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The study of the so called brane world models has introduced completely new ways of looking at standard problems in many areas of
theoretical physics. Inspired in the recent developments of string theory, the Brane World picture involves the introduction of new extra
dimensions beyond the four we see, which could either be compact or even open (infinite). The sole existence of those new dimensions
may have non-trivial observable effects in short distance gravity experiments, as well as in our understanding of the cosmology of the
early Universe, among many other issues. The goal of the present notes is to provide a short introduction to Brane World models, to their
motivations and consequences. We cover some of their basic aspects. The discussion includes models with flat compact extra dimensions, as
well as the so-called Randall-Sundrum models.
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En ãnos recientes, el avance en el estudio de los llamados Mundos Brana ha provisto de nuevas formas de mirar viejos problemas de la fı́sica
teórica. Los modelos de mundo brana se inspiran en desarrollos recientes de la teorı́a de cuerdas (la teoria de branas), y suponen la existencia
de nuevas dimensiones espaciales más alla de las cuatro que vemos cotidianamente, las cuales pueden ser tanto compactas como infinitas.
La existencia de dimensiones extras podrı́a ser identificable en el comportamiento de la interacción gravitacional a pequeñas distancias. Su
presencia puede, además, impactar de manera importante nuestra actual comprensión del Universo temprano y su cosmologı́a, entre otras
cosas. A lo largo de las presentes notas, cuyo interés es servir como una introducción breve al estudio de los mundos brana, revisamos
algunos aspectos de estos modelos. Se discuten tanto los modelos con dimensiones extra planas y compactas, como los llamados modelos de
Randall-Sundrum.

Descriptores: Mundos Brana; dimensiones extra; cosmologı́a.
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1. Introduction

In the course of the last five years there has been consider-
able activity in the study of models that involve new, extra
dimensions. The possible existence of such dimensions has
got strong motivation from theories that try to incorporate
gravity and (gauge) interactions in a unique scheme, in a re-
liable manner. The idea dates back to the 1920’s to the works
of Kaluza and Klein [1], who tried to unify electromagnetism
with Einstein gravity by assuming that the photon originates
from the fifth component of the metric. With the advent of
string theory, the idea has gained support since all versions of
string theory are naturally and consistently formulated only
in a space-time of more than four dimensions (actually 10D,
or 11D for M-theory). Until recently, however, it was con-
ventional to assume that such extra dimensions were com-
pactified to manifolds of small radii with sizes of the order of
the inverse Planck scale,`P = M−1

P = G
1/2
N ∼ 10−33 cm.

or so, such that they would remain hidden to the experiment.
It was only during the last years of the 20th century when
people started to ask the question of how large these extra
dimensions could be without coming into conflict with ob-
servations, and even more interesting, where and how these
extra dimensions could manifest themselves. The intriguing
answer to the first question points towards the possibility that
extra dimensions as large as millimeters [2] could exist and
yet remain hidden to the experiments [3–7]. To allow that,

however, matter should be localized on a hypersurface (the
brane) embedded in a higher dimensional world (the bulk).
Again, the main motivation for these models comes from
string theories where the Horava-Witten solution [8] of the
non perturbative regime of theE8 × E8 string theory pro-
vided one of the first models of this kind. To answer the
second question many phenomenological studies have been
done in a truly bottom-up approach, often based on simpli-
fied field theoretical models, trying to provide new insights
to the possible implications of the fundamental theory at the
observable level, although it is unclear whether any of those
models are realized in nature. Nevertheless, they may help to
find the way to search for extra dimensions, if there are any.

It is fair to say that similar ideas were proposed in the
80’s by several authors [9]; nevertheless, they were missed
for some time, until recent developments on string theory,
basically the rise of M-theory, provided an independent real-
ization to such models [8, 10–12], given them certain credi-
bility.

It is the goal of the present notes to provide a brief in-
troduction for the beginner to the general aspects of theories
with extra dimensions. Many variants of the very first model
by Arkani-Hammed, Dimopoulos and D’vali [2] have been
proposed over the years, and there is no way we could com-
ment on all those results in a short review such as the present
one. We shall rather concentrate on some of the most gen-
eral characteristics shared by these models. With particular
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interest, we shall address dimensional reduction, which pro-
vides the effective four dimensional theory on which most
calculations are actually based. The determination of the ef-
fective gravity coupling, and the also effective gravitational
potential in four dimensions will be discussed in the notes.
We will also cover some aspects of the cosmology of models
in more than four dimensions. Of particular interest in our
discussions are the models of Randall and Sundrum [13–16]
for warped backgrounds, with compact or even infinite extra
dimensions. We will show in detail how these solutions arise,
as well as how gravity behaves in such theories. Some further
ideas include: why and how the size of the compact extra di-
mensions remain stable; graviton localization at branes; and
brane cosmology are also covered. The interested reader that
would like to go beyond the present notes can consult any of
the excellent reviews that are now in the literature, some of
which are given in Ref. 17.

2. General Aspects: Flat Extra Dimensions

2.1. Planck versus the Fundamental Gravity Scale

The possible existence of more than four dimensions in na-
ture, even if they were small, may not be completely harm-
less, and in principle, they could have some visible mani-
festations in our (now effective) four-dimensional world. To
look for such signals, one has first to understand how the ef-
fective four dimensional theory arises from the higher dimen-
sional one. Formally, this can be achieved by dimensionally
reducing the complete theory, a concept that we shall discuss
further in the following section. One of the first things we
should notice is that since gravity is a geometric property of
space, in a higher dimensional world, where Einstein gravity
is assumed to hold, the gravitational coupling does not nec-
essarily coincide with the well-known Newton constantGN ,
which is, nevertheless, the gravity coupling we do observe.
To explain this more clearly, let us assume as in Ref. 2 that
there areδ extra space-like dimension which are compactified
into circles of the same radius R (so the space is factorized as
anM4 × T δ manifold). We will call the fundamental grav-
ity couplingG∗, and then write down the higher dimensional
gravity action:

Sgrav = − 1
16πG∗

∫
d4+δx

√
|g(4+δ)| R(4+δ) , (1)

whereg(4+δ) stands for the metric in the whole(4 + δ)D
space,

ds2 = gMNdxMdxN , (2)

for which we will always use the(+,−,−,−, . . . ) sign con-
vention, andM, N = 0, 1, . . . , δ + 3. The above action must
have the proper dimensions, meaning that the extra length di-
mensions that come from the extra volume integration must
be equilibrated by the dimensions on the gravity coupling.
Notice that in natural units,c = ~ = 1, S has no dimensions.
We are also assuming for simplicity thatg(4+δ) is taken to

be dimensionless, so[R(4+δ)] = [length]−2 or [Energy]2 in
natural units.

Now, in order to extract the four dimensional gravity ac-
tion, let us assume that the extra dimensions are flat; thus, the
metric has the form

ds2 = gµν(x)dxµdxν − δabdyadyb, (3)

where gµν gives the four-dimensional part of the metric
which depends only on the four-dimensional coordinatesxµ,
for µ = 0, 1, 2, 3; and δabdyadyb gives the line element
on the torus, whose coordinates are parameterized byya,
a = 1, . . . , δ. It is now easy to see that

√|g(4+δ)| =
√|g(4)|

andR(4+δ) = R(4), so that one can integrate over the extra
dimensions in Eq. (1) to obtain the effective action

Sgrav = − Vδ

16πG∗

∫
d4x

√
|g(4)| R(4) , (4)

whereVδ stands for the volume of the extra space, for the
torusV = (2πR)δ. This last equation is precisely the stan-
dard gravity action in 4D if one makes the identification

GN = G∗/Vδ . (5)

The newton constant is therefore given by a volumetric scal-
ing of the truly fundamental gravity scale. Thus,GN is in fact
an effective quantity. Notice that, even ifG∗ were a large
coupling, one can still understand the smallness ofGN via
the volumetric suppression.

To obtain a more physical meaning of these observations,
let us consider a simple experiment. Let us assume a couple
of particles of massesm1 andm2, respectively, located on
the hypersurfaceya = 0, and separated from each other by
a distancer. The gravitational flux between these two parti-
cles would spread over the entire(4 + δ) D space; however,
since the extra dimensions are compact, the effective strength
of the gravity interaction would have two clear limits:

(i) If the two test particles are separated by a distance
r À R, the torus would effectively disappear for
the four-dimensional observer; the gravitational flux
is then diluted by the extra volume and the observer
would see the usual (weak) 4D gravitational potential

UN (r) = −GN
m1m2

r
. (6)

(ii) However, ifr ¿ R, the 4D observer would be able to
feel the presence of the bulk through the missing flux
that goes into the extra space, and thus, the potential
between each particle would appear to be stronger:

U∗(r) = −G∗
m1m2

rδ+1
. (7)

It is precisely the volumetric factor which matches both
regimes of the theory. The change in the short distance
behavior of Newton’s gravity law should be observable
in the experiment when measuringU(r) for distances
less thanR. The current search for such deviations has
reached as low as 200 microns, with no signs of extra
dimensions so far [3].
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We should now recall that the Planck scale,MP , usually
assumed to be the fundamental energy scale typically associ-
ated with the scale at which quantum gravity (or string the-
ory) should make itself manifest, is defined in terms of the
Newton constant, via

MP c2 =
[
~c5

8πGN

]1/2

∼ 2.4× 1018 GeV . (8)

In the present picture, it is clear then thatMP is not funda-
mental anymore. The true scale for quantum gravity should
be given in terms ofG∗ instead. We then define the string
scale as

M∗c2 =
[
~1+δc5+δ

8πG∗

]1/(2+δ)

. (9)

Switching to natural units (c = ~ = 1) from here on, both
scales are then related to each other by [2]

M2
P = Mδ+2Vδ . (10)

From the particle physics world we already know that there
is no evidence of quantum gravity (either supersymmetry, or
string effects) well up to energies around one hundred GeV,
which means thatM∗ ≥ 1 TeV. If the volume were large
enough, then the fundamental scale could be as low as the
electroweak scale, and there would be no hierarchy in the
fundamental scales of physics, which so far has been consid-
ered a puzzle. Of course, the price of solving the hierarchy
problem this way would be now to explain why the extra di-
mensions are so large. UsingV ∼ Rδ, one can reverse the
above relation and get a feeling of the possible values ofR for
a givenM∗. This is done precisely for our above-mentioned
wish for having the quantum gravity scale as low as possi-
ble, although the actual value is unknown. As an example, if
one takesM∗ to be 1 TeV then, forδ = 1, R turns out to be
about the size of the solar system (R ∼ 1011 m)!, whereas for
δ = 2 one getsR ∼ 0.2 mm, that is, just at the current limit
of the experiments. More than two extra dimensions are in
fact expected (strings predict six more), but in the final theory
these dimensions may turn out to have different sizes, or even
geometries. More complex scenarios with a hierarchical dis-
tribution of the sizes could be natural. To have an insight into
the theory, however, one usually relies on toy models with a
single extra dimension, compactified into circles or orbifolds.

2.2. Brane World theory prescriptions

While submillimeter dimensions remain untested for gravity,
particle physics forces have certainly been accurately mea-
sured up to weak scale distances (about10−18 cm). There-
fore, the matter particles cannot freely propagate in those
large extra dimensions, but must be constrained to live in a
four-dimensional submanifold. Then the scenario we have in
mind is one where we live in a four-dimensional surface em-
bedded in a higher dimensional space. Such a surface shall be
called a “brane” (a short name for membrane). This picture is
similar to the D-brane models [12], as in the Horava-Witten

theory [8]. We may also imagine our world as a domain wall
of sizeM−1

∗ , where the particle fields are trapped by some
dynamical mechanism [2]. A hypersurface or brane would
then be located at a specific point on the extra space, usually,
at the fixed points of the compact manifold. Clearly, this pic-
ture violates translational invariance, which may be reflected
in two ways in the physics of the model, affecting the flat-
ness of the extra space (which compensates for the required
flatness of the brane), and introducing a source of violation
of the extra linear momentum. The first would drive us to
the Randall-Sundrum Models, that we shall discuss latter on.
The second will be a constant issue throughowt our discus-
sions.

What we have called a brane in our previous paragraph is
actually an effective theory description. We have chosen to
think of them as topological defects (domain walls) of almost
zero width, which could have fields localized on its surface.
String theory D-branes (Dirichlet branes) are, however, sur-
faces where an open string can end on. Open strings give rise
to all kinds of fields localized on the brane, including gauge
fields. In the supergravity approximation, these D-branes will
also appear as solitons of the supergravity equations of mo-
tion. In our approach, we shall care little about where these
branes come from, and rather simply assume there is some
consistent high-energy theory that would give rise to these
objects, and which should appear at the fundamental scale
M∗. Thus the natural cutoff of our models would always be
given by the quantum gravity scale.

D-branes are usually characterized by the number of spa-
tial dimensions on the surface. Hence, a p-brane is described
by a flat space time with p space-like and one time-like coor-
dinates. Unless otherwise stated, we shall always work with
models of 3-branes. We need to be able to describe theories
that live both in the brane (as the Standard Model) and in the
bulk (like gravity), as well as the possible interactions among
these two theories. To do so we use the following prescrip-
tions:

(i) Bulk theories are, as usual, described by the higher
dimensional action, defined in terms of a Lagrangian
density ofφ(x, y) fields valued on all space-time coor-
dinates of the bulk

Sbulk[φ] =
∫

d4x dδy
√
|g(4+δ)|L(φ(x, y)) , (11)

where, as before,x stands for the (3+1) coordinates of
the brane andy for theδ extra dimensions.

(ii) Brane theories are described by the (3+1)D action of
the brane fields,ϕ, which is naturally promoted to a
higher dimensional expression by the use of a delta
density:

Sbrane[ϕ]=
∫

d4xdδy
√
|g(4)|L(ϕ(x))δδ(~y−~y0), (12)

where we have taken the brane to be located at the posi-
tion ~y = ~y0 along the extra dimensions, and the metric
g(4) stands for the 4D induced metric on the brane.
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(iii) Finally, the action may contain terms that couple bulk
to brane fields. The latter are localized on the space,
thus, it is natural that a delta density would be involved
in such terms, say for instance

∝
∫

d4x dδy
√
|g(4+δ)| φ2(x, y)ϕ(x) δδ(~y − ~y0)

=
∫

d4x
√
|g(4)|φ2(x, 0), ϕ(x) . (13)

2.3. Dimensional reduction: Kaluza-Klein Decomposi-
tion

The presence of delta functions in the previous actions does
not allow for a transparent interpretation, nor for an easy
reading of the theory dynamics. When they are present it is
more useful to work in the effective four-dimensional theory
which is obtained after integrating over the extra dimensions.
This procedure is generically called dimensional reduction.
It also helps to identify the low energy limit of the theory
(where the extra dimensions are not visible).

To get some insight into what the effective 4D theory
looks like, let us consider a simplified five-dimensional toy
model where the fifth dimension has been compactified on a
circle of radiusR. The generalization of these results to more
dimensions would be straightforward. Letφ be a bulk scalar
field for which the action on flat space time has the form

S[φ] =
1
2

∫
d4x dy

(
∂Aφ∂Aφ−m2φ2

)
; (14)

where nowA = 1, . . . , 5, andy denotes the fifth dimension.
The compactness of the internal manifold is reflected in the
periodicity of the field,φ(y) = φ(y + 2πR), which allows
for a Fourier expansion of the field as

φ(x, y) =
1√
2πR

φ0(x) +
∞∑

n=1

1√
πR

[
φn(x) cos

(ny

R

)

+ φ̂n(x) sin
(ny

R

)]
. (15)

The very first term,φ0, with no dependence on the fifth
dimension, is usually referred to as the zero mode. Other
Fourier modes,φn andφ̂n; are called the excited or Kaluza-
Klein (KK) modes of the field. Notice the different normal-
ization on all the excited modes,φn andφ̂n, with respect to
the zero mode.

By introducing the last expansion into the action and in-
tegrating over the extra dimension, one obtains

S[φ] =
∞∑

n=0

1
2

∫
d4x

(
∂µφn∂µφn −m2

nφ2
n

)

+
∞∑

n=1

1
2

∫
d4x

(
∂µφ̂n∂µφ̂n −m2

nφ̂2
n

)
, (16)

where the KK mass is given asm2
n = m2 + n2/R2. There-

fore, in the effective theory, the higher dimensional field ap-
pears as an infinite tower of fields with massesmn.

Notice that all excited modes are fields with the same
spin, and quantum numbers asφ. But they differ in the KK
numbern, which is also associated with the fifth component
of the momentum. From a formal point of view, KK modes
are only a manifestation of the discretization of the (other-
wise continuum) extra momentum of the particle. We would
see particles with a different higher dimensional momentum
as having different masses. This can also be understood from
the higher dimensional invariantpApA = m2, which can be
rewritten as the effective four-dimensional squared momen-
tum invariantpµpµ = m2 + ~p⊥ 2, where~p⊥ stands for the
extra momentum components.

Dimensionally reducing any higher dimensional field the-
ory would indeed give a similar spectrum for each particle.
For m = 0, it is clear that, for energies below1/R, only the
massless zero mode will be kinematically accessible, making
the theory looking four-dimensional. The appreciation of the
impact of KK excitations thus depends on the relevant energy
of the experiment, and on the compactification scale1/R:

(i) For energiesE ¿ 1/R, physics would behave purely
four dimensionally.

(ii) At larger energies,1/R < E < M∗, or equivalently
as we do measurements at shorter distances, a large
number of KK excitations,∼ (ER)δ, become kine-
matically accessible, and their contributions relevant
for physics. Therefore, right above the threshold of the
first excited level, the manifestation of the KK modes
will start showing the higher dimensional nature of the
theory.

(iii) At energies aboveM∗, however, our effective approach
must be replaced by the use of the fundamental theory
that describes quantum gravity phenomena.

Furthermore, notice that the five dimensional fieldφ we con-
sidered before has mass dimension3/2, in natural units. This
can be easily see from the kinetic part of the Lagrangian,
which involves two partial derivatives, each with mass di-
mension one, and the fact that the action should be dimen-
sionless. In contrast, by similar arguments, all excited modes
have mass dimension one, which is consistent with the KK
expansion (15). In general, forδ extra dimensions we get the
mass dimension for an arbitrary field to be[φ] = d4 + δ/2,
whered4 is the natural mass dimension ofφ in four dimen-
sions. Because this change in the dimensionality ofφ, most
interaction terms on the Lagrangian (apart from the mass
term) would all have dimensionful couplings. To keep them
dimensionless, a mass parameter should be introduced to cor-
rect the dimensions. It is common to use as the natural choice
for this parameter the cut-off of the theory,M∗. For in-
stance, let us consider the quartic couplings ofφ in 5D. Since
all potential terms should be of dimension five, we should
write down(λ/M∗)φ4. After integrating the fifth dimension,
this operator will generate quartic couplings among all KK
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modes. Four normalization factors containing1/
√

R appear
in the expansion ofφ4. Two of them will be removed by
the integration; thus, we are left with the effective coupling
λ/M∗R. By introducing Eq. (10), we observe that the effec-
tive couplings have the form

λ

(
M∗
MP

)2

φkφlφmφk+l+m, (17)

where the indices are arranged to respect the conservation
of the fifth momentum. From the last expression, we con-
clude that, in the low energy theory (E < M∗), even at the
zero mode level, the effective coupling appears suppressed
with respect to the bulk theory. Therefore, the effective four-
dimensional theory would be weaker interacting compared to
the bulk theory. Let us recall that same happened to gravity
on the bulk, where the coupling constant is stronger than the
effective 4D coupling, due to the volume suppression given in
Eq. (5), or equivalently in Eq. (10). Similar arguments apply
in general for the brane-bulk couplings. We shall use these
facts when considering gravity interactions more carefully for
test particles on the brane, which we shall do throughout the
next section.

Different compactifications would lead to different mode
expansions. Eq.(15), would had to be chosen according to the
geometry of the extra space, by typically using wave func-
tions for free particles on this space as the basis for the ex-
pansion. Extra boundary conditions associated with specific
topological properties of the compact space may also help
for a proper selection of the basis. A useful example is the
one dimensional orbifold,U(1)/Z2, which is built out of the
circle, by identifying the opposite points around zero. The
operations can be seen as reducing the interval of the origi-
nal circle to[0, π] only. Operatively, this is done by requir-
ing the theory to be invariant under the extra parity symme-
try Z2:y → −y. Under these symmetries, all fields should
pick up a specific parity. Even (odd) fields would then be ex-
panded into only cosine (sine) modes. Thus, odd fields do not
appear at the zero mode level of the theory, which also means
that the orbifolding projects half of the modes out of the KK
expansion.

2.4. Graviton couplings and the effective gravity inter-
action law

One of the first physical examples of a brane-bulk interac-
tion one may be interested in analyzing with some care is
the effective gravitational coupling of particles located on the
brane, which needs to understand the way gravitons couple to
brane fields. The problem has been extensively discussed by
Giudice, Ratazzi and Wells [18] and independently by Han,
Lykken and Zhang [19], assuming a flat bulk. Here we sum-
marize some of the main points. Starting from the action that
describes a particle on the brane

S =
∫

d4x
√
|g(ya = 0)| L , (18)

where the induced metricg(ya = 0) now includes the small
metric fluctuationshM,N over the flat space, which are also
called the graviton, such that

gM,N = ηM,N +
1

2M
δ/2+1
∗

hM,N . (19)

The source of those fluctuations are of course the en-
ergy on the brane,i.e. the matter energy momentum tensor√

gTµν = δS/δgµν , that apperars on the RHS of the Einstein
equations:

RM,N − 1
2
R(4+δ)gM,N = − 1

M2+δ∗
Tµνηµ

Mην
Nδ(δ)(y) .

The effective linearized coupling of matter to graviton fields
is then described by the action

Sint =
∫

d4x
hµν

Mn∗ /2 + 1
Tµν . (20)

It is clear that, from the effective four-dimensional point of
view, the fluctuationshM,N would have different 4D Lorentz
components.

(i) hµν clearly contain 4D Lorentz tensors, the true, actual
four-dimensional gravitons.

(ii) haµ behaves as a vector, the graviphotons.

(iii) Finally, hab behaves as a group of scalars (graviscalar
fields), one of which corresponds to the partial trace of
h (ha

a) that we shall later call the radion field.

To count the number of degrees of freedom inhM,N we
should first note thath is ann × n a symmetric tensor, for
n = 4 + δ. Next, general coordinate invariance of general
relativity can be translated into2n independent gauge fix-
ing conditions, half usually chosen as the harmonic gauge
∂MhM

N = (1/2)∂NhM
M . In all, there aren(n − 3)/2 inde-

pendent degrees of freedom. Clearly, forn = 4, one has the
usual two helicity states of a massless spin-two particle.

All those effective fields would of course have a KK de-
composition,

hMN (x, y) =
∑

~n

h
(~n)
MN (x)√

Vδ

ei~n·~y/R . (21)

Here~n = (n1, . . . , nδ), with all na integer numbers. Once
we insert the above expansion back intoSint, it is not hard
to see that the volume suppression will exchange theM∗ by
an MP suppression in the effective interaction Lagrangian
of a single KK mode. Therefore, all modes couple with the
strength of standard gravity. Briefly, only the 4D gravitons,
Gµν and the radion fieldσ, are coupled at the first order level
to the brane energy momentum tensor [18,19]

L = − 1
MP

∑

~n

[
G(~n)µν − κ

3
σ(~n)ηµν

]
Tµν . (22)
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Here, κ is a parameter of order one. Notice thatG(0)µν

is massless since the higher dimensional gravitonhMN has
no mass itself. That is the source of long range, four-
dimensional gravity interactions. It is worth remarking that
on the contrary,σ(0) would not be massless, otherwise
it should violate the equivalence principle, since it would
mean a long-range scalar (gravitational) interaction also.σ(0)

should get a mass from the stabilization mechanism that
keeps the extra volume finite. We shall come back to this
problem later on. From supernova constraints, such a mass
should be larger than10−3 eV [6].

Above Lagrangian runs over all KK levels, meaning that
brane particles can release any kind of KK gravitons into the
bulk. KK index~n is also the extra component of the momen-
tum, so they leave the brane, taking its energy away, in a clear
violation of the 4D conservation of energy. This could appear
in the future high-energy collider experiments, for instance,
as missing energy [5,7].

We started the section asking for the actual form of the ef-
fective gravitation interaction among particles on the brane.
Now that we know how gravitons couple to brane matter, we
can use this effective field theory point of view to calculate
what the effective gravitational interaction law should be. KK
gravitons are indeed massive, thus, the interaction mediated
by them is short-range. More precisely, each KK mode con-
tribute to the gravitational potential between two test parti-
cles of massesm1 andm2 located on the brane, separated by
a distancer, with a Yukawa potential

∆~nU(r) ' −GN
m1m2

r
e−m~nr = UN (r)e−m~nr . (23)

The total contribution of all KK modes, the sum over all KK
massesm2

~n = ~n2/R, can be estimated by the continuum KK
modes limit, to get

UT (r) ' −GNVδ(δ − 1)!
m1m2

rδ + 1
' U∗(r) . (24)

Experimentally, however, forr just belowR, only the very
first excited modes would be relevant, and so, the potential
one would see in short distance tests of Newton’s law [3]
should rather be of the form

U(r) ' UN (r)
(
1 + αe−r/R

)
, (25)

whereα is to account for the multiplicity of the very first
excited level.

3. Cosmology in models with flat extra dimen-
sions

3.1. Limits on Reheating Temperature due to Graviton
emission

Graviton production by brane processes may not be such a
harmless phenomenon. It may rather possess strong con-
straints on the theory when considering that the early Uni-
verse was an important resource of energy, which in the

present picture lies completely on the brane. How much
of this energy could have gone into the bulk without affect-
ing cosmological evolution? For large extra dimensions, the
splitting between two excited modes is pretty small,1/R. For
δ = 2 andM∗ at the TeV scale this means a splitting of just
about10−3 eV! For a process where the center mass energy
is E, up toN = (ER)δ KK modes would be kinematically
accessible. During Big Bang Nucleosynthesis (BBN), for in-
stance, whereE was about a few MeV, this already means
more than1018 modes. So many modes may be troublesome,
and one has to ask the question how hot the Universe could go
without losing too much energy. By looking at the effective
Lagrangian in Eq. (22), one can immediately notice that the
graviton creation rate, per unit time and volume, from brane
thermal processes at temperatureT is

σtotal =
(TR)δ

M2
P

=
T δ

M δ+2∗
.

The standard Universe evolution would be conserved, as far
as the total number density of KK gravitons produced re-
mains small when compared to photon number density. This
is a sufficient condition that however can be translated into a
bound for the reheating energy, since the hotter the medium
the more gravitons can be excited. It is not hard to see that
this condition implies [2]

ng

nγ
≈ T δ+1MP

M δ+2∗
< 1 . (26)

Equivalently, the maximun temperature our Universe could
reach without producing to many gravitons must satisfy

T δ+1
r <

M δ+2
∗

MP
. (27)

To give numbers, consider for instanceM∗ = 10 TeV and
δ = 2, which meansTr < 100 MeV, just about to what
is needed to have BBN working. The brane Universe with
large extra dimensions is then rather cold. This would be
reflected in some difficulties for those models trying to im-
plement baryogenesis or leptogenesis based on electroweak
energy physics or higher.

As a complementary note, we should mention that, since
thermal graviton emission is not restricted to the early Uni-
verse, one can expect this to be happening in any other en-
vironment. We have already mentioned colliders as an ex-
ample. But even the hot astrophysical objects can be sources
of gravitons. Gravitons emitted by stellar objects take away
energy, which contribute to cooling the star. The stringent
bounds onM∗ actually come from the study of this pro-
cess [6].

3.2. Dimensional reduction and the radion field

We are now ready to postulate the model that should de-
scribe the brane Universe evolution where the 4D Friedmann-
Robertson-Walker model must now be obtained as the effec-
tive zero limit, after dimensional reduction. To simplify the
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discussion, we will assume the extra space compactified into
an orbifolded torus,T δ/Z2, such that the extra coordinates
ya take on values in the interval[0, 1], and the theory is in-
variant under the mappingZ2:~y → −~y. As before, the brane
should be located atya = 0. Consider the metric in4 + δ
dimensions parameterized by

ds2 = gABdxAdxB = gµνdxµdxν − habdyadyb. (28)

Note that since we have takenya to be dimensionless,hab

has length dimension two. Also note that we are not con-
sidering in our parameterization the presence of vector-like
connectionAa

µ pieces, which are common in Kaluza Klein
theories. This is because we would only be interested in the
zero mode part of the metric, andAa

µ is odd underZ2 par-
ity transformation, and therefore it vanishes at the zero mode
level.

Next, let us reduce the Einstein-Hilbert action

S =
1

2k2∗

∫
d4x dδy

√
|g(4+δ)|R(4+δ) (29)

to four dimensions, considering only the zero mode level.
Here,1/k2

∗ = M2+d
∗ . One then obtains

S =
1

2k2

∫
d4x

√−g(4)

√
h

Vδ

{
R(4) −

1
4
∂µhab ∂µhab

−1
4
hab∂µhab · hcd∂µhcd

}
, (30)

where1/k2 = M2
p . HereVδ stands for the stable volume of

the extra space that corresponds to relationship (10).
In order to obtain the4 dimensional scalar curvature term

in canonical form, we need to perform a conformal transfor-
mation on the metric,

gµν → e2ϕgµν , (31)

designed to cancel the extra
√

h/Vδ coefficient ofR(4) in
Eq. (30). We takeϕ such that

e2ϕ
√

h/Vδ = 1 . (32)

The action in Eq. (30) is then transformed into

S =
1

2k2

∫
d4x

√−g(4)

{
R(4) −

1
4
∂µhab ∂µhab

+
1
8
hab∂µhab · hcd∂µhcd

}
. (33)

Next, for the four-dimensional part of the metric,gµν , we
can now assume the standard Friedmann-Robertson-Walker
(FRW) metric with a flat geometry,i.e.

gµν = diag(1,−a(t),−a(t),−a(t)) , (34)

for an isotropic and homogeneous (brane) Universe, whereas
we consider a diagonal form for theh part of the metric:

hab = b(t)2δab (35)

Obviously, the physical volume of the extra space is dynami-
cal, and given as

volphys =
√

h = bδ(t) .

If the bulk is stable, meaning thatb 6= b(t), the physical size
of the extra dimension is given by the identificationb = R.
This turns out to be the stabilized condition, when one as-
sumes the volume to have some dynamics, which should be
reached at some given finite timet.

The action can be simplified by defining the radion field
by

σ(t) = MP

√
δ(δ + 2)

2
ln

(
b(t)
R

)
. (36)

This has a straightforward physical interpretation: it is related
to the variation of the physical size of the volume. Notice that
set to zero when the stabilized volume is reached. In these
terms one gets the effective action

S=
∫

d4x

√−g(4)

2k2
R(4)+

∫
d4x

√−g(4)

2
(∂µσ) (∂µσ) . (37)

The very first term corresponds precisely to the 4D gravity
action of the FRW model. On the other hand, last term can be
identified as the action of a running mode. It is unstable under
perturbations, which means that any small perturbation on the
radion field can make the volume of the extra space expand
or contract without control. This is what is called the radion
stabilization problem, and it is a particular case of the more
general moduli problem inherited from string theory. Under-
standing the stability of the volume of the compact space can
be seen as finding the mechanism that provides the force that
keeps the radion fixed at its zero value. Thus, one must find
the potentialσ which provides such a force. The origin of this
potential is largely unknown so far, although some ideas can
be found in the literature, see for instance [20, 21]. We shall
not comment on this here, but rather assume that such a po-
tential should exist. As we shall discuss later on, the detailed
form of U(σv) may also be important to understanding the
dynamics of the radions during and after inflation. As a par-
enthetical note, the physical mass of the radion is actually re-
lated to the second derivative of the potential at its minimum,
and certainly, to avoid violation of the equivalence principle,
it should be larger than about10−3 eV.

As already mentioned, radion couples to matter fields.
This is regardless of whether they are brane or bulk fields.
After dimensionally reducing the action in Eq. (11), and in-
cluding the conformal transformation that we performed on
the metric, we get for the scalar field the effective action at
the zero mode level

S[φ]=
∫

d4x
√−g(4)

[
1
2
∂µφ∂µφ−e−ασ/MpV (φ)

]
, (38)

where the coupling constant is given byα =
√

2/δ(δ + 2).
The case of a brane scalar field turns out to have the same
functional form for the effective action as above.
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3.3. Inflation

It is still possible that, due to some dynamical mechanism,
the extra dimension gets stabilized long before the Universe
exited from inflation, as in some scenarios in Kaluza-Klein
(KK) theories, where the stabilization potential is generated
by the Casimir force [20,21]. Other possible sources for this
stabilizing potential could be present in brane-bulk theories;
for instance, the formation of the brane at very early times
may give rise to vacuum energy that plays a role in eventu-
ally stabilizing the extra dimension. Let us for the moment
consider stable bulk (b = R), and then address the problem of
brane cosmological evolution. It is clear from the results of
the previous section, by takingσ = 0, that the brane cosmo-
logical theory behaves as four-dimensional. The usual FRW
model is therefore a good set up to analyze cosmology on the
brane. During the inflation period, Hubble expansion is given
as usual by

H ∼
√

V (φ)
3M2

P

, (39)

with V (φ) the potential of the slow rolling inflaton. A brane
inflaton, however, is troublesome [22]. Consider for instance
a typical chaotic inflation scenario [23], where the potential is
simply given byV (φ) = (1/2)m2φ2. If the highest scale in
the theory isM∗, during inflation, a brane inflaton potential
can-not have values larger thanM4

∗ , regardless of the number
of extra dimensions, just as in the usual 4D theories where the
scale of the potential is not supposed to be larger than Planck
scale. Next, since successful inflation (the slow roll condi-
tion) requires that the inflaton mass be less than the Hubble
parameter, we have the inequality

m ≤ H ≤ M2
∗/MP . (40)

For M∗ ∼ 1 TeV, one then gets the boundm ≤ 10−3 eV,
which is a severe fine tuning constraint on the parameters of
the theory. Furthermore, such a light inflaton would certainly
face troubles for reheating. Such a light inflaton would only
decay into photons. The inflaton is believed to be charge-
less, so that, such a decay can only occur via suppressed loop
processes. The above constraint further implies that inflation
occurs on a time scaleH−1 much greater thanM−1

∗ . As
emphasized by Kaloper and Linde [22], this is conceptually
very problematic since it requires that the Universe should
be large and homogeneous enough from the very beginning
so as to survive the large period of time fromt = M−1

∗ to
t = H−1.

Moreover, for chaotic inflation one gets a tiny contribu-
tion to density perturbations

δρ

ρ
∼ 50

m

MP
≤ 10−31. (41)

The situation does not improve for more elaborate models.
For the case where theλφ4 term dominates the density, for
instance, one gets the same fine tuning condition as in four

dimensions,(δρ/ρ) ∼ λ1/2. Assuming Hybrid inflation [24],
with the potential

V (φ, σ) =
1
4λ

(
M2 − λσ2

)2
+

1
2
m2φ2 + g2φ2σ2,

does not help either [22], since it needs either a value ofm
six orders of magnitude smaller or a strong fine tuning on
the parameters, to match the COBE result(δρ/ρ) ∼ 10−5.
Certainly, the problem would be relaxed if the fundamental
scaleM∗ were much larger than a few TeV; nevertheless, this
means a shorter radius and most of the phenomenological in-
terest in the model would also be gone.

A simple way to solve this problem could be by assuming
that the inflaton is the zero mode of a bulk scalar field [25].
As such, its effective potential energy is enhanced by the vol-
ume of the extra space, which allows it to have larger densi-
ties contributing to the Hubble expansion. Indeed, one now
has

Veff (φ0) = Vδ Vbulk(φ0) ≤ M2
∗MP ;

where the RHS comes from the natural upper bound
Vbulk(φ0) < M4+δ

∗ . This immediately means that a non-
stringent bound exists for Hubble,H ≤ M∗, and non su-
perlight inflaton is required. This also keeps the explanation
of the flatness and horizon problems as usual, since now the
time for inflation could be as short as in the standard theory.
A hybrid inflation model now accommodates a nice predic-
tion for density perturbations [25],

δρ

ρ
∼

( g

2λ3/2

) M3
∗

m2
0MP

, (42)

which can easily give COBE normalization. Reheating would
now be produced by the decay of the inflaton into brane stan-
dard fields. The effective brane-bulk coupling has a Planck
suppression on it, which amounts to a low reheating temper-
ature, that nevertheless comes out to be just right to allow for
a successful BBN process. To give numbers, let us consider
TR ∼ 0.1

√
ΓφMP` and a typical rate for the decay into hig-

gsesΓφ ∼ M4
∗/(32πM2

P mφ), and usemφ around0.1M∗,
with M∗ ∼ 100TeV , one then getsTR ∼ 100 MeV. It is
worth mentioning that this number is well within the con-
straints due to graviton thermal production (27), discussed
previously.

It is worth noticing that the number of e-foldings is usu-
ally much less than60 if the scale of inflation is low, espe-
cially if the scale of inflation is as low asHinf ≈ M∗ ∼ TeV.
It has already been shown in extra dimensional mod-
els [26,27] that the number of e-foldings required for struc-
ture formation would be43, provided the universe reheats
by Trh ∼ 10− 100 MeV. Therefore, it is only the last43 e-
foldings of inflation which are important for the purpose of
density perturbations.

As an alternative way to solve inflaton problems, Arkani-
Hamedet al. [28] proposed a scenario where it was assumed
that inflation occurs before the stabilization of the internal
dimensions. With the dilaton field playing the role of the
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inflaton field, they argued that early inflation, when the in-
ternal dimensions are small, can overcome the complications
we mention at the beginning of the present section. How-
ever, one cannot allow the extra dimension to grow too much
during inflation, since large changes in the internal size will
significantly affect the scale invariance of the density per-
turbations, The radius of the extra dimension must remain
essentially static while the Universe expands (slow rolling);
this needs quite a flat potential which may cause trouble for
later stabilization. The scenario may also pose some compli-
cations for the understanding of reheating since the radion is
long-lived, and its mass could be very small (about1/R).

Another possible way out was proposed in Ref. 30, where
it was suggested that the brane could be out of its stable point
at early times, and inflation is induced on the brane by its
movement through the extra space. The common point of
last two scenarios is that they assume an unstable extra di-
mension throughout the inflation process. This may also be
troublesome, as we shall discuss in the next section

3.4. Cosmological Radion problem

It is conceptually hard to accept the fact that the extra di-
mensions were at all times as large as suggested by the ADD
model. Just as it is natural to think that all our observable
Universe started as a small patch of size∼ M−1

∗ , it seems
so for the extra dimensions. From its definition, an initial
valuebin = M−1

∗ means that the radion started with a large
negative value,

σv(0) = −Mp

√
2(δ + 2)

δ
ln

(
Mp

M∗

)
. (43)

Since the stable point has been defined such thatσ|b=R = 0,
one has to conclude that the radion should roll down its po-
tential from negative values as the extra dimensions expand.
If the radion potential were flat enough in this range of values,
it would be natural to think that the radion could play the role
of the inflaton. The idea is enforced by the large absolute
initial value of σ, which may already satisfy chaotic initial
conditions for driving inflation. To complete the picture, one
has at some point to be able to calculate the radion potential
from some fundamental physics and prove that it is indeed
flat for negativeσ values, whereas it grows fast enough for
positiveσ’s to avoid dynamically driving the volume much
beyond the expected stable valueb = R. Without the ac-
tual potential, it is hard to make any serious calculation for
density perturbations or even reheating temperatures. Cer-
tainly a simple mass term like potentialU(σ) ∼ m2σ2 would
not do it. The reason is two-fold. First, we are far away
from the stable point where the radion mass is defined, so
the potential would hardly be well described by just the sec-
ond term of its Taylor expansion. Second, and more impor-
tant, the simple chaotic potential predicts insufficient density
fluctuations for smallM∗. Indeed, the calculation gives [25]
δρ/ρ ' m/MP ¿ M∗/MP .

Also interesting is the possibility of producing inflation
with the help of a bulk inflaton in the presence of the ra-
dion field. This analysis can help us to understand whether
our previous discussion makes sense at all . We now turn
our attention to the action in Eq. (38). Notice that the in-
flaton to radion coupling is given only through the infla-
ton potential. The coupling induces an effective mass term
for the radion which is proportional to the Hubble scale,
m2

eff ∼ α2Veff (φ)/MP = α2H2. Consequently, the radion
gets a very steep effective potential term, which easily drives
the radion towards the minimum within a Hubble time [30].
Indeed, once the Hubble induced mass term is switched on
the radion will follow the evolution

σ(t) ∼ σ0 e−(m2
eff /3H)t , (44)

whereσ0 is the initial amplitude. Naively, one could think
that this should solve the problem of stabilization, provided
inflation lasts a bit longer than this dynamical stabilization
process. Nevertheless, it has been realized that, although
this stabilization does take place, it happens that the ef-
fective minimum of the potential does not coincide with
σ = 0 [31,32]. Actually, it generally happens that the global
minimum forσ is displaced during inflation when the radion
potential is quite flat [31]. To see this, let us notice that the
total potential has the form

Utotal(σ, φ) = U(σ) + e−ασ/MP Veff (φ) , (45)

where by definition,U(σ) has a minimum atσ = 0. Dur-
ing inflation,Veff defines the Hubble scale, as already men-
tioned, and it is taken as a constant. The global minimum for
σ of this potential is the solution to the equation

U ′(σ)− α

MP
e−ασ/MP Veff = 0 . (46)

Clearly, σ = 0 is not a global minimum. In fact, in order
to match both terms of the equation, the minimum should
lie within the positive range ofσ values. This implies that,
during inflation, the extra space grows beyond its stable size
(b = R), and gradually comes back to the final stable volume
Vδ as the inflaton energy diminishes [31,32]. How far we are
from the expected valueVδ depends on the actual profile of
the radion potential. For steeper potentials, it is easy to see
that the displacement could be negligible for practical pro-
poses; however, that is not so for flatter radion potentials [32],
since a larger value onσ would be needed in the exponential
of the last equation to match a small value ofU ′(σ). One
interesting conclusion arises: inflation could in principle be
consistently analyzed in the setup of a stable bulk, as we did
in the previous section; nevertheless, post-inflationary effects
of the radion dynamics have yet to be studied carrefully.
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4. Non Factorizable Geometries: Randall-
Sundrum Models.

4.1. Warped Extra Dimensions

So far we have been working on the simplest picture, where
the energy density on the brane does not affect the space-time
curvature, but rather it has been taken as a perturbation on the
flat extra space. For large brane densities, this may not be the
case. The first approximation to the problem can be done by
considering a five dimensional model where branes are lo-
cated at the two ends of a closed fifth-dimension. Clearly,
with a single extra dimension, the gravity flux produced by
a single brane aty = 0 cannot softly close into itself at the
other end of the space, making the model unstable, just as a
charged particle living in a one-dimensional world does not
define a stable configuration. Stability can only be insured by
the introduction of a second charge (brane). Furthermore, to
balance brane energy and still get flat (stable) brane metrics,
one has to compensate for the effect on the space by the in-
troduction of a negative cosmological constant on the bulk.
Thus, the fifth dimension would be a slice of an Anti de-Siter
space with a flat brane at its edges. Thus, one can keep the
branes flat by paying the price of curving the extra dimen-
sion. Such curved extra dimensions are usually referred to
as warped extra dimensions. Historically, the possibility was
first mentioned by Rubakov and Shaposhnikov in Ref. [9],
suggesting that the cosmological constant problem could be
understood in this light: the matter field vacuum energy on
the brane could be canceled by the bulk vacuum, leaving a
zero (or almost zero) cosmological constant for the brane ob-
server. No specific model was given there, though. It was
actually Gogberashvili [13] who provided the first exact so-
lution for a warped metric; nevertheless, the model is best
now after Randall and Sundrum (RS) presented the solution
in the context of the hierarchy problem [14]. Later devel-
opments suggested that the warped metrics could even pro-
vide an alternative to compactification for the extra dimen-
sions [15, 16]. In what follows we shall discuss the concrete
example as presented by Randall and Sundrum.

4.2. Randall-Sundrum background

Let us consider the following setup. A five dimensional space
with an orbifolded fifth dimension of radiusr and coordinate
y which takes values in the interval[0, πr]. Consider two
branes at the fixed (end) pointsy = 0, πr. with tensionsτ
and−τ respectively. For reasons that should become clear
later on, the brane aty = 0 (y = πr) is usually called the
hidden (visible) or Planck (SM) brane. We shall also assign
to the bulk a negative cosmological constant−Λ. Contrary to
our previous philosophy in the ADD model, we shall here as-
sume that all parameters are of the order of the Planck scale.
Next, we ask for the solution that gives a flat induced met-
ric on the branes such that the 4D Lorentz invariance is re-
spected. To get a consistent answer, one has to require that,

at every point along the fifth dimension, the induced metric
should be the ordinary flat 4D Minkowski metric. Therefore,
the components of the 5D metric depend only on the fifth
coordinate. Hence, one gets the ansatz

ds2 = gABdxAdxB = ω2(y)ηµνdxµdxν − dy2 , (47)

where we parameterizeω(y) = e−β(y). The metric, of
course, can always be written in different coordinate systems.
Particularly, notice that one can easily go to the conformally
flat metric, where there is an overall factor in front of all co-
ordinates,ds2 = ω2(z)[ηµνdxµdxν − dz2], where the new
coordinatez is a function of the old coordinatey only.

Classical action containsS = Sgrav + Sh + Sv, where

Sgrav =
∫

d4x dy
√

g(5)

(
1

2k2∗
R5 + Λ

)
(48)

gives the bulk contribution, whereas the visible and hidden
brane actions are given by

Sv,h = ± τ

∫
d4x

√−gv,h , (49)

wheregv,h stands for the induced metric at the visible and
hidden branes, respectively.

Five-dimensional Einstein equations for the given action,

GMN = RMN − 1
2
gMNR(5)

= −k2
∗Λ gMN + k2

∗τ

√
−gh

g(5)
δµ
Mδν

Ngµνδ(y)

− k2
∗τ

√
−gv

g(5)
δµ
Mδν

Ngµνδ(y − πr) (50)

are easily reduced into two simple, independent equations.
First, we can expand theGMN tensor components on the
LHS of the last equation, using the metric ansatz (47), to
show

Gµν = −3 gµν

(−β′′ + 2(β′)2
)

; (51)

Gµ5 = 0 ; and G55 = −6 g55(β′)2 . (52)

Next, using the RHS of Eq. (50), one gets

6(β′)2 = k2
∗Λ ; (53)

and
3β′′ = k2

∗τ [δ(y)− δ(y − πr)] . (54)

This last equation clearly defines the boundary conditions
for the functionβ′(y) at the two branes (Israel conditions).
Clearly, the solution isβ(y) = µ|y|, where

µ2 =
k2
∗Λ
6

=
Λ

6M3∗
, (55)

with the subsidiary fine tuning condition

Λ =
τ

6M3∗
, (56)
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obtained from the boundary conditions, which is equivalent
to the exact cancellation of the effective four-dimensional
cosmological constant. The background metric is therefore

ds2 = e−2µ|y|ηµνdxµdxν − dy2 . (57)

The effective Planck scale in the theory is then given by

M2
P =

M3
∗

µ

(
1− e−2µrπ

)
. (58)

Notice that for a larger, the exponential piece becomes neg-
ligible, and the above expression has the familiar form given
in Eq. (10) for one extra dimension, of (effective) size1/µ.

4.3. Visible versus Hidden Scale Hierarchy

The RS metric has a peculiar feature. Consider a given dis-
tance,ds2

0, defined by fixed intervalsdxµdxµ from brane co-
ordinates. If one maps the interval from hidden to visible
brane, it would appear here exponentially smaller than what
is measured at the hidden brane, i.e.ds2

0|v = ω2(y)ds2
0|h.

This scaling property would have interesting consequences
when introducing fields to live on any of the branes. Particu-
larly, let us discuss what happens for a theory defined on the
visible brane.

The effect of the RS background on visible brane field pa-
rameters is non-trivial. Consider for instance the scalar field
action for the visible brane at the end of the space given by

SH =
∫

d4xω4(πr)
[
ω−2(πr)∂µH∂µH − λ

(
H2 − v̂2

0

)2
]
.

As a rule, we choose all dimensionful parameters on the the-
ory to be naturally given in terms ofM∗, and this to be close
to MP . So we takev0 ∼ M∗. After introducing the normal-
izationH → ω−1(πr)H = eµrπH to recover the canonical
kinetic term, the above action becomes

SH =
∫

d4x
√−g

[
ηµν∂µH∂νH − λ

(
H2 − v2

)2
]
, (59)

where the vacuumv = e−µrπ v̂0. Therefore, by choosing
µr ∼ 12, the physical mass of the scalar field, and its vac-
uum, would naturally appear at the TeV scale rather than at
the Planck scale, without the need for any large hierarchy on
the radius [14]. Notice that, on the contrary, any field lo-
cated on the other brane will have a mass of the order ofM∗.
Moreover, it also implies that no particles exist in the visible
brane with masses larger than TeV. This observation has been
considered a nice possible way of solving the scale hierarchy
problem. For this reason, the original model proposed that
our observable Universe resided on the brane located at the
end of the space, the visible brane. So the other brane really
becomes hidden. This two brane model is sometimes called
RSI model.

4.4. Kaluza Klein decomposition

As a further note, notice that since there is 4D Poincaré
invariance everywhere, every bulk field on the RS back-
ground can be expanded into four-dimensional plane waves
φ(x, y) ∝ eipµxµ

φp(y). This would be the basis of the
Kaluza Klein decomposition, that we shall now discuss. Note
also that the physical four momentum of the particle at any
position of the brane goes aspµ

phys(y) = ω−1(y)pµ. There-
fore, modes which are soft on the hidden brane, become
harder at any other point of the bulk.

Let us consider again a bulk scalar field, now on the RS
background metric. The action is then

S[φ] =
1
2

∫
d4x dy

√
g(5)

(
gMN∂Mφ∂Nφ−m2ϕ2

)
. (60)

By introducing the factorizationφ(x, y) = eipµxµ

ϕ(y) into
the equation of motion, one gets that the KK modes satisfy

[−∂2
y + 4µ sgn(y)∂y + m2 + ω−2(y) p2

]
ϕ(y) = 0 , (61)

wherep2 = pµpµ can also be interpreted as the effective
four-dimensional invariant mass,m2

n. It is possible, through
a functional re-parameterization and a change of variable, to
show that the solution forϕ can be written in terms of Bessel
functions of indexν =

√
4 + m2/µ2 [33,34], as follows

ϕn(z)=
1

Nnω2(y)

[
Jν

(
mn

µω(y)

)
+bnνYν

(
mn

µω(y)

)]
, (62)

whereNn is a normalization factor,n labels the KK index,
and the constant coefficientbnν has to be fixed by the conti-
nuity conditions at one of the boundaries. The other boundary
condition would serve to quantize the spectrum. For more de-
tails the interested reader can see Ref. 34. Here we will just
make some few comments about. First, forω(πr) ¿ 1, the
discretization condition that one gets forxnµ = mn/µω(y)
looks as

2Jν(xnµ) + xnνJ ′ν(xnµ) = 0 . (63)

Therefore, the lowest mode satisfiesx1µ ∼ O(1), which
means thatm1 ' µe−µrπ. For the same range of parame-
ters we considered before to solve the hierarchy problem, one
gets that lightest KK mode would have a mass of order TeV
or so. Next, for the special case of an originally massless field
(m = 0), one hasν = 2, and thus the first solution to Eq. (63)
is justx12 = 0, which indicates the existence of a massless
mode in the spectrum. The next zero of the equation would
be of order one again, and thus the KK tower would start
at µe−µrπ. The spacing between two consecutive KK levels
would again be of about the same order. There is no need
to stress that this would actually be the case of the graviton
spectrum. This makes the whole spectrum completely dis-
tinct from the former ADD model. With such heavy graviton
modes, one would not expect to have visible deviations on
the short distance gravity experiments, nor constraints from
BBN or star cooling.
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4.5. Radion Stabilization

The way the RSI model solves the hierarchy problem be-
tweenmEW andMP depends on the interbrane spacingπr.
Stabilizing the bulk becomes in this case an important issue
if one is willing to keep this solution. The dynamics of the
extra dimension would give rise to a runaway radion field, as
it does for the ADD case. A simple exploration of the met-
ric (57), by setting a time dependent bulk radiusr(t), shows
that

ds2 → e−2µr(t)|φ|ηµνdxµdxν − r2(t)dφ2 , (64)

with φ the angular coordinate on the half circle[0, π]. This
suggests that, if the interbrane distance changes, the visible
brane expands (or contracts) exponentially. The radion field
associated whit the fluctuations of the radius,b(t) = r(t)−r,
is again massless and thus it violates the equivalence princi-
ple. Moreover, without a stabilization mechanism for the ra-
dius, our brane could expand forever. Some early discussions
on this and other issues can be found in Refs. 34, 36, and 37.

The simplest and most elegant solution for stabilization
in RSI was proposed by Goldberger and Wise [33]. The
central idea is really simple: if there is a vacuum energy on
the bulk, whose configuration breaks translational invariance
along a fifth dimension, say〈E〉(y). Then, the effective four-
dimensional theory would contain a radius-dependent poten-
tial energy

V (r) =
∫

dy ω4(y) 〈E〉(y) .

Clearly, if such a potential has a non-trivial minimum, stabi-
lization would be insured. The radion would feel a force that
would tend to keep it at the minimum. The vacuum energy
〈E〉(y) may come from many sources. The simplest possi-
bility one could think of is a vacuum induced by a bulk scalar
field, with non-trivial boundary conditions,

〈φ〉(0) = vh and 〈φ〉(πr) = vv . (65)

The boundary conditions would amount for a non-trivial pro-
file of 〈φ〉(y) along the bulk. Such boundary conditions may
arise, for instance, ifφ has localized interaction terms on the
branes, asλh,v(φ2−v2

h,v)2, which by themselves develop non
zero vacuum expectation values forφ located on the branes.
The vacuum is then thex-independent solution to the equa-
tion of motion (61), which can be written as

〈φ〉(y) = ω−1(y)
[
Aω−ν(y) + Bων(y)

]
, (66)

whereA and B are constants to be fixed by the boundary
conditions. One then obtains the effective 4D vacuum energy

Vφ(r) = µ(ν + 2)A2
(
ω−2ν(πr)− 1

)

+ µ(ν − 2)B2
(
1− ω2ν(πr)

)
(67)

After a lengthly calculation, and in the limit wherem ¿ µ,
one finds that the above potential has a non trivial minimum
for

µr =
(

4
π

)
µ2

m2
ln

[
vh

vv

]
. (68)

Hence, forln(vh/vv) of order one, the stable value for the
radius is proportional to the curvatureµ parameter, and in-
versely to the squared mass of the scalar field. Thus, one
only needs thatm2/µ2 ∼ 10 to getµr ∼ 10, as needed for
the RSI model.

One might get a bit suspicious about whether the vac-
uum energy〈φ〉(y) may disturb the background metric. It
actually does, although the correction is negligible as the cal-
culations for the Einstein-scalar field coupled equations may
show [33,36].

5. Infinite Extra Dimensions

The background metric solution (57) does not actually need
the presence of the negative tension brane to hold as an
exact solution to Einstein equations. Indeed the warp
factor ω(y)=e−µ|y| has been determined only by the Is-
rael conditions at they = 0 boundary, that is, by us-
ing ω′′=µ2ω−µωδ(y) in Einstein equations, which implies
equations (55) and (56). It is then tempting to ‘move’ the
negative tension brane to infinity, which gives a non-compact
fifth dimension. The picture becomes esthetically more ap-
pealing; it has no need for compactification. Nevertheless,
one must now ask the question of whether such a possibil-
ity is at all consistent with observations. It is clear that the
Newton’s constant is now simply

GN = µG∗ (69)

–just take the limitr → ∞ in Eq. (58)–, which reflects the
fact that although the extra dimension is infinite, gravity re-
mains four dimensional at large distances (forµr À 1). This
is, in other words, only a consequence of the flatness of the
brane. We shall expand our discussion on this point in the
following sections. Obviously, with this setup, usually called
the RSII model, we are giving up the possibility of explaining
the hierarchy between Planck and electroweak scales. The in-
terest on this model remains, however, due to potentially in-
teresting physics at low energy, and also due to its connection
to the AdS/CFT correspondence [37].

Although the fifth dimension is infinite, the pointy = ∞
is in fact a particle horizon. Indeed, the first indication comes
from the metric, sinceω(y → ∞)=0. The confirmation
would come from considering a particle moving away from
the brane on the geodesicsyg(t)=(1/2µ) ln(1 + µ2t2) [38].
The particle accelerates towards infinity, and its velocity
tends to the speed of light. The proper time interval is then

dτ2 = ω2(yg(t))dt2 −
(

dyg

dt

)2

dt2 . (70)

Thus, the particle reaches infinity at an infinite timet, but in
a finite proper timeτ = π/2µ.
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5.1. Graviton Localization

In order to understand why gravity on the brane remains four-
dimensional at large distances, even though the fifth dimen-
sion is non-compact, one has to consider again the KK de-
composition for the graviton modes, with particular interest
in the shape for the zero mode wave function. Consider first
the generic form of the perturbed background metric

ds2 = ω2(y)gµνdxµdxν + Aµdxµdy − b2dy2 .

Due to the orbifold projection,y → −y, the vector com-
ponentAµ must be odd, and thus it does not contain a zero
mode. Therefore, at the zero mode level only the true four-
dimensional graviton and the scalar (radion) should survive.
Let us concentrate on the 4D graviton perturbations only. In-
troducing the small field expansion asgµν = ηµν + ω−2hµν ,
and using the gauge fixing conditions∂µhµ

ν = 0 = hµ
µ, one

obtains the wave equation
[
∂2

y − 4µ2 − m2

ω2(y)
− 4µδ(y)

]
h = 0 , (71)

where the Lorentz indices should be understood. In the
above equation the massm2 stands for the effective four-
dimensional masspµpµ = m2. It should be noticed that
the mass spectrum would now be continuous, and starts at
m = 0. In this situation the KK are normalized to the delta
function,

∫
dyω−2(y)hm(y)hm′ = δ(m−m′).

Introducing the functional re-parameterization

z =
1
µ

sgn(y)
(
ω−1(y)− 1

)

and
Ψ(z) = ω−1/2(y)h(y) ,

one can write the equation of motion for the KK modes as the
Scḧodinger equation

[
−1

2
∂2

z + V (z)
]

Ψ(z) = m2Ψ(z) (72)

with a ‘volcano potential’

V (z) =
15µ2

8(µ|z|+ 1)2
− 3µ

2
δ(z) , (73)

which peaks as|z| → 0 but has a negative singularity right
at the origin. It is well known from the quantum mechan-
ics analog that such delta potential has a bound state, whose
wave function peaks atz = 0, which also means aty = 0.
In other words, it appears to be localized at the brane. Such
a state is identified as our four-dimensional graviton. Its lo-
calization is the physical reason why gravity still behaves as
four dimensional at the brane.

Indeed, the wave function for the localized state is

Ψo(z) =
1

µ(|z|+ 1/µ)3/2
, (74)

whereas the KK mode wave functions in the continuum are
written in terms of Bessel functions, in close analogy to
Eq. (62), as

Ψm ∼ s(z)
[
Y2

(
m|z|+ 1

µ

)
+

4µ2

πm2
J2

(
m|z|+ 1

µ

)]
,

wheres(z) = (|z|+ 1/µ)1/2. By properly normalizing these
wave functions using the asymptotics of the Bessel functions,
it is possible to show that form < µ the wave function at
brane has the value

hm(0) ≈
√

m

µ
. (75)

The coupling of gravitons to the brane is therefore weak for
the lightest KK graviton states. The volcano potential acts as
a barrier for those modes. The production of gravitons at low
energies would then be negligible.

5.2. Gravity on the RSII brane

The immediate application of our last calculations is on the
estimation of the effective gravitational interaction law at the
brane. The reader should remember that the effective interac-
tion of brane matter to gravitons ishµν(0)Tµν . So it involves
the evaluation of the graviton wave function at the brane po-
sition, as expected. Therefore the graviton exchange between
two test particles on the brane separated by a distancer gives
the effective potential

URSII(r) ≈ UN (r)


1 +

∞∫

0

dm

µ

m

µ
e−mr


 (76)

= UN (r)
[
1 +

1
µ2r2

]
. (77)

Notice that the correction looks exactly like in the two ex-
tra dimensional ADD case, with1/µ as the effective size of
the extra dimensions. Thus, from the brane point of view,
the bulk should appear as compact, at least from the gravita-
tional point of view. The conclusion is striking. There could
be non-compact extra dimensions and yet scope to our obser-
vations!.

5.3. Higher dimensional generalization

The RSII model, which provides a serious alternative to com-
pactification, can immediately be extended to a larger num-
ber of dimensions. First, notice that the metric (57) has come
from the peculiar properties of co-dimension one objects in
gravity. Thus, it is obvious that the straightforward general-
ization should also contain some co-dimension one branes in
the configuration. Our brane, however should have a larger
co-dimension. Let us consider a system ofδ mutually inter-
secting(2+ δ) branes in a(4+ δ) dimensional AdS space, of
cosmological constant−Λ. All branes should have a positive
tensionτ . Clearly, the brane intersection is a 4 dimensional
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98 A. PÉREZ-LORENZANA

brane, where we assume our Universe lives. Intuitively, each
of the (2 + δ) branes would try to localize the graviton to
itself, just as the RSII brane does. Consequently, the zero
mode graviton would be localized at the intersection of all
branes. This naive observation can indeed be confirmed by
solving the Einstein equations for the action [16]

S =
∫

d4x dδy
√

g(4+δ)

(
1

2k∗
R(4+δ) + Λ

)

−
∑

all branes

τ

∫
d4x dδ−1y

√
g(3+δ). (78)

If the branes are all orthogonal to each other, it is straightfor-
ward to see that the space consists of2δ equivalent slices of
AdS space, glued together along the flat branes. The metric,
therefore, would be conformally flat. Thus, one can write it,
using appropriate bulk coordinates, as

ds2
(4+δ) = Ω(z)

(
ηµνdxµdxν − δkl dzkdzl

)
(79)

with the warp factor

Ω(z) =
1

µ
∑

j |zi|+ 1
, (80)

where theµ curvature parameter is now

µ2 =
2k2
∗Λ

δ(δ + 2)(δ + 3)
, (81)

which is a generalization of the relation given in Eq. (55).
Similarly, the fine tuning condition (56) now looks like

Λ =
δ(δ + 3)
8(δ + 2)

τ2k2
∗ . (82)

The effective Planck scale is now calculated to be

M2
P = M

(δ+2)
∗

∫
dδzΩ(2+δ) =

2δδδ/2

(δ + 1)!
M

(δ+2)
∗ Lδ , (83)

for L = 1/
√

δµ. Notice that this expression resembles the
ADD relationship given in Eq. (10), withL as the effective
size of the extra dimensions.

Graviton localization can now be seen by perturbing the
metric with ηµν → ηµν + hµν in Eq. (79), and writing the
equation of motion forhµν in the gaugehµ

µ = 0 = ∂µhµν ,
and in conformal coordinates, to obtain forΨ = Ω(δ+2)/2h
the linearized equation

[
−1

2
m2 +

(
−1

2
∇2

z + V (z)
)]

Ψ̂ = 0 , (84)

which is again nothing other than a Schödinger equation with
the effective potential

V (z) =
δ(δ + 2)(δ + 4)µ2

8
Ω− (δ + 2)µ

2
Ω

∑

j

δ(zj). (85)

Indeed, the spectrum has a massless bound state local-
ized around the intersection of all delta function potentials

(z = 0), which isΨbound ∼ Ω(δ+2)/2(z). Since the potential
falls off to zero for a largez, there would also be a continuum
of modes. Since the height of the potential near the origin
is µ2, all modes with small masses,m < µ will have sup-
pressed wave functions, while those with large masses will
be unsuppressed at the origin. Therefore, the contribution of
the lightest modes to the gravitational potential for two test
particles at the brane would again be suppressed as in the
RSII case. The correction to Newton’s law is [16]

∆U(r) ∼ UN (r)
(

L

r

)δ

, (86)

which again behaves as in the ADD case, mimicking the case
of compact dimensions, though this is not the case.

6. Brane Cosmology

Let us now discuss what modifications are introduced to cos-
mology if one considers the RSII setup. One of the first things
that one needs to know is the time dependence of the metric.
As the bulk curvature arose to compensate for the brane ten-
sion in order to keep the brane flat, once a time dependent en-
ergy densityTµν is introduced on the brane, as needed for our
Universe, the warping will also become time dependent, and
so one must reconsider the RS solution to five-dimensional
Einstein equations. The problem was first addressed by Bi-
netruyet al. in Refs. 40 and 41. It has also been noted that
the Friedmann equation could be recovered on the brane in
the low energy limit (ρ <¿ τ ), on the basis of the fine tun-
ing (56), even thought the metric is not static [41–43]. Here
we shall discuss some of these results.

We start by considering what the metric ansatz should be
for brane cosmology, assuming that the only energy sources
are the brane energy momentum tensor,Tµν , and the negative
cosmological constant of the brane. We adopt the cosmolog-
ical principle of isotropy and homogeneity in the three space
dimensions of the brane; thus, the most generalTµν has a
diagonal form, parameterized by energy density,ρ, and pres-
sure,P ,

Tµ
ν = diag(ρ,−P,−P,−P ) .

Also, this implies thatgMN = gMN (y, t), only, where the
y dependence reflects the breaking of translational invariance
along the fifth dimension due to the presence of the brane.
Finally, and for simplicity, we shall consider that distance in-
tervals along the fifth dimensions are fixed along time. We
then choose the following ansatz for the metric

ds2 = w2(y, t) dt2 − a2(y, t) γij dxidxj − dy2 , (87)

whereγij = f(r)δij , with f−1(r) = 1 − kr2 being the
usual Robertson-Walker curvature term, wherek = −1, 0, 1.
For simplicity, we shall restrict our discussion to the flat
Universe case. It is worth noticing that such a metric does
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reduce to the standard Friedmann-Robertson-Walker met-
ric (34) when evaluating distance intervals at the brane, pro-
vided w(0, t) = 1. As in RS models, we shall here assume
that the orbifold symmetryP : y → −y is present, thus,a
andn would depend only on|y|.

The five-dimensional Einstein equations take the form

GAB = RAB − 1
2
gABR

= k2
∗ [−ΛgAB + Tµν δµ

A δν
B δ(y) ] , (88)

The delta function on the RHS of Eqs. (88) can be understood
as a boundary condition. We then proceed by solving first the
equations away from the brane. The global metric solution
clearly shall be continuous everywhere. Is naturally solved
by the orbifold condition. Metric derivatives ony, however,
are not continuous; they should have a gap aty = 0, which
should match the brane energy momentum tensor,

0+∫

0−

dy Gµν = k2
∗Tµν . (89)

Let us now proceed to the details. We use the metric
ansatz (87) to explicitely expand the RHS of Eqs. (88) to
get [39]

G00 = 3

{(
ȧ

a

)2

− w2

[(
a′

a

)2

+
a′′

a

]}

Gij =
[
a2

{
a′

a

(
2
w′

w
+

a′

a

)
+ 2

a′′

a
+

w′′

w

}

+
a2

w2

{
ȧ

a

(
2
ẇ

w
− ȧ

a

)
− 2

ä

a

}]
δij , (90)

G04 = 3
(

w′

w

ȧ

a
− ȧ′

a

)
,

G44 = 3
{

a′

a

(
a′

a
+

w′

w

)
− 1

w2

[
ȧ

a

(
ȧ

a
− ẇ

w

)
+

ä

a

]}

where primes denote derivatives with respect toy and dots
derivatives with respect tot. Our boundary (Israel) condi-
tions are then

∆a′

a

∣∣∣∣
y=0

= −k2
∗
3

ρ, (91)

∆w′

w

∣∣∣∣
y=0

=
k2
∗
3

(3P + 2ρ); (92)

here the gap function∆a′(0) = a′(0+)− a′(0−) = 2a′(0+)
give the size of the jump for they derivative ofa at zero. The
same applies to∆w′. We can straightforwardly use these
boundary conditions to evaluate the Einstein tensor compo-
nents at the brane. In particular, the equation forG04 gives
the energy conservation formula

ρ̇ + 3H0 (ρ + P ) = 0,

where we have introduced the brane Hubble function,H0(t),
as they = 0 value of the more general bulk Hubble func-
tion [43]

H(y, t) ≡
(

ȧ

a

)
. (93)

It is also not difficult to show that the equationG04=0 im-
plies the more general condition

w(y, t) = λ(t)ȧ(y, t) . (94)

It is very illustrative to rewrite the equation forG00 as the
bulk Friedmann equation [43]

H2(y, t) = w2

[
−k2

∗
3

Λ +
(

a′

a

)2

+
a′′R
a

]
, (95)

wherea′′R stands for the regular part of the function. It is then
clear that, upon evaluation at the brane, the Friedmann equa-
tion presents the ‘wrong’ dependenceH2

0 ∝ ρ2 [39] coming
from the second term on the RHS of Eq. (95). Also, we may
identify the last term of the same equation as the contribu-
tion of the Weyl tensor of the bulk [44]. We shall come back
to this point a bit later. Now we turn to the other equations.
First,Gij gives a non-independent equation. Indeed, it can be
derived from Eq. (95) by taking a time derivative, and com-
bining the result withG04. This is the same as in the usual
4D case, whereGij gives the acceleration equation. Finally,
G44 represents the only truly new equation in the system. It
is also the window to solving they dependence of the metric
since, combined with the bulk Friedmann equation (95) and
the acceleration equation, it simplifies to

3
a′′

a
+

w′′

w
=

2
3
k2
∗Λ . (96)

Solving this equation, together with (94), we get the result

a(y, t) = a0(t)
(

cosh(µ|y|)− k2
∗

6µ
ρ sinh(µ|y|)

)
,

w(y, t) = cosh(µ|y|) +
k2
∗

6µ
(3P + 2ρ) sinh(µ|y|), (97)

where the bulk curvature parameterµ2 = k2
∗Λ/6. Notice that

at the static limit(a0 = 1), whereρ = −P = τ , with the
brane tension obeying the fine tuning condition (56), we re-
cover the RS metric solutiona(y) = w(y) = e−µ|y|. Notice
also that in the time-dependent case, we get the FRW metric
on the brane.

We can now completely evaluate the Friedmann equa-
tion (95) on the brane by using the fact that the total energy
densityρ = ρm + τ , with ρm the actual brane matter density,
to get [42]

H0(t) =
ρm

3MP

(
1 +

ρm

2τ

)
, (98)

which has a quadratic term on the matter density. A Universe
described by such a modified Friedmann equation evolves
faster than the standard one. This may not be a problem
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during the very early stages of the Universe, whereas just
before Nucleosynthesis the standard cosmological evolution
H2

0 ∼ ρm must had be restored in order not to disturb the
success of the theory. Clearly, for small matter densities
ρm ¿ τ , one recovers the standard Hubble expansion.

It is interesting to note, on the other hand, that infla-
tion when driven by a scalar field whose energy density
exceeds the brane tension, is more efficient in the brane
world. This can be seen from the equation of motion
ϕ̈+3H0ϕ+V ′(ϕ)=0, where the friction term becomes larger
for larger energy densities. Thus the slow roll is enhanced
by the modification to the Friedmann equation (98). Inflation
would then last longer than in the standard 4D models, and
even some steep potentials that were unable to drive infla-
tion in the 4D case could now be successful [45]. Expansion
at high energies drives the tilt of the spectrum of adiabatic
density perturbations to zero and it seems not to alter their ex-
pected amplitude [45]. The physics of reheating [46,47], pre-
heating, and other pre-BBN phenomena may also be affected,
depending on the energy scale at which they take place.

6.1. Geometric approach

A more formal and general treatment of the brane model for
the derivation of the effective Einstein equations on the brane
was presented in Ref. 45. It uses a covariant geometric ap-
proach that does not rely on the metric ansatz, and I believe,
it is worth underlining in here. Let us denote the unit vector
normal to the brane bynA, and the induced brane metric as
γAB = gAB − nAnB . Next we consider the extrinsic cur-
vature of the braneKAB = γC

A γD
B∇CnD writing down the

Gauss–Codacci equations

R(4)
A
BCD

= R(5)
M
NPQ

γA
M γN

B γP
C γQ

D + 2KA
[CKB]D , (99)

DNKN
M −DMK = R(5)PQ

nQγP
M , (100)

where DM is the covariant differentiation with respect to
γMN . The brane Ricci tensor is then obtained by con-
tracting the first of above equations onA and C, and one
getsR(4)MN

= R(4)CD
γC

M γD
N −R(4)

A
BCD

nA γB
M nCγD

N +
KKMN − KA

MKNA. A further contraction onM and N
will provide us with the scalar curvatureR(4). All together
this shall define the five-dimensional Einstein equation with
a source given by

TMN = ΛgMN + SMNδ(χ) , (101)

where we have explicitely chosenχ as the locally orthogonal
coordinate to the brane, without los of generality. Here,SMN

represents the brane energy density, which is given as

SMN = −τ γMN + tMN , (102)

with tMN the brane energy momentum tensor, which clearly
satisfiestMNnM = 0. It should be noted that, properly

speaking,SMN should be evaluated by the variational prin-
ciple of the 4D Lagrangian for matter fields. The decomposi-
tion (102) can be ambiguous. Again, the delta function would
lead us to the Israel junction conditions

[γMN ] = 0 and

[KMN ] = −k2
∗

(
SMN − 1

3
γMNS

)
, (103)

where[X] ≡ ∆X(0) = 2X(0+), due to theZ2 symmetry.
The first of these expressions only states the continuity of the
metric at the brane, whereas the other allows us to completely
determine the extrinsic curvature of the brane in terms of the
energy momentum tensor. Putting it all these equations to-
gether, one gets the effective brane Einstein equations

G(4)MN
= Λ4γMN +8πGN tMN +k2

∗πMN−EMN , (104)

where the effective brane cosmological constant

Λ4 =
1
2
k2
∗

(
1
6
k2
∗τ − Λ

)
(105)

is null only if the fine condition (56) holds. The Newton con-
stant is defined in terms of the brane tension by

8πGN =
k2
∗τ
6

, (106)

an expression that is equivalent to Eq. (69), with the proper
insertion of the parameterµ as defined in Eq. (55).EMN

stands for the limit value atχ = 0+ of the 5D Weyl ten-
sorC(5)

MANBnAnB , with C(5) the 5D Weyl curvature ten-
sor. This gives the non-local effects from the free gravita-
tional field in the bulk, and it cancels when the bulk is purely
AdS. And last but not least, the tensorπMN gives the local
quadratic contribution of the brane energy momentum tensor
that arises from the extrinsic curvature terms. They are given
as

πMN =
1
12

t tMN − 1
4
tMAtAM

+
1
24

γMN

[
3tABtAB − t2

]
. (107)

7. Concluding remarks

Throughout the present notes, I have introduced the reader
to some aspects of models with extra dimensions, where our
Universe is constrained to live on a four-dimensional hyper-
surface. The study of the brane world has become a fruitful
industry that has involved several areas of theoretical physics
in the matter of a few years. It is fair to say, however, that
many of the current leading directions of research obey spec-
ulative ideas more than well-established facts. Nevertheless,
as happens with any other physics speculations, the studies
on the brane world are guided by the principle of physical
and mathematical consistency, and the further possibility of
connecting the models with the more fundamental theories,
i.e. string theory, from which the idea of extra dimensions
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and branes has been borrowed; and so with experiments in
the near future.

It is difficult to address the very many interesting topics
of the area, in the detail I intended here, without facing dif-
ficulties with the space of these short notes. In exchange, I
have concentrated the mainly on the construction of the main
frameworks (ADD, and RS models), the calculation of the
effective gravity interactions on the brane, and brane cos-
mology. I hope these will serve the propose of introducing

the reader to this area of research. The list of what is left
out is extensive, it includes the recent discussions on the cos-
mological constant problem [48], higher dimensional warped
spaces [49] dark matter from KK modes [50], Black Holes in
both ADD and RS models [51, 52], deconstruction of extra
dimensions [53], and the list goes on. I urge the interested
reader to turn to the more extensive reviews [17] and to hunt
for further references.
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