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Noncommutative gravity is a very interesting subject that has not yet been successfully related to string theory. However, it can be motivated
by itself by the consideration of a description of the microscopic structure of spacetime, leaving for the future its precise connection to string
theory orM -theory. In this paper we review some of the recent attempts to make sense of the noncommutative description of some classical
theories of gravity by using the Seiberg-Witten map. In particular we describe noncommutative topological gravity and a gauge invariant
proposal generalizing Plebański-Ashtekar Self-dual gravity.
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La gravedad no conmutativa es un tema muy interesante que, hasta ahora, no ha sido incluido en la teorı́a de cuerdas. Sin embargo, este
tema puede ser motivado mediante la consideración de una descripción microsćopica de la estructura del espacio-tiempo, dejando para el
futuro su relacíon precisa con la teorı́a de cuerdas o la teorı́aM . En este artı́culo, revisamos algunos de los intentos recientes para dar sentido
a la descripcíon noconmutativa de algunas teorı́as cĺasicas de la gravedad, mediante el uso del mapeo de Seiberg-Witten. En particular,
describimos la gravedad topológica no conmutativa y una propuesta no conmutativa e invariante de norma que generaliza la gravedad auto-
dual de Plebánski-Ashtekar.

Descriptores: Teoŕıa de campos no conmutativa; mapeo de Seiberg-Witten; gravedad topológica; gravedad auto-dual.
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1. Introduction

The noncommutative nature of spacetime is an old idea which
seems to have originated in the 1930’s, soon after the formu-
lation of quantum mechanics, by Heisenberg. It was later
worked out systematically by Snyder [1]. Recently it has
been studied by many authors from the mathematical per-
spective [2], as well as from the field theoretical point of view
(for recent review papers, see for instance, [3,4]).

In the last years, in connection with Matrix and string the-
ory, noncommutative gauge theory has once again attracted
attention [5, 6]. In particular, Seiberg and Witten [6] have
found noncommutativity in the description of the low energy
excitations of open strings (possibly attached to D-branes)
in the presence of a constant NS bulkB−field. They have
pointed out that, depending on the regularization scheme of
correlation functions of the worldsheet theory, regularization
by point splitting or the Pauli-Villars method lead to noncom-
mutative gauge theories or the usual commutative Yang-Mills
theory, respectively. Thus, the independence of the regular-
ization scheme tells us that the resulting theory of noncom-
mutative gauge fields (deformed by the Moyal star-product)
should be equivalent to a gauge theory in terms of the usual

commutative fields. These two theories turn out to be related
through the so-called Seiberg-Witten map.

It is well known that gravity and gauge theories are re-
alized in very different ways in string theory. Moreover, as
mentioned, string theory predicts a noncommutative effective
Yang-Mills theory as a theory defined in the worldvolume of
a D-brane. Furthermore, in a number of works [7], it is shown
how, starting from the Seiberg-Witten map, gauge theories
based onanynonabelian gauge groups can be constructed on
a noncommutative spacetime. In these developments, the key
argument is that no additional degrees of freedom have to be
introduced in order to formulate noncommutative gauge the-
ories. Thus, we can ask ourselves whether a noncommutative
description of gravity would arise from these considerations.
In this context, a number of noncommutative approaches to
Einstein’s theory of gravity in four dimensions have recently
been proposed [8–15]. Noncommutative gravity has been
previously considered in the context of the Connes triplet in
Refs. 16 and 17. Other noncommutative theories in other di-
mensions have been considered in Refs. 18 to 21 as well in
Refs. 16 and 17.

All these formulations have a constant deformation pa-
rameterθ, and in Ref. 9 it is argued that Kontsevich’s formal-
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ity theorem [22] would allow us to relate these theories to dif-
feomorphism invariant theories. In Refs. 9 and 11, the gauge
approach to gravitation has been used to obtain the noncom-
mutative fields through the Seiberg-Witten map, although the
actions are not invariant under the corresponding noncom-
mutative gauge symmetries. In Ref. 14, a formulation for
topological gravity is given in terms of a noncommutative
gauge invariant action, and in Ref. 15, a proposal for a non-
commutative formulation of the Plebański-Ashtekar self-dual
gravity [23–25]), based on the Seiberg-Witten construction is
given. The action is fully invariant under the noncommutative
symmetry, and the noncommutative torsion-free condition is
straightforwardly solved. These proposals will be outlined in
this paper.

2. Weyl-Wigner-Moyal Correspondence
If we wish to have a noncommutative field theory, we can
start from the noncommutative spacetime defined by the
commutation relations:[x̂µ, x̂ν ] = iθµν , with x̂µ being lin-
ear operators acting in some suitable Hilbert space. The
algebra of these operators is associative and noncommuta-
tive: x̂µ(x̂ν x̂ρ) = (x̂µx̂ν)x̂ρ. In this case we need to know
how to define field operators, because now the ordering of
these operators will make a difference. One way to do this is
by means of the Weyl ordering prescription. This ordering is
natural in the context of theWeyl-Wigner-Moyal correspon-

dence(see [26] for a review), which assigns to each usual
functionf(x) one operator functionW (f)(x̂) with the most
symmetric ordering. We start from the Fourier transform of
the functionf(x),

f̃(k) =
1

(2π)
d
2

∫
ddxe−ikµxµ

f(x), (1)

to which the following operator is assigned:

W (f)(x̂) =
1

(2π)
d
2

∫
ddkeikµx̂µ

f̃(k)

=
1

(2π)
d
2

∫
ddk

∑
n

kµ1 . . . kµn
x̂µ1 . . . x̂µn f̃(k), (2)

where obviously each term is completely symmetric under
the permutations of̂x. If we consider the derivative of the
function, then we have that the corresponding operator is

W (∂µf)(x̂) =
1

(2π)
d
2

∫
ddkeikν x̂ν

kµf̃(k)

=
[−iθ−1

µν x̂ν ,W (f)(x̂)
]
. (3)

One important property is that there is a function in this way
associated whith the operator productW (f)W (g). Indeed,
we have

W (f)(x̂)W (g)(x̂) =
1

(2π)d

∫
ddkddpeikµx̂µ

eipν x̂ν

f̃(k)g̃(p) =
1

(2π)d

∫
ddkddpei(kµ+pµ)x̂µ

e−
i
2 kµθµνpν f̃(k)g̃(p)

=
1

(2π)
d
2

∫
ddkeikµx̂µ

∫
ddpe−

i
2 kµθµνpν f̃(k − p)g̃(p). (4)

The last integral is the Fourier transform of the function

(f ∗ g)(x) =
∫

ddye
i
2

∂
∂xµ

θµν ∂
∂xν f(x)g(y)δ(x− y)

= f(x)e
←
∂

∂xµ θµν
→
∂

∂xν g(x), (5)

which is the Moyal product of the functionsf andg. Thus
we haveW (f)W (g)(x̂) = W (f ∗ g)(x̂), and the spacetime
noncommutative algebra obtained by the Weyl prescription
is homomorphic to the function algebra with the Moyal prod-
uct.

This product is associative,i.e. f ∗ (g ∗ h) = (f ∗ g) ∗ h,
and satisfies the cyclicity property under integrals on closed
manifolds,
∫

ddxf(x) ∗ g(x) ∗ h(x) =
∫

ddxg(x) ∗ h(x) ∗ f(x)

=
∫

ddxh(x) ∗ f(x) ∗ g(x). (6)

As an example, we can take the functionf(x) = xµ;

then,
[xµ ∗, xν ] ≡ xµ ∗ xν − xν ∗ xµ = iθµν . (7)

The cyclicity property has the important consequence that
if we have an integral of the form∫

ddxL(x),

whose integrand transforms as

L(x) → L′(x) = g(x) ∗ L(x) ∗ g−1(x),

it is invariant under this transformation:∫
ddxL′(x) =

∫
ddxL(x).

In particular, if these are matrix-valued functions, we have

Tr
∫

ddxL′(x) = Tr
∫

ddxL(x).

Thus, for any commutative field theory, we can write a
corresponding noncommutative field theory, instead of going
to the noncommutative spacetime, by substituting the com-
mutative function product by the Moyal product all over.
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3. The Seiberg-Witten Map

3.1. Noncommutative Gauge Theories

In order to define noncommutative gauge theories, noncom-
mutative gauge fields which make derivatives covariant must
be introduced. If we have a field which transforms as
δλΦ = iλ ∗ Φ, thenDµΦ = ∂µΦ− iAµ ∗ Φ is its covariant
derivative if the gauge fieldAµ transforms as

δλAµ = ∂µλ + i[λ ∗, Aµ]. (8)

Similarly, Fµν = ∂µAν − ∂νAµ − i[Aµ
∗, Aν ], the field

strength, has the transformation lawδλFµν = i[λ ∗, Fµν ].
Therefore, in principle, starting from any commutative gauge
theory, we could construct a noncommutative one by means
of the substitution of the usual product of functions by the
Moyal product. The invariant action for the gauge sector is

S =
∫

d4xFµν ∗ Fµν .

However, for a Lie groupG, with Lie algebraG generated
by {Ta}, which satisfies[Ta, Tb] = fab

cTc, for the noncom-
mutative fields we have

[λ ∗, Aµ] =
(
λa ∗ F b

µν − F a
µν ∗ λb

)
TaTb

=
1
2

(
λa ∗ F b

µν + F b
µν ∗ λa

)
[Ta, Tb]

+
1
2

(
λa ∗ F b

µν − F b
µν ∗ λa

) {Ta, Tb}, (9)

whereAµ = Aa
µTa andλ = λaTa. These gauge transfor-

mations will generate, for the gauge fields, components in
the enveloping algebraU of G, which is the algebra obtained
from all the products ofG, that is, by taking besides the com-
mutators, the anticommutators, as can be seen from

TaTb =
1
2
[Ta, Tb] +

1
2
{Ta, Tb}.

Thus, the enveloping algebra can be obtained by repeat-
edly computing all commutators and anticommutators, until
it closes. That is, its general form will be

[TI , TJ ] = ifIJ
KTK , {TI , TJ} = dIJ

KTK . (10)

In particular, the Lie algebras of the groupsU(n), in the fun-
damental representation, coincide with their enveloping al-
gebras. In fact, this construction depends on the representa-
tion. For instance, forSU(2) in the fundamental represen-
tation, the generators are the Pauli matrices, which satisfy
[σa, σb] = iεabcσc and {σa, σb} = 2δabI. Thus, the en-
veloping algebra contains the unity matrix besides the Pauli
matrices, and corresponds toU(2). For the vector represen-
tation, the generators are(Ta) c

b = iεab
c, and it can be easily

shown that its enveloping algebra is given byU(3).

Therefore, the number of degrees of freedom of a non-
commutative theory will increase. However, the number of
gauge parameters will increase, which means that it will also
be possible to gauge away at least one part of the new degrees
of freedom. For the particular case of noncommutative gauge
theories constructed through the Seiberg-Witten map from a
usual (commutative) gauge theory, the number of degrees of
freedom are the same.

3.2. The Seiberg-Witten map

If we go back to string theory, we have seen that there must
be a relation between the usual gauge theories and the non-
commutative ones, given by the Seiberg-Witten map

Âµ(A + δλA) = Âµ(A) + δ̂λ̂Âµ(A), (11)

that is,
δλÂµ(A) = δ̂λ̂Âµ. (12)

This relation can be generalized for any linear representation,
by δλΦ̂(Φ, A)=δ̂λ̂Φ̂(Φ, A)=iλ̂ ∗ Φ̂(Φ, A), or for the adjoint
representation,δλΦ̂(Φ, A)=δ̂λ̂Φ̂(Φ, A)=i[λ̂ ∗, Φ̂(Φ, A)].

The Seiberg-Witten map permits the formulation of non-
commutative gauge theories, with an explicit dependence on
the commutative fields and their derivatives, without the need
to include new degrees of freedom, by means of a sort of ef-
fective theory. If we have a noncommutative gauge theory,
constructed by means of the Seiberg-Witten map, we will
have

δλS = δ̂λ̂S = 0. (13)

That is, the invariance of this action can be seen in terms of
the noncommutative fields, under the noncommutative gauge
transformations (8), as well as directly in terms of the trans-
formations of the commutative fields, on which the noncom-
mutative ones depend in a complicated nonlinear way, by the
Seiberg-Witten map.

This map can be written for any gauge group [7], and its
solution can be obtained iteratively. In order to do that, the
fields are written in a power series expansion in the noncom-
mutativity parameters,

Â = A + θµνA(1)
µν + θµνθρσA(2)

µνρσ + · · · . (14)

As a first step, the map for the transformation parameters is
obtained. In general, the commutative parameters in a linear
representationδαΦ = iαΦ = iαaTaΦ satisfy the following
consistency conditions:

[δα, δβ ]Φ = −[α, β]Φ = δi[α,β]Φ. (15)

It can be seen that the noncommutative parameters must de-
pend on the gauge fields,λ̂ = λ̂(λ, A); that is, the previous
condition is in the noncommutative case given by

δαδβΦ̂ = δα

(
δ̂β̂Φ̂

)
= iδαλ̂(β) ∗ Φ̂ + iλ̂(β) ∗ δαΦ̂

= iδαλ̂(β) ∗ Φ̂− λ̂(β) ∗ λ̂(α)Φ̂; (16)
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that is,

[δα, δβ ]Φ̂ = (iδαλ̂(β)− iδβλ̂(α)

+ [λ̂(α) ∗, λ̂(α)]) ∗ Φ̂ = δi[α,β]Φ̂, (17)

from which we get the transformation law for the noncom-
mutative parameters,

iδαλ̂(β)− iδβλ̂(α) + [λ̂(α) ∗, λ̂(α)] = λ̂(i[α, β]). (18)

In order to solve this equation, we write

λ̂ = λ + θµνλ(1)
µν + θµνθρσλ(2)

µνρσ + · · · ,

which, substituted back into the preceding equation gives an
equation for the first order termλ(1)

µν , which has the solu-
tion [6],

λ̂ (λ,A) = λ +
1
4
θµν {∂µλ,Aν}+O (

θ2
)
. (19)

Now with this solution at hand, for the connection we pro-
ceed as well Eq. (14) substituted into (12), with the solution
to first order given by,

Âµ (A) = Aµ − 1
4
θρσ {Aρ, ∂σAµ + Fσµ}+O (

θ2
)
. (20)

Substitution of this equation into the field strength gives

F̂µν = Fµν +
1
4
θρσ

(
2 {Fµρ, Fνσ}

−{Aρ, DσFµν + ∂σFµν}
)

+O (
θ2

)
. (21)

For matter fields, the same procedure is followed; in this
case, the map is given by

Φ̂ = Φ +
1
2
θµν

(
−Aµ∂νΦ +

1
2
AµAνΦ

)
.

However, for the adjoint representation, the equation to be
solved isδλΦ = [λ̂ ∗, Φ̂], and in this case the map is

Φ̂ (Φ, A) = Φ− 1
4
θµν {Aµ, (Dν + ∂ν)Φ}+O (

θ2
)
. (22)

The higher order terms can be obtained in the same way, or
by an equation given by Seiberg and Witten:

∂

∂θµν
Φ̂ = Φ̂(1)

µν , (23)

whereΦ̂(1) is obtained from the first order term of the map by
substituting the fields by their noncommutative counterparts,
all of them multiplied by the Moyal product. For instance,
for the gauge fields we have

Â(1)
µ = −1

4
θρσ

{
Âρ

∗, ∂σÂµ + F̂σµ

}
. (24)

Note that the general solution of the Seiberg-Witten map has
an infinity of free parameters, and the solutions given here

are the simplest ones, but not always the most suitable, de-
pending on the problem [7]. Solutions (19) and (20) given
by Seiberg and Witten have the nice property that the correc-
tions to the field strength (21) vanish if the commutative field
strength vanishes.

The higher terms in Eq. (14) can be obtained from the
observation that the Seiberg-Witten map preserves the opera-
tions of the commutative function algebra; hence the follow-
ing differential equation can be written [6]

δθµν ∂

∂θµν
Â(θ) = δθµνÂ

(1)
µν (θ), (25)

whereÂ
(1)
µν is obtained fromA

(1)
µν in Eq. (14) by substituting

the commutative fields by the noncommutative ones under
the∗-product.

4. Topological Gravity: Preliminaries

In this section, we briefly review four-dimensional topolog-
ical gravity. LetR be the field strength, corresponding to a
SO(3, 1) connectionω:

R ab
µν = ∂µω ab

ν − ∂νω ab
µ + ω ac

µ ω b
ν c − ω bc

µ ω a
ν c, (26)

and letR̃ be the dual ofR with respect to the group (not with
respect to spacetime) given by

R̃ ab
µν = − i

2
εab

cdRµν
cd. (27)

We start from the followingSO(3, 1) invariant action

ITOP =
ΘP

G

2π
Tr

∫

X

R ∧R + i
ΘE

G

2π
Tr

∫

X

R ∧ R̃, (28)

whereX is a four-dimensional, closed, pseudo-Riemannian
manifold and the coefficients are the gravitational analogs of
theΘ−vacuum in QCD [27–29].

In this action, the connection satisfies the first Cartan
structure equation, which relates it to a given tetrad. This
action can be written as the integral of a divergence, and a
variation of it with respect to the tetrad vanishes; hence it is
metric independent, and therefore topological.

The action (28) arises naturally from the MacDowell-
Mansouri type action. A similar construction can be made
for (2 + 1)-dimensional Chern-Simons gravity; keeping this
philosophy in mind, action (28) can be rewritten in terms of
the self-dual and anti-self-dual parts,R± = 1

2 (R± R̃), of the
Riemann tensor as follows:

ITOP = Tr
∫

X

(
τR+ ∧R+ + τR− ∧R−

)

= Tr
∫

X

(
τR+ ∧R+ + τR+ ∧R+

)
, (29)
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where

τ =
(

1
2π

) (
ΘE

G + iΘP
G

)
,

and the bar denotes complex conjugation. In local coordi-
nates onX, this action can be rewritten as

ITOP = 2Re

(
τ

∫

X

d4x εµνρσR+
µν

ab
R+

ρσab

)
. (30)

Therefore, it is sufficient to study the complex action

I =
∫

X

d4x εµνρσR+
µν

ab
R+

ρσab. (31)

Further, the self-dual Riemann tensor satisfies
εab

cdR
+
µν

cd=2iR+
µν

ab. This tensor has the useful property
that it can be written as a usual Riemann tensor, but in terms
of the self-dual components of the spin connection,

ω+ ab
µ =

1
2

(
ωab

µ − i

2
εab

cdω
cd
µ

)
,

as

R+ ab
µν = ∂µω+ ab

ν − ∂νω+ ab
µ

+ω+ ac
µ ω+ b

ν c − ω+ bc
µ ω+ a

ν c . (32)

In this case, action (30) can be rewritten as

I =
∫

X

d4x εµνρσ
[
2Rµν

0i(ω+)Rρσ0i(ω+)

+Rµν
ij(ω+)Rρσij(ω+)

]
. (33)

Now, we defineωµ
i = iω+0i

µ , from which we obtain, by
means of the self-duality properties,ω+ij

µ = −εij
kωµ

k.
Then it turns out that

R oi
µν (ω+) = −i(∂µωi

ν − ∂νωi
µ + 2εi

jkωj
µωk

νc)

= −iR i
µν(ω) (34)

R ij
µν (ω+) = ∂µω+ij

ν − ∂νω+ij
µ − 2(ω i

µω j
ν − ω i

ν ω j
µ )

= −εij
kR k

µν(ω). (35)

This amounts to the decomposition between the complex
orthogonal Lie groupSO(3, 1) and the product of two
complex Lie groupsSL(2,C) given by the isomorphism
SO(3, 1) ∼= SL(2,C)× SL(2,C), such thatω i

µ is a com-
plexSL(2,C) connection. If we choose the algebras`(2,C)
to satisfy[Ti, Tj ] = 2iε k

ij Tk and Tr(TiTj) = 2δij , then we
can write

I = Tr
∫

X

R̃ ∧ ?R̃

= Tr
∫

X

d4x εµνρσRµν(ω)Rρσ(ω), (36)

where, Rµν = ∂µων − ∂νωµ − i[ωµ, ων ] is the field
strength,? is the usual Hodge star operation with respect
to the underlying spacetime metric,R is the two-form field
strength, andR̃ is the dual ofR with respect to the group.
This action is invariant under theSL(2,C) transformations,
δλωµ = ∂µλ + i[λ, ωµ].

In the case of a Riemannian manifoldX, the signature
and the Euler topological invariants ofX are the real and
imaginary parts of (36):

σ(X)=− 1
24π2

Re
(
Tr

∫

X

d4x εµνρσRµν(ω)Rρσ(ω)
)

, (37)

χ(X)=
1

32π2
Im

(
Tr

∫

X

d4x εµνρσRµν(ω)Rρσ(ω)
)

. (38)

5. Noncommutative topological gravity

We wish to have a noncommutative formulation of the
SO(3, 1) action (28). Its first term can straightforwardly
made noncommutative, in the same way as for the usual
Yang-Mills theory,

Tr
∫

X

R̂ ∧ R̂. (39)

If the SO(3, 1) generators are chosen to be hermitian, for ex-
ample in the spin1/2 representation given byγµν , then from
the discussion at the end of the second section, it turns out
thatR̂µν is hermitian and consequently (39) is real.

If we now turn to the second term of (28), such an action
cannot be written, because it involves the Levi-Civita sym-
bol, an invariant Lorentz tensor, but which is not invariant
under the full enveloping algebra. However, as mentioned at
the end of the preceding section, this term can be obtained
from Eq. (36).

Thus, in general we will consider as the noncommutative
topological action of gravity, theSL(2,C) invariant action,

Î = Tr
∫

X

d4x εµνρσR̂µνR̂ρσ, (40)

whereR̂µν = ∂µω̂ν − ∂ν ω̂µ − i[ω̂µ
∗, ω̂ν ] is theSL(2,C)

noncommutative field strength. This action does not depend
on the metric of X. Indeed, as well as the commutative one,
it is given by a divergence,

Î=Tr
∫

X

d4x εµνρσ∂µ

(
ω̂ν ∗ ∂ρω̂σ+

2
3
ω̂ν ∗ ω̂ρ ∗ ω̂σ

)
. (41)

Thus, a variation of (40) with respect to the noncommu-
tative connection will vanish identically because of the non-
commutative Bianchi identities,

δω̂ Î = 8Tr
∫

εµνρσδω̂µ ∗ D̂νR̂ρσ ≡ 0, (42)
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whereD̂µ is the noncommutative covariant derivative.
At this stage, we can make use of the first Cartan structure

equation; then the SO(3,1) connection, and thus itsSL(2,C)
projection ω i

µ , can be written in terms of the tetrad and
the torsion. Furthermore, from the Seiberg-Witten map, the
noncommutative connection can be written as well asω̂(e).
Therefore, a variation of the action (40) with respect to the
tetrad of the action, can be written as

δeÎ = 8Tr
∫

εµνρσδeω̂µ(e) ∗ D̂νR̂ρσ ≡ 0; (43)

hence it is topological, as the commutative one.
As we will show later, the explicit expansion of the ac-

tion (40) in the noncommutative parameterθ, gives terms
that one does not expect to vanish identically. Thus, we see
from (41) that, in aθ−power expansion of the action, each
one of the resulting terms will be independent of the metric,
as well as being be given by a divergence. Therefore, these
terms will be topological. (For the case of Euler characteris-
tic, compare with the noncommutative nontrivial generaliza-
tion of it given by Connes in pp. 64-69 from Ref. 2).

Furthermore, the whole noncommutative action, ex-
pressed in terms of the commutative fields by the Seiberg-
Witten map, is invariant under the SO(3,1) transformations.
Thus, each term of the expansion will also be invariant. Thus
these terms will be topological invariants.

The action (40) is not real, as well as the limiting commu-
tative action. Hence, it is not obvious that the signature (39)
will be precisely its real part. In this case, we could not say
that χ̂(X) is given by its imaginary part. In fact we could
only say thatχ̂(X) could be obtained from the difference
of (40) and (39). However, the real and the imaginary parts
of (40) are invariant under SL(2,C) and consequently under
SO(3,1), and thus they are the natural candidates forσ̂(X)
andχ̂(X), as in (37) and (38). In order to write down these
noncommutative actions as an expansion inθ, we will take
as generators for the algebra ofSL(2,C), the Pauli matri-
ces. In this case, to the second order inθ, the Seiberg-Witten
map for the Lie algebra valued commutative field strength
Rµν = Rµν

i(ω)σi, is given by

R̂µν = Rµν + θαβR(1)
µναβ + θαβθγδR(2)

µναβγδ + · · · , (44)

where, from Eq. (21) we get

θρσR(1)
µνρσ =

1
2
θρσ

[
2R i

µρRνσi

−ω i
ρ (∂σRµνi + DσRµνi)

]
1, (45)

where 1 is the unity 2×2 matrix. Further, by means of
Eq. (25), we get,

θρσθτθR(2)
µνρστθ =

1
4
θρσθτθ

(
εi

jk

[
i∂τRj

µρ∂θRk
νσ + ∂τωj

ρ∂θ(∂σ + Dσ)Rk
µν

]− ωi
ρ∂τωj

σ∂θRµνj

+Ri
µρ[2Rj

ντRσθj − ωj
τ (∂θ + Dθ)Rνσj ]−Ri

νρ

[
2Rj

µτRσθj − ωj
τ (∂θ + Dθ)Rµσj

]

+
1
2
ωj

τ (∂θωρj +Rθρj)(∂σ + Dσ)Ri
µν − 2ωi

ρ

{
2∂σRj

µτRνθj − ∂σ[ωj
τ (∂θ + Dθ)Rµνj ]

} )
σi. (46)

Therefore, to the second order inθ, the action (40) will be given by,

Î = Tr
∫

X

d4x εµνρσ

[
RµνRρσ + 2θτϑRµνR(1)

ρστϑ + θτθθϑζ
(
2RµνR(2)

ρστθϑζ +R(1)
µντθR(1)

ρσϑζ

) ]
. (47)

Taking into account (45), we get that the first order term is proportional to Tr(σi) and thus vanishes identically. Further
using (46), we finally get

Î =
∫

X

d4x εµνρσ

{
2Ri

µνRρσi +
1
4
θτθθϑζ

[
− εijkRi

µν

[
∂ϑRj

ρτ∂ζR
k
σθ − ∂ϑωj

τ∂ζ(∂θ + Dθ)Rk
ρσ

]

+ [Ri
µτRνθi − 1

2
ωi

τ (∂θ + Dθ)Riµν ][Rj
ρϑRσζj − 1

2
ωj

ϑ(∂ζ + Dζ)Rρσj ]

+ Ri
µν

{
Riσθ[2Rj

ρϑRτζj − ωj
ϑ(∂ζ + Dζ)Rρτj ] +

1
4
(∂θ + Dθ)Rρσiω

j
ϑ(∂ζωτj + Rζτj)

+ ωθi[∂τ (Rj
ρϑRσζj)− 1

2
∂τωj

ϑ(∂ζ + Dζ)Rρσj ]
}− 1

2
Ri

µνωτi∂ϑωj
θ∂ζRρσj

]}
, (48)

where the second order correction does not identically vanish.
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Similarly to the second order term (46), the third order
term for R̂ can be computed by means of Eq. (25). The re-
sult is given by a rather long expression, which however is
proportional to the unity matrix1, like (45). Thus the third
order term in (47), given by

2θτ1θ1θτ2θ2θτ3θ3Tr
∫

X

εµνρσ

(
RµνR(3)

ρστ1θ1τ2θ2τ3θ3

+R(1)
µντ1θ1

R(2)
ρστ2θ2τ3θ3

)
, (49)

vanishes identically, becauseR(2) is proportional toσi.
Thus, (48) is valid to the third order. In fact, it seems that
all its odd order terms vanish.

6. Self-dual Gravity: An Overview

In this section, we briefly overview the formulation of Self-
dual gravity in the approach by Plebański [23] and of great
interest in the Ashtekar’s hamiltonian description of Self-
dual gravity [24] and in loop quantum gravity (for a review,
see [25]).

One of the main features of the tetrad formalism of
the theory of gravitation is that it introduces local Lorentz
SO(3,1) transformations. In this case, the generalized
Hilbert-Palatini formulation is written as

∫
e µ
a e ν

b R ab
µν (ω)d4x,

wheree µ
a is the inverse tetrad, andR ab

µν (ω) is the so(3,1)
valued field strength. The decomposition of the complex
Lorentz group as SO(3,1)=SL(2,C)⊗SL(2,C), and the ge-
ometrical structure of four-dimensional space-time, makes it
possible to formulate gravitation as a complex theory, as in
Refs. 23 and 24. These formulations take advantage of the
properties of the fundamental or spinorial representation of
SL(2,C), which allows a simple separation of the action in
the fields of both factors of SO(3,1), as shown in great de-
tail in Ref. 23. All the Lorentz Lie algebra-valued quantities,
in particular the connection and the field strength, decom-
pose into the self-dual and anti-self-dual parts, in the same
way as the Lie algebra so(3,1)=s`(2,C)⊕s̀ (2,C). However,
Lorentz vectors, like the tetrad, transform under mixed trans-
formations of both factors and so this formulation cannot be
written as a chiral SL(2,C) theory. Various proposals in this
direction have been made (for a review, see [25]). In an
early formulation, this problem was solved by Plebański [23],
where by means of a constrained Lie algebra valued two-form
Σ, the theory can be formulated as a chiral SL(2,C) invariant
BF-theory,

Tr

∫
Σ ∧R(ω).

In this formulation,Σ has two SL(2,C) spinorial indices, and
it is symmetric on them,ΣAB = ΣBA, as any such s̀(2,C)

valued quantity. The constraints are given by

ΣAB ∧ ΣCD =
1
3
δC
(AδD

B)Σ
EF ∧ ΣEF

and, as shown in Ref. 23, their solution implies the existence
of a tetrad one-form, which squared gives the two-formΣ. In
the language of SO(3,1), this two-form is a second rank, an-
tisymmetric, self-dual two-form,Σ+ab = Π+ab

cdΣ
cd, where

Π+ab
cd =

1
4

(
δab
cd − iεab

cd

)
.

In this case, the constraints can be recast into the equivalent
form

Σ+ab ∧ Σ+cd = −1
3
Π+abcdΣ+ef ∧ Σ+

ef ,

with solution

Σab = 2ea ∧ eb.

For the purpose of the noncommutative formulation, we
will consider self-dual gravity in a somewhat different way as
in the papers [23,24]. In this section we will fix our notations
and conventions.

We start from the SL(2,C) complexBF-action

I = −4i T r

∫
B ∧ F, (50)

whereB = BiT
i and the connectionΩ = ΩiT

i, is s`(2,C)
Lie algebra-valued andF = dΩ+Ω2 is the field strength. We
choose a hermitian representation for the algebra generators
such that[T i, T j ] = 2iεij

kT k andTr(T iT j) = 2δij . Fur-
ther, we decompose the fields into their real and imaginary
parts,Ω = (1/2)(ω + iω̃), andB = (1/2)(Σ + iΣ̃). Thus
we getF = (1/2)(R + iR̃), where

Rµν
i = ∂µωi

ν − ∂νωi
µ − εi

jk(ωj
µω̃k

ν + ω̃j
µωk

ν ), (51)

R̃i
µν = ∂µω̃i

ν − ∂ν ω̃i
µ − εi

jk(ω̃j
µω̃k

ν + ωj
µωk

ν ). (52)

For the action we get,

I = −2i

∫ [
ΣiRi − Σ̃iR̃i + i(ΣiR̃i + Σ̃iRi)

]
. (53)

Now let us defineωij = εij
kω̃k andRµν

ij = εij
kR̃k

µν .
In this case we get,

Rµν
ij = ∂µων

ij + ωµ
ilωνl

j + ωµ
iων

j − (µ ↔ ν). (54)

Further, if we defineωµ
0i = −ωµ

i0 = ωµ
i, ωµ

00 = 0
andRµν

0i = Rµν
i, then after putting together (51) and (54)

we get,

Rµν
ab = ∂µων

ab − ∂νωµ
ab + ωµ

acωνc
b − ων

acωµc
b, (55)

where the indicesa, b, c run from0 to 3. In this case, if we
define also

Σ0i
µν = −Σi0

µν = Σi
µν ,
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it turns out that

I=− i

2

∫
εµνρσ

(
−Σab

µνRρσab+
i

2
εabcdΣab

µνRρσ
cd

)
. (56)

If we now vary overΩ in (50), we have

δΩI = 4δΩTr

∫
(−dBΩ + BΩ2)

= −4Tr

∫
DBδΩ = 0, (57)

whereDB = dB + [Ω, B] is the covariant derivative of the
gauge group SL(2,C). This is a complex equation, whose
real and imaginary parts vanish separatedly, giving us the fol-
lowing equations,

εµνρσDµΣ0i
νρ = 0, (58)

and
1
2
εi

jkεµνρσDµΣjk
νρ = 0, (59)

where

εµνρσDµΣ0i
νρ = εµνρσ∂µΣi

νρ − εi
jk(ωµ

jΣ̃k
νρ + ω̃j

µΣνρ
k)

and

1
2
εi

jkεµνρσDµΣjk
νρ = εµνρσ∂µΣ̃i

νρ

+ εi
jk(ωµ

jΣνρ
k − ω̃j

µΣ̃k
νρ).

That is, gathering all that, we get

εµνρσDµΣab
νρ = 0. (60)

Let us now make the usual ansatz

Σab
µν = ea

µeb
ν − ea

νeb
µ;

in this case, the action turns out to be

I =
∫

(det e Rµν
µν + iεµνρσRµνρσ) d4x. (61)

Moreover, the Eq. (60) resulting from the variation ofΩ turns
into

εµνρσ
(
Tµν

aeb
ρ − Tµν

bea
ρ

)
= 0, (62)

from which it turns out that the torsion vanishes,Tµν
ρ = 0,

resulting in the fact that the second term in (61) vanishes
identically, due to the Bianchi identities. Moreover, we ob-
tain the second Cartan structure equation,

ωµνρ =
1
2
[
eµa(∂νea

ρ − ∂ρe
a
ν)− eνa(∂ρe

a
µ − ∂µea

ρ)

− eρa(∂µea
ν − ∂νea

µ)
]
, (63)

which, put into the action (61), gives us the Einstein-Hilbert
action.

7. Noncommutative Self-dual Gravity

Now we intend to formulate the self-dual gravity from the
above section on noncommutative grounds. The noncommu-
tative action can be obtained following the Seiberg-Witten
construction [6], further developed in [7]. The same symme-
try principle is applied, however now with the field dependent
enveloping algebra-valued transformation parameters, given
the first order in the noncommutativity parameter by

λ̂ = λ̂ATA = λ +
1
4
θµν{∂µλ,Ων}+ . . . . (64)

In order to obtain the enveloping algebra, a choice of the rep-
resentation of generators ofs`(2,C) has to be made. If we
take for instance the Pauli matricesσi, then the enveloping
algebra will be given by the four generators

{TA} = {σ0 = 1, σi}.
Thus, the action, invariant under the noncommutative

transformations,

δ̂Ω̂µ = ∂µλ̂ + [Ω̂µ
∗, λ̂], (65)

δ̂B̂ = [λ̂ ∗, B̂], (66)

will be,

Î = −4iT r

∫
B̂ ∧ F̂ , (67)

whereFµν = ∂µΩν − ∂νΩµ − i[Ωµ, Ων ] is the field strength
andF̂µν = ∂µΩ̂ν − ∂νΩ̂µ − i[Ω̂µ

∗, Ω̂ν ] is the noncommu-
tative field strength. The noncommutative fieldsB̂ andΩ̂ are
given by the Seiberg-Witten map,

Ω̂µ (Ω) = Ωµ − 1
4
θνρ {Ων , ∂ρΩµ + Fρµ}+O (

θ2
)
,

B̂ = B − 1
2
θµν

(
[Ωµ, ∂νB]− i

2
[Ωµ, [Ων , B]]

)

+O (
θ2

)
, (68)

Further, the action can be written as,

I = −4i

∫
B̂ ∧ F̂

= −16i

∫
εµνρσB̂i

µν

(
∂ρΩ̂σi + iεijkΩ̂j

ρ ∗ Ω̂k
σ

)
. (69)

Although we are taking the commutative fields as the fun-
damental ones, the action is written in terms of the non-
commutative ones. Furthermore, the relation between the
commutative and the noncommutative degrees of freedom is
one to one [6], so the variation of the action with respect toω
will be equivalent to the variation with respect toΩ̂. We have

δΩ̂I = 16
∫

εµνρσ

(
∂ρB̂

i
µν

+ iεi
jk

(
Ω̂j

µ ∗ B̂k
νρ + B̂j

νρ ∗ ω̂k
µ

) )
∗ δΩ̂σi. (70)
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That is, we obtain the noncommutative version of (60) which
is given by

εµνρσD̂µB̂ = εµνρσ

×
[
∂ρΣ̂i

µν + iεi
jk

(
ω̂j

µ ∗ Σ̂k
νρ + Σ̂j

νρ ∗ ω̂k
µ

)]
= 0, (71)

which substituted back into the action, gives us

I = −16i

∫
εµνρσεi

jkΩ̂j
µ ∗ B̂k

νρ ∗ Ω̂σi. (72)

Equation (71) is covariant under the non-commutative
transformations (68), which means that their Seiberg-Witten
expansion will correspond to the one of a matter field, as the
one of the fieldB̂. Moreover, as can be seen at the first or-
der in θ in (68), if the commutative field vanishes, so will
the noncommutative one, as can be also verified at all or-
ders. Thus, it is enough to set equal to zero theθ = 0 part
of (71), εµνρσDµB = 0. In order to obtain noncommuta-
tive gravity, the expansion in real and imaginary parts of the
commutative fieldsBi

µν andΩi
µ must be performed inside of

the Seiberg-Witten map then the identification of these fields
with the Lorentz covariant onesωµ

ab andΣµν
ab, and then we

must go back to the vierbein,

Σµν
ab = eµ

aeν
b − eν

aeµ
b.

After that we have the solution to the Eqs. (71), given by the
connectionωµ

ab in terms of the vierbein (63).
We can now write (68) as

Ω̂µ = Ωµ + θρσΩ(1)
µρσ +O (

θ2
)
,

and

B̂µν = Bµν + θρσB(1)
µνρσ +O (

θ2
)
,

where, as well as for the commutative fieldsΩµ andBµν , the
correctionsΩ(1)

µρσ andB
(1)
µνρσ, depend on the vierbein and its

derivatives.
At the first order, the action will be given by,

I = −16i

∫
εµνρσ

(
εijkBi

νρΩ
j
µΩk

σ

+ θτθTr
{

Ωµ

(
[Bνρ, Ω

(1)
στθ] + ΩνB

(1)
ρστθ

)} )
d4x. (73)

8. Final Comments

In this article, we have reviewed a noncommutative version
for topological gravity with quadratic actions and noncom-
mutative self-dual gravity discussed in Refs. 14 and 15.

On the side of the noncommutative topological gravity, our
proposal is based on the complex action (40), in terms of
the self-dual and anti-self-dual connections, and from which
we found that the noncommutative natural generalization of
the (37) and Euler (38) topological invariants can be ex-
tracted. More precisely, it is shown that the corresponding
noncommutative versions of signature and the Euler topo-
logical invariants are given by the real and imaginary parts
of (40) respectively. This proposed action can be written as
an SL(2,C) action, whose noncommutative counterpart can
be obtained in the same way as in the Yang-Mills case, by
means of the Seiberg-Witten map. We compute this action up
to the thirdθ-order, and we obtain that the first and the third
order vanish, but the second order is different from zero. The
action to this order is given by (48). It seems that all odd
θ-orders vanish identically. Thus we found that these natu-
ral generalizations for the topological invariants are modified
non-trivially by the noncommutative deformation.

Some comments are in order: on a (commutative) Rie-
mannian manifold, signature and Euler topological invariants
characterize gravitational instantons. Thus the study of non-
commutative topological invariants should allow us, through
the Seiberg-Witten map, to deform gravitational instantons
into noncommutative versions for them. In order to make ex-
plicit computations, specific gravitational (noncommutative)
metrics need to be chosen. In this context, it seems necessary
to implement a noncommutative formulation for dynamical
gravity, following the lines of this work.

In this direction we have proposed a noncommutative
generalization for the Plebanski-Ashtekar gravitation [15],
which is invariant under the noncommutative gauge transfor-
mations. It is torsionless and can be written perturbatively in
a straightforward way in terms of the vierbein and its deriva-
tives. Still we have the challenge of constructing a noncom-
mutative gravity closer to Einstein gravity and of providing
predictions of this theory concerning the classical tests of
general relativity, including black holes, cosmological solu-
tions, gravitational waves and weak field approaches to this
noncommutative Einstein theory. We would like to pursue
some of these topics in the near future.
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Phys. Rev. D68 (2003) 044015.

16. W. Kalau and M. Walze, J. Geom. Phys.16 (1995) 327.

17. A. Connes, Commun. Math. Phys.182 (1996) 155; A.H.
Chamseddine and A. Connes, Phys. Rev. Lett.77 (1996) 4868.
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