ 4X 2 ’

(KK) theori_es_, where the stabilization po_tential is generate_cbo(:_.S not help either [22], since it needs either a value: of

by the Casimir force [20, 21]. Other possible sources for this;iy orders of magnitude smaller or a strong fine tuning on
stabilizing potential could be present in brane-bulk theoriesinq parameters, to match the COBE regtifi/p) ~ 105.

for instance, the formation of the brane at very early timesgertainly, the problem would be relaxed if the fundamental
may give rise to vacuum energy that plays a role in eventugcajens, were much larger than a few TeV; nevertheless, this
ally stabilizing the extra dimension. Let us for the moment,,aans a shorter radius and most of the phenomenological in-
consider stable bulkb(= R), and then address the problem of {oest in the model would also be gone.

brane cosmological evolution. It is clear from the results of A simple way to solve this problem could be by assuming
the previous section, by taking= 0, that the brane cosmo- ¢ the inflaton is the zero mode of a bulk scalar field [25].
logical .theory behaves as four-dimensional. The usual FRW ¢ such, its effective potential energy is enhanced by the vol-
model is therefore a good set up to analyze cosmology on thgme of the extra space, which allows it to have larger densi-
brane. During the inflation period, Hubble expansion is givenyjag contributing to the Hubble expansion. Indeed, one now
as usual by has

V(¢)
3M3

Veff((,bo) = V5 %1le(¢0) S ME]\/[p,

where the RHS comes from the natural upper bound

with V() the potential of the slow rolling inflaton. A brane Viutk(¢0) < M. This immediately means that a non-
inflaton, however, is troublesome [22]. Consider for instancestringent bound exists for Hubblé/ < M., and non su-
atypical chaotic inflation scenario [23], where the potential isPerlight inflaton is required. This also keeps the explanation
simply given byV (¢) = (1/2)m2¢2. If the highest scale in of the flatness and horizon problems as usual, since now the
the theory isM,, during inflation, a brane inflaton potential time for inflation could be as short as in the standard theory.
can-not have values |arger tth, regard'ess of the number A hyb”d inflation model now accommodates a nice prediC-
of extra dimensions, just as in the usual 4D theories where théon for density perturbations [25],

scale of the potential is not supposed to be larger than Planck

H ~

(39)

3
scale. Next, since successful inflation (the slow roll condi- LN ( %/2) ]2\/[* , (42)
tion) requires that the inflaton mass be less than the Hubble P 22 myMp
parameter, we have the inequality which can easily give COBE normalization. Reheating would

now be produced by the decay of the inflaton into brane stan-
dard fields. The effective brane-bulk coupling has a Planck
i it, which tst I heating t -

For M. ~ 1 TeV, one then gets the bound < 103 eV, suppression on it, which amounts to a low reheating temper
Oa}ture, that nevertheless comes out to be just right to allow for

\tlmlct:rr]](alsra SFea/r?L?eImgrteunsizghchiStrr]?IigtflZtno;h\?vgli:jacr;?tt;rsl a successful BBN process. To give numbers, let us consider
face trou)tl;les for reheati’n Suchga light inflaton would onIyTR ~ 0.1/T's Mp, and atypical rate for the decay into hig-
g g Yosesl'y, ~ M2/(32rM2m,), and useng around0.1M,,

decay into photons. The inflaton is believed to be charge\—Nith M, ~ 100TeV, one then getd’; ~ 100 MeV. It is

P L ) P 21 straints due to graviton thermal production (27), discussed

occurs on a time scal& —* much greater thad/_"'. As iousl

emphasized by Kaloper and Linde [22], this is conceptualI)Prevlc.)us Y- - . .

very problematic since it requires that ’the Universe should Itis worth noticing that the number of e-foldings is usu-
yp d ally much less thag0 if the scale of inflation is low, espe-

be large and _homogeneous e_nough from the veryibleglnnlnga"y if the scale of inflation is as low &8,y ~ M, ~ TeV.
S0 as to survive the large period of time fram= M_* to

f— -1 It has already been shown in extra dimensional mod-

- ' . : . . els [26,27] that the number of e-foldings required for struc-
. Moreovgr, for chaot|_c inflation one gets a tiny contribu- ture formation would bet3, provided the universe reheats
tion to density perturbations by T, ~ 10 — 100 MeV. Therefore, it is only the last3 e-
5p m o foldings of inflation which are important for the purpose of
— ~ 50— <1077 (41)  density perturbations.

p F As an alternative way to solve inflaton problems, Arkani-

The situation does not improve for more elaborate modelsHamedet al.[28] proposed a scenario where it was assumed
For the case where thep? term dominates the density, for that inflation occurs before the stabilization of the internal
instance, one gets the same fine tuning condition as in foudimensions. With the dilaton field playing the role of the

m < H < M?/Mp. (40)
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inflaton field, they argued that early inflation, when the in-  Also interesting is the possibility of producing inflation
ternal dimensions are small, can overcome the complicationsith the help of a bulk inflaton in the presence of the ra-
we mention at the beginning of the present section. Howdion field. This analysis can help us to understand whether
ever, one cannot allow the extra dimension to grow too muctour previous discussion makes sense at all . We now turn
during inflation, since large changes in the internal size willour attention to the action in Eq. (38). Notice that the in-
significantly affect the scale invariance of the density perflaton to radion coupling is given only through the infla-
turbations, The radius of the extra dimension must remairton potential. The coupling induces an effective mass term
essentially static while the Universe expands (slow rolling);for the radion which is proportional to the Hubble scale,
this needs quite a flat potential which may cause trouble forn?; ; ~ a*V,;;(¢)/Mp = o® H?. Consequently, the radion
later stabilization. The scenario may also pose some complgets a very steep effective potential term, which easily drives
cations for the understanding of reheating since the radion ighe radion towards the minimum within a Hubble time [30].
long-lived, and its mass could be very small (abblR). Indeed, once the Hubble induced mass term is switched on
Another possible way out was proposed in Ref. 30, wheréhe radion will follow the evolution

it was suggested that the brane could be out of its stable point
at early times, and inflation is induced on the brane by its
movement through the extra space. The common point of
last two scenarios is that they assume an unstable extra di-

mension throughout the inflation process. This may also bhereo, is the initial amplitude. Naively, one could think

o(t) ~ og e~ (mess/3H)E , (44)

troublesome, as we shall discuss in the next section that this should solve the problem of stabilization, provided
inflation lasts a bit longer than this dynamical stabilization
3.4. Cosmological Radion problem process. Nevertheless, it has been realized that, although

this stabilization does take place, it happens that the ef-
It is conceptually hard to accept the fact that the extra difective minimum of the potential does not coincide with
mensions were at all times as large as suggested by the AD® = 0 [31, 32]. Actually, it generally happens that the global
model. Just as it is natural to think that all our observableminimum foro is displaced during inflation when the radion
Universe started as a small patch of sizeM !, it seems  potential is quite flat [31]. To see this, let us notice that the
so for the extra dimensions. From its definition, an initial total potential has the form
valueb;,, = M_! means that the radion started with a large
negative value,

oo(0) = — M, M1H<MP>. (43)

Utotal(aa (b) = U(U) + 6_(¥U/MP ‘/;ff(¢) ) (45)

4 M, where by definition[J (o) has a minimum at = 0. Dur-

_ , , ing inflation, V,.; s defines the Hubble scale, as already men-
Since the stable point has been defined suchdhial: = 0. (ioned, and it is taken as a constant. The global minimum for
one_has to conclu_de that the radion shoulq roll (_jown itS POs. o this potential is the solution to the equation
tential from negative values as the extra dimensions expand.

If the radion potential were flat enough in this range of values,

it would be natural to think that the radion could play the role Ulo) — —
of the inflaton. The idea is enforced by the large absolute Mp
initial value of o, which may already satisfy chaotic initial

conditions for driving inflation. To complete the picture, one Clearly,c = 0 is not a global minimum. In fact, in order
has at some point to be able to calculate the radion potentiab match both terms of the equation, the minimum should
from some fundamental physics and prove that it is indeedie within the positive range of values. This implies that,
flat for negatives values, whereas it grows fast enough for during inflation, the extra space grows beyond its stable size
positive o’s to avoid dynamically driving the volume much (b = R), and gradually comes back to the final stable volume
beyond the expected stable valbe= R. Without the ac- Vj as the inflaton energy diminishes [31, 32]. How far we are
tual potential, it is hard to make any serious calculation forfrom the expected valu&; depends on the actual profile of
density perturbations or even reheating temperatures. Cethe radion potential. For steeper potentials, it is easy to see
tainly a simple mass term like potentid(c) ~ m?02 would  that the displacement could be negligible for practical pro-
not do it. The reason is two-fold. First, we are far awayposes; however, that is not so for flatter radion potentials [32],
from the stable point where the radion mass is defined, seince a larger value om would be needed in the exponential
the potential would hardly be well described by just the secof the last equation to match a small valuel&f(c). One

ond term of its Taylor expansion. Second, and more imporinteresting conclusion arises: inflation could in principle be
tant, the simple chaotic potential predicts insufficient densityconsistently analyzed in the setup of a stable bulk, as we did
fluctuations for small\/,.. Indeed, the calculation gives [25] in the previous section; nevertheless, post-inflationary effects
dp/p~m/Mp < M,/Mp. of the radion dynamics have yet to be studied carrefully.

e_W/MPVeff =0. (46)
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4. Non Factorizable Geometries: Randall- at every point along the fifth dimension, the induced metric

Sundrum Models. should be the ordinary flat 4D Minkowski metric. Therefore,
the components of the 5D metric depend only on the fifth
4.1. Warped Extra Dimensions coordinate. Hence, one gets the ansatz

2 _ Ay, B _ 2 v 2
So far we have been working on the simplest picture, where 45~ = gapdz”dz” = w™(y)nmdzde” —dy=,  (47)
the energy density on the brane does not affect the space-tingg,ore we parameterize(y) = e #®. The metric, of

curvature, butrather it has been taken as a perturbation on thg ,rse, can always be written in different coordinate systems.
flat extra space. For large brane densities, this may not be th&, icylarly, notice that one can easily go to the conformally
case. The first approximation to the problem can be done by, metric, where there is an overall factor in front of all co-
considering a five dimensional model where branes are log,ginates 452 = w(2) [ datda” — dz2), where the new
cated at the two ends of a closed fifth-dimension. Clearly.qordinate: is a function of the old coordinatgonly.

with a single extra dimension, the gravity flux produced by  |assical action containg = S + S, + S, where

a single brane a§ = 0 cannot softly close into itself at the grav v’

other end of the space, making the model unstable, just as a g _ /d4 d LRK A 48
charged particle living in a one-dimensional world does not e TG TR (48)

def'ﬂe a stab_le configuration. Stability can only be insured b ives the bulk contribution, whereas the visible and hidden
the introduction of a second charge (brane). Furthermore, t ; :

X ' “Pbrane actions are given by
balance brane energy and still get flat (stable) brane metrics,
one has to compensate for the effect on the space by the in- Syp =T d4xm (49)
troduction of a negative cosmological constant on the bulk. v o
Thus, the fifth dimension would be a slice of an Anti de's'terwhereg,,ﬁ stands for the induced metric at the visible and
space with a flat brane at its edges. Thus, one can keep thjden branes, respectively.
branes flat by paying the price of curving the extra dimen-  Five-dimensional Einstein equations for the given action,
sion. Such curved extra dimensions are usually referred to

as warped extra dimensions. Historically, the possibility was Gun = Run — lgMNR(5)

first mentioned by Rubakov and Shaposhnikov in Ref. [9], 2
suggesting that the cosmological constant problem could be _
in this light: i — _K2A ;2 I sit 5% g8
understood in this light: the matter field vacuum energy on = kA gurw Ak [ O G (y)
the brane could be canceled by the bulk vacuum, leaving a ®)
zero (or almost zero) cosmological constant for the brane ob-
server. No specific model was given there, though. It was — k27 —9v 84, 6% g, 0(y — 1) (50)

actually Gogberashvili [13] who provided the first exact so- 9(5)

lution for a warped metric; nevertheless, the model is best : . . . .
now after Randall and Sundrum (RS) presented the solutio re easily reduced into wo simple, independent equations.
in the context of the hierarchy problem [14]. Later devel- ||_r|sst v]:/eihcaln etxpandt'théM N ter]ds10r co:n'ponent\:, orzwthet
opments suggested that the warped metrics could even pr&h of the last equation, using the mefric ansatz (47), to
vide an alternative to compactification for the extra dimen->"W

sions [15, 16]. In what follows we shall discuss the concrete Guv = 3G (_@// + 2(5/)2) : (51)
example as presented by Randall and Sundrum.

Gus =0; and Gss = —6g55(8')°. (52)
4.2. Randall-Sundrum background Next, using the RHS of Eq. (50), one gets
Let us consider the following setup. A five dimensional space 6(8')% = K2A; (53)
with an orbifolded fifth dimension of radiusand coordinate nd
y which takes values in the intervél), 7r]. Consider two 38" — k27 [8(y) — 8(y — 7)) (54)

branes at the fixed (end) poings= 0, 7r. with tensionsr
and —7 respectively. For reasons that should become cleafhis last equation clearly defines the boundary conditions
later on, the brane at = 0 (y = =) is usually called the for the functions’(y) at the two branes (Israel conditions).
hidden (visible) or Planck (SM) brane. We shall also assigrilearly, the solution i} (y) = uly|, where

to the bulk a negative cosmological constamt. Contrary to E2A A

our previous philosophy in the ADD model, we shall here as- p? = *6 =6 (55)
sume that all parameters are of the order of the Planck scale. *

Next, we ask for the solution that gives a flat induced metwith the subsidiary fine tuning condition

ric on the branes such that the 4D Lorentz invariance is re- T

spected. To get a consistent answer, one has to require that, A= 6M3 (56)
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obtained from the boundary conditions, which is equivalen#4.4. Kaluza Klein decomposition
to the exact cancellation of the effective four-dimensional

cosmological constant. The background metric is therefore AS & further note, notice that since there is 4D Poiacar
invariance everywhere, every bulk field on the RS back-

ds? = e72Vly, datda” — dy? . (57) ground can be eﬂxpanded into four-dimensional plane waves

o(z,y) < eP+* ¢,(y). This would be the basis of the

Kaluza Klein decomposition, that we shall now discuss. Note

also that the physical four momentum of the particle at any
M3 position of the brane goes ?§hys(y) = w1(y)p". There-

M} =—=(1—e2T). (58)  fore, modes which are soft on the hidden brane, become
H harder at any other point of the bulk.

Notice that for a large, the exponential piece becomes neg- L€t us consider again a bulk scalar field, now on the RS
ligible, and the above expression has the familiar form giverPackground metric. The action is then
in Eq. (10) for one extra dimension, of (effective) siz&u.

The effective Planck scale in the theory is then given by

Slo) = 5 [t duyer (6" 0n00w6 — m?e?) . (60)

4.3. Visible versus Hidden Scale Hierarchy ) ) o L .
By introducing the factorizatio(x,y) = =% (y) into

The RS metric has a peculiar feature. Consider a given didh€ eguation of motion, one gets that the KK modes satisfy

tanceds?, defined by fixed intervalgz, dz* from brane co-
ordinates. If one maps the interval from hidden to visible

brane, it would appear here exponentially smaller than Wha\yvherePQ — php, can also be interpreted as the effective

H H H 2 _ 2 2
is measured at the hidden brane, idj|, = W (y)dsgln- o, dimensional invariant mass;2. It is possible, through

This scaling property would have interesting CONSEQUENCES ¢ nctional re-parameterization and a change of variable, to

when introducing fields to live on any of the branes. Partlcu-ShOW that the solution fap can be written in terms of Bessel

larly, let us discuss what happens for a theory defined on th : : - 575
visible brane. functions of indexs = \/4 + m /2 [33,34], as follows

The effect of the RS background on visible brane field pa- 1 My, ™
rameters is non-trivial. Consider for instance the scalar field ‘p"(z):an2(y) Y\ pw(y) Tonu Ty pw(y) )| (62)

action for the visible brane at the end of the space given by
where N,, is a normalization factom, labels the KK index,

and the constant coefficieby, has to be fixed by the conti-
nuity conditions at one of the boundaries. The other boundary
condition would serve to quantize the spectrum. For more de-
As arule, we choose all dimensionful parameters on the theijls the interested reader can see Ref. 34. Here we will just
ory to be naturally given in terms df/,, and this to be close make some few comments about. First, &drrr) < 1, the

to Mp. So we takeyy ~ M,. After introducing the normal-  discretization condition that one gets fo,, = m,,/uw(y)
ization H — w~!(7r)H = e*"™ H to recover the canonical |ooks as

kinetic term, the above action becomes 2, () + T J! (Ty) = 0. (63)

(=05 + 4psen(y)dy + m? + w2 (y) p*] @(y) =0, (61)

Si = / dhast (mr) (w2 (vr) 0" HOLH = X (H? = 0)°] .

y 2 Therefore, the lowest mode satisfies, ~ (1), which
Su = /d%\/jg {nu O HOH — X (H? —v?) } » (59) means thatn, ~ pe—". For the saflne rang(e )of parame-
ters we considered before to solve the hierarchy problem, one

where the vacuum = e #""¢,. Therefore, by choosing gets that lightest KK mode would have a mass of order TeV
ur ~ 12, the physical mass of the scalar field, and its vac-or so. Next, for the special case of an originally massless field
uum, would naturally appear at the TeV scale rather than agn = 0), one has = 2, and thus the first solution to Eq. (63)
the Planck scale, without the need for any large hierarchy ois justz,, = 0, which indicates the existence of a massless
the radius [14]. Notice that, on the contrary, any field lo-mode in the spectrum. The next zero of the equation would
cated on the other brane will have a mass of the orddr,of  be of order one again, and thus the KK tower would start
Moreover, it also implies that no particles exist in the visibleat ue=#"™. The spacing between two consecutive KK levels
brane with masses larger than TeV. This observation has beewuld again be of about the same order. There is no need
considered a nice possible way of solving the scale hierarchip stress that this would actually be the case of the graviton
problem. For this reason, the original model proposed thaspectrum. This makes the whole spectrum completely dis-
our observable Universe resided on the brane located at thinct from the former ADD model. With such heavy graviton
end of the space, the visible brane. So the other brane reallyjodes, one would not expect to have visible deviations on
becomes hidden. This two brane model is sometimes callethe short distance gravity experiments, nor constraints from
RSI model. BBN or star cooling.
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4.5. Radion Stabilization Hence, forln(vy, /v,) of order one, the stable value for the
. radius is proportional to the curvatureparameter, and in-
The way the RSI model solves the hierarchy problem beyersely to the squared mass of the scalar field. Thus, one

tweenm gy, andMp depends on the interbrane spacing  only needs thatn?/u2 ~ 10 to getur ~ 10, as needed for
Stabilizing the bulk becomes in this case an important iSSUghe RS| model.

if one is willing to keep this solution. The dynamics of the
extra dimension would give rise to a runaway radion field, as,,
it does for the ADD case. A simple exploration of the met-
ric (57), by setting a time dependent bulk radiys), shows
that

One might get a bit suspicious about whether the vac-
m energy(¢)(y) may disturb the background metric. It
actually does, although the correction is negligible as the cal-
culations for the Einstein-scalar field coupled equations may
show [33, 36].
ds* — e_Q“T(t)“i"anx“dx” —r2(t)d¢*,  (64)

with ¢ the angular coordinate on the half cirdgle «]. This

suggests that, if the interbrane distance changes, the visibe. Infinite Extra Dimensions

brane expands (or contracts) exponentially. The radion field

associated whit the fluctuations of the radi(s) = 7(t) =7,  The background metric solution (57) does not actually need

is again massless and thus it violates the equivalence princihe presence of the negative tension brane to hold as an
ple. Moreover, without a stabilization mechanism for the ra-exact solution to Einstein equations. Indeed the warp

dius, our brane could expand forever. Some early discussiongctor w(y)=c¢~*/¥/ has been determined only by the Is-
on this and other issues can be found in Refs. 34, 36, and 3¥ae| conditions at they = 0 boundary, that is, by us-
The simplest and most elegant solution for stabilizationing w"=p2w—pwd(y) in Einstein equations, which implies
in RSI was proposed by Goldberger and Wise [33]. Theequations (55) and (56). It is then tempting to ‘move’ the
central idea is really simple: if there is a vacuum energy Orhegative tension brane to infinity, which gives a non-compact
the bulk, whose configuration breaks translational invariancéth dimension. The picture becomes esthetically more ap-
along a fifth dimension, sajf’)(y). Then, the effective four-  pealing; it has no need for compactification. Nevertheless,
dimensional theory would contain a radius-dependent poteryne must now ask the question of whether such a possibil-
tial energy ity is at all consistent with observations. It is clear that the
V(r)= /dy wi(y) (B)(y) . Newton’s constant is now simply

Clearly, if such a potential has a non-trivial minimum, stabi-
lization would be insured. The radion would feel a force that
would tend to keep it at the minimum. The vacuum energy
<E>(y) may come from many sources. The Simp|est pOSSi-_jUSt take the limitr — oo in Eq (58)—, which reflects the

bility one could think of is a vacuum induced by a bulk scalarfact that although the extra dimension is infinite, gravity re-

GN = /LG* (69)

field, with non-trivial boundary conditions, mains four dimensional at large distances (fors 1). This
is, in other words, only a consequence of the flatness of the
(@)(0)=wvn  and  (P)(7r) =vy.  (65)  prane. We shall expand our discussion on this point in the

The boundary conditions would amount for a non-trivial pro- following sections. Obviously, with this setup, usually called

file of (#)(y) along the bulk. Such boundary conditions maythe RSII model, we are giving up the possibility of explaining_
arise, for instance, i has localized interaction terms on the the hierarchy between Planck and electroweak scales. The in-

branes, ad, , (¢>—v? , )2, which by themselves develop non terest on this model remains, however, due to potentially in-

' ) v,v/ ! . . . .
zero vacuum expectation values fotocated on the branes. t€resting physics at low energy, and also due to its connection
The vacuum is then the-independent solution to the equa- t© the AJS/CFT correspondence [37].

tion of motion (61), which can be written as Although the fifth dimension is infinite, the poigt= co
o _ 5 is in fact a particle horizon. Indeed, the first indication comes
() (y) = (y) [Aw™" () + B ()] 66)  from the metric, sincev(y — o0)=0. The confirmation

where A and B are constants to be fixed by the boundarywould come from considering a particle moving away from

conditions. One then obtains the effective 4D vacuum energghe brane on the geodesigs(t)=(1/2u) In(1 + p*t%) [38].
The particle accelerates towards infinity, and its velocity

— 2 —2v
Vo(r) = p(v +2)A% (0™ (7r) — 1) tends to the speed of light. The proper time interval is then

+ p(v —2)B? (1 — w (7)) (67) ,
After a lengthly calculation, and in the limit where < p, dr? = w?(y,(t))dt* — (ddyg> dt? . (70)
one finds that the above potential has a non trivial minimum t
for

4\ p? vp Thus, the particle reaches infinity at an infinite timdut in
pr={_] 5 vl (68) 4 finite proper time- — /2.
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5.1. Graviton Localization whereas the KK mode wave functions in the continuum are

) _ written in terms of Bessel functions, in close analogy to
In order to understand why gravity on the brane remains fourgq, (62), as

dimensional at large distances, even though the fifth dimen-

ion is non-com ne h nsider again the KK de- 1 4p? 1
sion is non-compact, one has to consider again the KK de m~s(2) Yo (mlz|+ =) + K7, mlz]+ = )|,
composition for the graviton modes, with particular interest 1 m2
in the shape for the zero mode wave function. Consider first

the generic form of the perturbed background metric wheres(z) = (|z|+1/u)"/2. By properly normalizing these
wave functions using the asymptotics of the Bessel functions,
ds? = w?(y)gudatda” + A,datdy — b dy?* . it is possible to show that fom < p the wave function at

brane has the value
Due to the orbifold projectiony — —y, the vector com-

ponentA,, must be odd, and thus it does not contain a zero B (0) & | —. (75)
mode. Therefore, at the zero mode level only the true four- H

dimensional graviton and the scalar (radion) should surviverpe 6, nling of gravitons to the brane is therefore weak for
Let us_concentrate on the 4D grgwton perturbaﬂogzs only. INye lightest KK graviton states. The volcano potential acts as
troducing the small field expansion g, P Tw . huv: 4 barrier for those modes. The production of gravitons at low
and using the gauge f|>§|ng conditiofgh, = 0 = h/;, one energies would then be negligible.
obtains the wave equation
2 5.2. Gravity on the RSII brane

s —4ud(y) | h=0, (71) , . o o
w?(y) The immediate application of our last calculations is on the

stimation of the effective gravitational interaction law at the
In th% U

rane. The reader should remember that the effective interac-
tion of brane matter to gravitonsis,,, (0)T#”. So itinvolves
gge evaluation of the graviton wave function at the brane po-
sition, as expected. Therefore the graviton exchange between
two test particles on the brane separated by a distagoes
the effective potential

2 2
0, —4p” —

where the Lorentz indices should be understood.
above equation the mass? stands for the effective four-
dimensional masg*p, = m?. It should be noticed that
the mass spectrum would now be continuous, and starts
m = 0. In this situation the KK are normalized to the delta
function, [dyw=2(y) hm (y) by = (m —m/).

Introducing the functional re-parameterization

1 o0
2= sgn(y) (@) 1) Unsir(r) ~ Un(r) |1+ / —CT %e—"" (76)

and s .
W(z) = w2 (y)h(y) , — Un(r) [1 T N} | 7)

one can write the equation of motion for the KK modes asthe ) o
Schdinger equation Notice that the correction looks exactly like in the two ex-

tra dimensional ADD case, with/y as the effective size of

the extra dimensions. Thus, from the brane point of view,
the bulk should appear as compact, at least from the gravita-
tional point of view. The conclusion is striking. There could
be non-compact extra dimensions and yet scope to our obser-
vations!.

[—;af + V(z)} U(z) = m2¥(2) (72)
with a ‘volcano potential’

2
S O O

VO = Shan v 2 -

Higher dimensional generalization

which peaks agz| — 0 but has a negative singularity right The RSII model, which provides a serious alternative to com-

s et o o oo e e ETEaton. can immecitay be xtended 02 aer ru
wave function peaks at — 0, which also means af — 0 er ofdmenspns. First, r'lotlce that t_he mgtrlc (57) ha; come
In other words, it appears to’ be localized at the brane .Sucgom. the pecuI!ar propgrtles of co-dlme'nsmn one objects in

' ) ravity. Thus, it is obvious that the straightforward general-

a state is identified as our four-dimensional graviton. Its Io—ization should also contain some co-dimension one branes in

?g&'rzsit:ﬁgr:;ghnifgg tsr:gagrr;r?son why gravity still behaves %he c_onfiggration. Our bralje, however should havg a larger
Indeed, the wave function .for the localized state is co—d_|menS|on. Let us.con5|der a syste.nﬁoﬁutually inter-
' secting(2+ d) branes in 44 + 6) dimensional AdS space, of
1 cosmological constant A. All branes should have a positive

Vo(2) = w(|z] 4+ 1/p)3/2 (74 tensionr. Clearly, the brane intersection is a 4 dimensional
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98 A. PEREZ-LORENZANA

brane, where we assume our Universe lives. Intuitively, eackz = 0), which is¥y,nq ~ Q01+2)/2(2). Since the potential

of the (2 + §) branes would try to localize the graviton to falls off to zero for a large, there would also be a continuum
itself, just as the RSII brane does. Consequently, the zerof modes. Since the height of the potential near the origin
mode graviton would be localized at the intersection of allis 2, all modes with small masses; <y will have sup-
branes. This naive observation can indeed be confirmed bpressed wave functions, while those with large masses will

solving the Einstein equations for the action [16] be unsuppressed at the origin. Therefore, the contribution of
1 the lightest modes to the gravitational potential for two test
S = /d4x d%\/@ <%R(4+5) + A) particles at the brane _wouId again be suppressed as in the
* RSII case. The correction to Newton’s law is [16]

- T [d'zd Yy \/IGre)- (78) 5
all %nes / ” AU(r) ~ Un(r) (f) : (86)

If the branes are all orthogonal to each other, it is straightfor-
ward to see that the space consist@bequivalent slices of ~Which again behaves as in the ADD case, mimicking the case
AdS space, glued together along the flat branes. The metri®f compact dimensions, though this is not the case.
therefore, would be conformally flat. Thus, one can write it,
using appropriate bulk coordinates, as
6. Brane Cosmology
ds%4+5) = Q(z) (nm,da:“dx” — 0w dzkdzl) (79)

Let us now discuss what modifications are introduced to cos-

mology if one considers the RSII setup. One of the first things
1 that one needs to know is the time dependence of the metric.

with the warp factor

Q(z) = u> A+ 1 (80)  As the bulk curvature arose to compensate for the brane ten-

’ sion in order to keep the brane flat, once a time dependent en-
where theu curvature parameter is now ergy densityl},, is introduced on the brane, as needed for our
) 22 Universe, the warping will also become time dependent, and

W =SNG T (81) so one must reconsider the RS solution to five-dimensional
(6+2)(0 +3) Einstein equations. The problem was first addressed by Bi-
which is a generalization of the relation given in Eq. (55).netruyet al.in Refs. 40 and 41. It has also been noted that

Similarly, the fine tuning condition (56) now looks like the Friedmann equation could be recovered on the brane in
the low energy limit f << 7), on the basis of the fine tun-
A= M#kf . (82)  ing (56), even thought the metric is not static [41-43]. Here
8(6+2) we shall discuss some of these results.
The effective Planck scale is now calculated to be We start by considering what the metric ansatz should be

for brane cosmology, assuming that the only energy sources
M£5+2)L5 ., (83) are the brane energy momentum tengpy,, and the negative
(0+1)! cosmological constant of the brane. We adopt the cosmolog-
ical principle of isotropy and homogeneity in the three space
dimensions of the brane; thus, the most gené&jal has a
diagonal form, parameterized by energy dengityand pres-
ure,P,

2565/2

M =3 [ 2005

for L = 1/v/5u. Notice that this expression resembles the
ADD relationship given in Eq. (10), witl, as the effective
size of the extra dimensions.

Graviton localization can now be seen by perturbing the®
metric with 7, — 7, + hy, in EQ. (79), and writing the ™, = diag(p, —P,—P,—P) .
equation of motion for,,, in the gauger”,, = 0 = 9,h", o
and in conformal coordinates, to obtain for= Q(0+2/2),  Also, this implies thayy/y = gan(y, t), only, where the

the linearized equation Y depender_me re_flects_the breaking of translational invariance
along the fifth dimension due to the presence of the brane.
. |- ° Finally, and for simplicity, we shall consider that distance in-
—= ——Vi+V v=0, 84 ' : 7 > ) !
{ 2" + ( 2~ * (z)ﬂ (84) tervals along the fifth dimensions are fixed along time. We

which is again nothing other than a Sclinger equation with then choose the following ansatz for the metric

the effective potential

2
V) = 5(5+2)é§+4)u Q_(azz)ugzé(zj). @5)

ds® = w?(y,t) dt* — a*(y,t)vi; de'dz? — dy*,  (87)

wherev;; = f(r)d;;, with f=1(r) = 1 — kr? being the
usual Robertson-Walker curvature term, where —1,0, 1.
Indeed, the spectrum has a massless bound state loc&ler simplicity, we shall restrict our discussion to the flat
ized around the intersection of all delta function potentialsUniverse case. It is worth noticing that such a metric does
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AN INTRODUCTION TO THE BRANE WORLD 99

reduce to the standard Friedmann-Robertson-Walker metvhere we have introduced the brane Hubble functid(t),
ric (34) when evaluating distance intervals at the brane, proas they = 0 value of the more general bulk Hubble func-
vided w(0,t) = 1. As in RS models, we shall here assumetion [43] .
that the orbifold symmetny : y — —y is present, thusy H(y,t) = <a) . (93)
andn would depend only oty|. a

The five-dimensional Einstein equations take the form |t js also not difficult to show that the equati@#,=0 im-
plies the more general condition

w(y,t) = At)a(y,1) . (94)

) Itis very illustrative to rewrite the equation féf, as the
The delta function on the RHS of Egs. (88) can be understood|k Friedmann equation [43]

as a boundary condition. We then proceed by solving first the

equations away from the brane. The global metric solution ) ) 2 a2 a
clearly shall be continuous everywhere. Is naturally solved H(y,t) = w _§A + <a> + o
by the orbifold condition. Metric derivatives ay) however,

are not continuous; they should have a gap at 0, which  whereq/, stands for the regular part of the function. It is then

1
Gap = Rap — igABR

, (99)

should match the brane energy momentum tensor, clear that, upon evaluation at the brane, the Friedmann equa-
ot tion presents the ‘wrong’ dependenté « p* [39] coming
du G — 12T (89) from the second term on the RHS of Eq. (95). Also, we may
Y S = s Sy identify the last term of the same equation as the contribu-

0~ tion of the Weyl tensor of the bulk [44]. We shall come back

Let us now proceed to the details. We use the metrid0 this point a bit later. Now we turn to the other equations.

ansatz (87) to explicitely expand the RHS of Egs. (88) toFirst,G;; gives a non-independent equation. Indeed, it can be
get [39] derived from Eqg. (95) by taking a time derivative, and com-

bining the result withGo4. This is the same as in the usual
a\’ 9 4D case, wher€/;; gives the acceleration equation. Finally,
GOQ = 3 — —w . .
a G 44 represents the only truly new equation in the system. It
is also the window to solving thg dependence of the metric

G a2 a (. w d a” o w” since, combined with the bulk Friedmann equation (95) and
ij = | @ —(2—=+—=)+2—+— ; . ol s
a w o oa w the acceleration equation, it simplifies to
@ (a (i a\ i a w2
212 (0Z %) 9% s (90 @ W g
+w2{a<w a) aH j» (90) 3+ = kA (96)
G wa @ Solving this equation, together with (94), we get the result
04— w a a
k2o
Cld wN 1 [afa ey aly1) = anft) (cosmiull) — g psinhiil) )
Gu=3¢—|—+— S\ = + - 6'“’
a a w w a a w a

where primes denote derivatives with respecytand dots w(y,t) = cosh(uly|) + o (3P +2p) sinh(uly[), (97)
derivatives with respect to. Our boundary (Israel) condi-

tions are then where the bulk curvature parameter = k2A /6. Notice that
Ad/ 12 at the static limit(ag = 1), wherep = —P = 7, with the
= —Zp, (91)  brane tension obeying the fine tuning condition (56), we re-
@ ly=o 3 cover the RS metric solutiom(y) = w(y) = e *¥l. Notice
Aw' k2 also that in the time-dependent case, we get the FRW metric
o | = ?(31} + 2p); (92)  onthe brane.

We can now completely evaluate the Friedmann equa-
here the gap functionna’(0) = a’(07) — a/(07) = 24/ (0T) tion (95) on the brane by using the fact that the total energy
give the size of the jump for thederivative ofa at zero. The — densityp = p,, + 7, with p,,, the actual brane matter density,
same applies td\w’. We can straightforwardly use these t0 get [42]

boundary conditions to evaluate the Einstein tensor compo- Hy(t) = Prm (1 + p—m) , (98)
nents at the brane. In particular, the equationdgy gives 3Mp 27
the energy conservation formula which has a quadratic term on the matter density. A Universe
described by such a modified Friedmann equation evolves
p+3Hy(p+P)=0, faster than the standard one. This may not be a problem
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during the very early stages of the Universe, whereas jusipeaking,S,;y should be evaluated by the variational prin-
before Nucleosynthesis the standard cosmological evolutioniple of the 4D Lagrangian for matter fields. The decomposi-
HZ ~ p,, must had be restored in order not to disturb thetion (102) can be ambiguous. Again, the delta function would
success of the theory. Clearly, for small matter densitiedead us to the Israel junction conditions
pm << T, ONE recovers the standard Hubble expansion.

It is interesting to note, on the other hand, that infla-
tion when driven by a scalar field whose energy density 5 1
exceeds the brane tension, is more efficient in the brane [Knn] = —k; (SMN - 37MNS> ’ (103)
world. This can be seen from the equation of motion
$-+3Hop+V" (9)=0, where the friction term becomes larger Where[X] = AX(0) = 2X(0%), due to theZ, symmetry.
for larger energy densities. Thus the slow roll is enhanced he flrst of these expressions only states the continuity of the
by the modification to the Friedmann equation (98). InflationMetric at the brane, whereas the other allows us to completely
would then last longer than in the standard 4D models, andetermine the extrinsic curvature of the brane in terms of the
even some steep potentials that were unable to drive inflf8N€rgy momentum tensor. Putting it all these equations to-
tion in the 4D case could now be successful [45]. Expansiof§€ther, one gets the effective brane Einstein equations
at high energies drives the tilt of the spectrum of adiabatic
density perturbations to zero and it seems not to alter their ex-
pected amplitude [45]. The physics of reheating [46,47], prewhere the effective brane cosmological constant
heating, and other pre-BBN phenomena may also be affected,

[’Y]\,{N] =0 and

Gy = Mayun+8TGNtyN+EITM N —Enn , (104)

depending on the energy scale at which they take place. Ay = %kf (ékaT — A) (105)

6.1. Geometric approach is null only if the fine condition (56) holds. The Newton con-
stant is defined in terms of the brane tension by

A more formal and general treatment of the brane model for k2

the derivation of the effective Einstein equations on the brane 8GN = g ; (106)

was presented in Ref. 45. It uses a covariant geometric ap-

proach that does not rely on the metric ansatz, and | believ@" €xpression that is equivalent to Eq. (69), with the proper
it is worth underlining in here. Let us denote the unit vectornSertion of the parameter as defined in Eq. (55) £ v

normal to the brane by#, and the induced brane metric as Stands for the IL‘m|]thaI_ue at = 07 of the 5D Weyl ten-
YaB = gap — nang. Next we consider the extrinsic cur- SorC(d){”ANB” n®, with C®) the 5D Wey! curvature ten-
vature of the brané o5 = 7§ v2Vonp writing down the SO T_hls gives the non-Io.caI effects from the free gravita-
Gauss—Codacci equations tional field in the bulk, and it cancels when the bulk is purely
AdS. And last but not least, the tensey;y gives the local
quadratic contribution of the brane energy momentum tensor

R = RM A ANAPA@ oA (99
@Wpop = G Npe MM VB 10D cKpp (99) that arises from the extrinsic curvature terms. They are given

DnKjy — DuK = Res) pon®i (100)
TN = —ttyn — ~tarath
where D, is the covariant differentiation with respect to MN = 1o TMN T M ATM
~vumn- The brane Ricci tensor is then obtained by con- 1 AB 12 107
tracting the first of above equations ohand C, and one T 5 YMN [Btapt™” —t7]. (107)

getsR = Riayop 15 W — Ry gepna Tir n9m +

KKyn — KAA}KNA. A further contraction on\/ and V 7. Concluding remarks

will provide us with the scalar curvaturg,. All together

this shall define the five-dimensional Einstein equation withThroughout the present notes, | have introduced the reader

a source given by to some aspects of models with extra dimensions, where our
Universe is constrained to live on a four-dimensional hyper-
Tun = Agun + Suné(x) , (101) surface. The study of the brane world has become a fruitful

industry that has involved several areas of theoretical physics
where we have explicitely chosgnas the locally orthogonal in the matter of a few years. It is fair to say, however, that
coordinate to the brane, without los of generality. H&Hg many of the current leading directions of research obey spec-

represents the brane energy density, which is given as ulative ideas more than well-established facts. Nevertheless,
as happens with any other physics speculations, the studies
SN = —TYunN +tun, (102) on the brane world are guided by the principle of physical

and mathematical consistency, and the further possibility of
with ¢, x the brane energy momentum tensor, which clearlyconnecting the models with the more fundamental theories,
satisfiest,,yn™ = 0. It should be noted that, properly i.e. string theory, from which the idea of extra dimensions
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and branes has been borrowed; and so with experiments the reader to this area of research. The list of what is left

out is extensive, it includes the recent discussions on the cos-

It is difficult to address the very many interesting topics mological constant problem [48], higher dimensional warped
of the area, in the detail | intended here, without facing dif-spaces [49] dark matter from KK modes [50], Black Holes in

ficulties with the space of these short notes. In exchange, both ADD and RS models [51, 52], deconstruction of extra

have concentrated the mainly on the construction of the maidimensions [53], and the list goes on. | urge the interested

frameworks (ADD, and RS models), the calculation of thereader to turn to the more extensive reviews [17] and to hunt

effective gravity interactions on the brane, and brane cosfor further references.

mology. | hope these will serve the propose of introducing
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