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Noncommutative gravity is a very interesting subject that has not yet been successfully related to string theory. However, it can be motiv
by itself by the consideration of a description of the microscopic structure of spacetime, leaving for the future its precise connection to st
theory orM-theory. In this paper we review some of the recent attempts to make sense of the noncommutative description of some clas:
theories of gravity by using the Seiberg-Witten map. In particular we describe noncommutative topological gravity and a gauge invari
proposal generalizing Plebski-Ashtekar Self-dual gravity.
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La gravedad no conmutativa es un tema muy interesante que, hasta ahora, no ha sido incluido iende ¢eerdas. Sin embargo, este
tema puede ser motivado mediante la considéradie una descripon microsépica de la estructura del espacio-tiempo, dejando para el
futuro su reladdn precisa con la te@ de cuerdas o la téarM . En este aftulo, revisamos algunos de los intentos recientes para dar sentido
a la descripdn noconmutativa de algunas teaw chsicas de la gravedad, mediante el uso del mapeo de Seiberg-Witten. En particula
describimos la gravedad tojgglica no conmutativa y una propuesta no conmutativa e invariante de norma que generaliza la gravedad at
dual de Plebaski-Ashtekar.

Descriptores: Teolia de campos no conmutativa; mapeo de Seiberg-Witten; gravedaddagaglgravedad auto-dual.

PACS: 11.10.Nx; 04.20.Cv; 04.20.Gz; 11.15.Kc

1. Introduction commutative fields. These two theories turn out to be related
through the so-called Seiberg-Witten map.

The noncommutative nature of spacetime is an old idea which It is well known that gravity and gauge theories are re-
seems to have originated in the 1930’s, soon after the formualized in very different ways in string theory. Moreover, as
lation of quantum mechanics, by Heisenberg. It was latementioned, string theory predicts a noncommutative effective
worked out systematically by Snyder [1]. Recently it hasYang-Mills theory as a theory defined in the worldvolume of
been studied by many authors from the mathematical pera D-brane. Furthermore, in a number of works [7], it is shown
spective [2], as well as from the field theoretical point of view how, starting from the Seiberg-Witten map, gauge theories
(for recent review papers, see for instance, [3, 4]). based oranynonabelian gauge groups can be constructed on
In the last years, in connection with Matrix and string the-& honcommutative spacetime. In these developments, the key
ory, noncommutative gauge theory has once again attract@gument is that no additional degrees of freedom have to be
attention [5, 6]. In particular, Seiberg and Witten [6] have introduced in order to formulate noncommutative gauge the-
found noncommutativity in the description of the low energy ories. Thus, we can ask ourselves whether a noncommutative
excitations of open strings (possibly attached to D-branesjescription of gravity would arise from these considerations.
in the presence of a constant NS bubk-field. They have In this context, a number of noncommutative approaches to
pointed out that, depending on the regularization scheme dfinstein’s theory of gravity in four dimensions have recently
correlation functions of the worldsheet theory, regularizatiorPeen proposed [8-15]. Noncommutative gravity has been
by point splitting or the Pauli-Villars method lead to noncom- previously considered in the context of the Connes triplet in
mutative gauge theories or the usual commutative Yang-MilldRefs. 16 and 17. Other noncommutative theories in other di-
theory, respective|y_ Thus, the independence of the regu|amen3i0ns have been considered in Refs. 18 to 21 as well in
ization scheme tells us that the resulting theory of noncomRefs. 16 and 17.
mutative gauge fields (deformed by the Moyal star-product)  All these formulations have a constant deformation pa-
should be equivalent to a gauge theory in terms of the usuabmeterd, and in Ref. 9 it is argued that Kontsevich’s formal-
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ity theorem [22] would allow us to relate these theories to dif-dence(see [26] for a review), which assigns to each usual
feomorphism invariant theories. In Refs. 9 and 11, the gaug&inction f(x) one operator functioh ( f)(z) with the most
approach to gravitation has been used to obtain the nonconsymmetric ordering. We start from the Fourier transform of
mutative fields through the Seiberg-Witten map, although thehe functionf(x),

actions are not invariant under the corresponding honcom-

mutative gauge symmetries. In Ref. 14, a formulation for ke 1 /ddxe*“““m“f(xL

)

topological gravity is given in terms of a noncommutative (k)= (2#)%

gauge invariant action, and in Ref. 15, a proposal for a non-

commutative formulation of the Plebski-Ashtekar self-dual o which the following operator is assigned:
gravity [23—25]), based on the Seiberg-Witten construction is

given. The action is fully invariant under the noncommutative R 1 PR
symmetry, and the noncommutative torsion-free conditionis W (f)(Z) = @)} /d ke " f (k)
straightforwardly solved. These proposals will be outlined in T
this paper. 1 d - o T
= o d kzn:kl ok, BB F(R), ()

2.  Weyl-Wigner-Moyal Correspondence

If we wish to have a noncommutative field theory, we canwhere obviously each term is completely symmetric under

start from the noncommutative spacetime defined by théhe permutations of. If we consider the derivative of the

commutation relationsfz#, 7] = i6*¥, with z* being lin-  function, then we have that the corresponding operator is

ear operators acting in some suitable Hilbert space. The

algebra of these operators is associative and noncommuta- ~ 1 a1 ik, 3’1 7

tive: Z#(z¥z°) = (z*z)z*. In this case we need to know W(@uf)@) = (2m)% /d ke Fyuf (K)

how to define field operators, because now the ordering of i N

these operators will make a difference. One way to do this is = [_wlw z ’W(f)(l‘)] : ©)

by means of the Weyl ordering prescription. This ordering is

natural in the context of theveyl-Wigner-Moyal correspon- One important property is that there is a function in this way
associated whith the operator prodd®t f)W (g). Indeed,

|  we have
~ ~ 1 ik TH ipu BT T\ 1 11.7d, i(k Tt — 1k, 0Dy T\
W(f)(x)W(g)(q;) = (QW)d /ddkddpe'ku'” etPv f(k)g(p) _ (ZW)d /ddkddpe (kp+pp) e 1ku0 qu(k)g(p)
1

= Gyg ] A [t ). @

The last integral is the Fourier transform of the function then,
. ) [x# ¥ 2¥] = 2t x x¥ — 27« at = 0", @)
i 0 guv

(ea)@) = [ atyed B ()it )

! The cyclicity property has the important consequence that
_ f(x)eafu or 2 ) if we have an integral of the form

. . dizL(zx),
which is the Moyal product of the functionsandg. Thus
we havelV (f)W (g)(z) = W(f = g)(¥), and the spacetime whose integrand transforms as
noncommutative algebra obtained by the Weyl prescription I () — I 1
is homomorphic to the function algebra with the Moyal prod- (@) = L'(z) = g(x) * L(z) x g~ (2),

uct. it is invariant under this transformation:
This product is associativee. f x (g« h) = (f x g) * h, d rrr d
and satisfies the cyclicity property under integrals on closed /d zLi(z) = /d zL(z).
manifolds, In particular, if these are matrix-valued functions, we have
/ diaf(z) « g(z) * h(zx) = / dzg(x) « h(zx) * f(z) Tr / dizl/(x) = Tr / dzL(x).

Thus, for any commutative field theory, we can write a
= /dd%”h(ﬂ?) * f(z) x g(x). (6)  corresponding noncommutative field theory, instead of going
to the noncommutative spacetime, by substituting the com-

As an example, we can take the functigiz) = «*; mutative function product by the Moyal product all over.
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3. The Seiberg-Witten Map Therefore, the number of degrees of freedom of a non-
_ _ commutative theory will increase. However, the number of
3.1. Noncommutative Gauge Theories gauge parameters will increase, which means that it will also

, i i be possible to gauge away at least one part of the new degrees
In order to define noncommutative gauge theories, NONCOM¢ fraadom. For the particular case of noncommutative gauge

mutative gauge fields which make derivatives covariant musfy, o ries constructed through the Seiberg-Witten map from a

be introduced. If we have a field which transforms as,q 5| (commutative) gauge theory, the number of degrees of
NP =iAx®, thenD,® = 9,P —iA, « P is its covariant  faadom are the same.

derivative if the gauge fieldl, transforms as

3.2. The Seiberg-Witten map
WA, =0 A +i[A T Al (8)
o _ If we go back to string theory, we have seen that there must
Similarly, F.,, = 0,4, — 0, A, —i[A, 7 A, thefield  pe 3 relation between the usual gauge theories and the non-

strength, has the transformation lawF,, = i[A 7 Fu.].  commutative ones, given by the Seiberg-Witten map
Therefore, in principle, starting from any commutative gauge R N L
theory, we could construct a noncommutative one by means Au(A+00A) = Au(A) + 65 A, (A), (11)

of the substitution of the usual product of functions by the

Moyal product. The invariant action for the gauge sector is thatis,

S\AL(A) =054, (12)
S = / d*z M « Fou. This relation can be generalized for any linear representation,
by 6, (P, A)=05;P(P, A)=iA * ®(P, A), or for the adjoint
However, for a Lie group, with Lie algebrag generated ~ representationiy ®(®, A)=d52(®, A)=i[A 1 ®(®, 4)].

by {T,}, which satisfie§T,, T;] = f.;“T., for the noncom- The Seiberg-Witten map permits the formulation of non-
mutative fields we have commutative gauge theories, with an explicit dependence on
the commutative fields and their derivatives, without the need

A5 A= (A"« F), — Fo, =« X)) T,T,, to include new degrees of freedom, by means of a sort of ef-
fective theory. If we have a noncommutative gauge theory,

_ 1 (A"« F), + Fp, « A*) [To, Ty)] constructed by means of the Seiberg-Witten map, we will

2 have R
+ % (/\a " F;l:u _ Fﬁy " )\a) {Tme}’ (9) 5)\5 = 53\5 =0. (13)

That is, the invariance of this action can be seen in terms of
where A, = A§T, and\ = \*T,,. These gauge transfor- the noncommutative fields, under the noncommutative gauge
mations will generate, for the gauge fields, components itransformations (8), as well as directly in terms of the trans-
the enveloping algebid of G, which is the algebra obtained formations of the commutative fields, on which the noncom-
from all the products of, that is, by taking besides the com- mutative ones depend in a complicated nonlinear way, by the

mutators, the anticommutators, as can be seen from Seiberg-Witten map.
1 ! This map can be written for any gauge group [7], and its
T,T, = 5[Tme] + i{Ta,Tb}, solution can be obtained iteratively. In order to do that, the

fields are written in a power series expansion in the noncom-

Thus, the enveloping algebra can be obtained by repeafnutativity parameters,
edly computing all commutators and anticommutators, until ~ w4 (1) | puwppo 4(2)
it closes. That is, its general form will be A=A+ 0TALY + O A+ (14)

As a first step, the map for the transformation parameters is
K K obtained. In general, the commutative parameters in a linear
[Tr, Tyl =ifrs" Tk, {T1,Ts} =di;" Tk (10) representation,® = ia® = ia®T,d satisfy the following

. . . consistency conditions:
In particular, the Lie algebras of the groug$n), in the fun- y

damental representation, coincide with their enveloping al- 00, 05]® = —[a, B]® = Gifa, )P (15)
gebras. In fact, this construction depends on the representa-
tion. For instance, folSU(2) in the fundamental represen- It can be seen that the noncommutative parameters must de-

tation, the generators are the Pauli matrices, which satisfpend on the gauge fields, = A(), A); that is, the previous
[0, 0] = icapeoe and {oq, 0} = 204,1. Thus, the en- condition is in the noncommutative case given by

veloping algebra contains the unity matrix besides the Pauli ~ o~ ~ ~ o~ ~
matrices, and correspondst2). For the vector represen- 0a03® = ba (53@) = 10a A(B) * @ + iA(B) * 6o P
tation, the generators a(&y,),” = ic,,°, and it can be easily P ~ o~ ~ o~

shown that its enveloping algebra is given§3). = 6o A(B) ¥ @ — A(f) * A(a) ®; (16)
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that is, are the simplest ones, but not always the most suitable, de-
~ o~ o~ pending on the problem [7]. Solutions (19) and (20) given
[0c, 58] = (i6aA(B) — i0sA(c) by Seiberg and Witten have the nice property that the correc-
NI = ¢ = tions to the field strength (21) vanish if the commutative field
M@ T M@ * @ =diag®, - (A7) strength vanishes.
from which we get the transformation law for the noncom-  The higher terms in Eq. (14) can be obtained from the
mutative parameters, observation that the Seiberg-Witten map preserves the opera-
N N N N N tions of the commutative function algebra; hence the follow-
10 A(B) —i0gA(c) + M) ¥ M) = A(i[e, 8]).  (18)  ing differential equation can be written [6]

In order to solve this equation, we write 50m 0
oo

A(0) = 50" AL (D), (25)
X = A+ 0D o o@D .
hereAf}l,) is obtained fromAE},,) in Eqg. (14) by substituting

e commutative fields by the noncommutative ones under
the x-product.

which, substituted back into the preceding equation gives a}j:
equation for the first order term,(fy), which has the solu-

tion [6],
AN A) =+ i‘w {0,X ALY+ 0O (6%). (19) 4. Topological Gravity: Preliminaries

Now with this solution at hand, for the connection we pro-In this section, we briefly review four-dimensional topolog-
ceed as well Eq. (14) substituted into (12), with the solutionical gravity. LetR be the field strength, corresponding to a

to first order given by, SO(3,1) connectionu:
~ 1
Ay (A) = A, — =07 {A,,0,A, + F,,} + O (6%). (20)
Iz Iz 4 4 Iz Iz ( ) Ruﬂb _ 8Mwya,b _ (9,,0.);’b + Wuacwu}é _ (‘uubcwurg7 (26)
Substitution of this equation into the field strength gives ~
) and letR be the dual of? with respect to the group (not with
Fu = Fu + ngo (2 {Fup Fuo} respect to spacetime) glver? by
E Vab — _Egabc R Vcd. 27
—{4p, Do Fpu + 6UFW}> +0(6%). (21) s 2~ 27)
We start from the followinggO(3, 1) invariant action
For matter fields, the same procedure is followed; in this oF oF
case, the map is given by Irop = TG’I‘I/R/\ R+ iTGTr/R AR, (28)
™ v
X X

~ 1 1

o=+ _H* (—Aﬂal,@ + AuAV<I>> .
2 2 where X is a four-dimensional, closed, pseudo-Riemannian

However, for the adjoint representation, the equation to pénanifold and the coefficients are the gravitational analogs of

solved is5,® = [\ * @], and in this case the map is the ®—vacuum in QCD [27-29].
In this action, the connection satisfies the first Cartan

P (D,A) =0 — lgzw {A,, (D, +8,)®} + 0 (6*). (22) structure equation, which relates it to a given tetrad. This
4 . action can be written as the integral of a divergence, and a
The h|gher order terms can be obtained in the same way, (Mariation of it with respect to the tetrad vanishes; hence it is

by an equation given by Seiberg and Witten: metric independent, and therefore topological.
The action (28) arises naturally from the MacDowell-
0 &_ qf(T)W’ (23)  Mansouri type action. A similar construction can be made
aoorv for (2 + 1)-dimensional Chern-Simons gravity; keeping this

—= . ) hilosophy in mind, action (28) can be rewritten in terms of
) p n
where® (1) s obtained from the first order term of the map by the self-dual and anti-self-dual pare: %(R R), of the

substituting the fields by their noncommutative counterpartsRiemann tensor as follows-
all of them multiplied by the Moyal product. For instance, '

for the gauge fields we have Irop = Tr/ (rR* AR* + 7R~ AR")

~ I N
AP = —2o0 (A 10,4, + B} (29 X
_ + A pt =Pt A PF
Note that the general solution of the Seiberg-Witten map has = Tr/ (TR ART +TRT A R+> ’ (29)
an infinity of free parameters, and the solutions given here X
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where where, R, = Ouw, — Ohw, — tlw,,w,] is the field
1 N strength,x is t.he usual I_-|odge st.ar .operation with rgspect
T= (27r> (9(; + z@c) , to the underlying spacetime metriR, is the two-form field
strength, andR is the dual ofR with respect to the group.
and the bar denotes complex conjugation. In local coordiThis action is invariant under th&Z(2, C) transformations,

nates onX, this action can be rewritten as Nwy = O + i\ wy].
b In the case of a Riemannian manifald, the signature
a . . .
Irop = 2Re ( / d*z "7 RY, R;,ab) (30)  and the Euler topological invariants &f are the real and

imaginary parts of (36):

Therefore, it is sufficient to study the complex action 1
o(X)=——=Re|Tr [ d*z """ R, (w)Rpo(w) |, (37)
2472
X

I= / d'z e RE R . (31)
1
X)=-——TIm d*a e"PIR (W) R po (W ) 38
Further, the self-dual Riemann tensor satisfies © )= 3272 ( / (@) Rpo (@) ) (38)
sabcde;fd:QiRjV“b. This tensor has the useful property X
that it can be written as a usual Riemann tensor, but in terms
of the self-dual components of the spin connection, 5. Noncommutative topological gravity
w: ab _ 1 (Wﬁb _ igabcdwzd>’ We wish to have a noncommutative formulation of the
2 2 S0(3,1) action (28). lIts first term can straightforwardly
as made noncommutative, in the same way as for the usual
Yang-Mills theory,
R+ ab aﬂw-i- ab auw: ab R R
RAR. (39)
+w: “ijcb — w: bcw,fca. (32) fe
In this case, action (30) can be rewritten as If the SO(3, 1) generators are chosen to be hermitian, for ex-
_ ample in the spirl /2 representation given by*”, then from
I= /d4:c "7 2R, " (wT) Rpeos (wT) the discussion at the end of the second section, it tumns out
X that R,,,, is hermitian and consequently (39) is real.

i If we now turn to the second term of (28), such an action

ij(, (ot ;
By (07) Rpaij (7). (33) cannot be written, because it involves the Levi-Civita sym-
Now, we definew,’ = Z'w:{()i' from which we obtain, by bol, an invariant Lorentz tensor, but which is not invariant

means of the self-duality properties;}/ = —ci,w,*. under the full enveloping algebra. However, as mentioned at
Then it turns out that " the end of the preceding section, this term can be obtained
_ _ _ o from Eq. (36).

R,oNwh) = —i(Buw], — Buw), + 265, wlwh,) Thus, in general we will consider as the noncommutative

— iR i(w) (34) topological action of gravity, th& L(2, C) invariant action,

R, (wh) = 0wt — w7 — 2w w] —wiw]) I= Tr/d4a: PR 1 R pors (40)

- 75” R/LU( ) (35)

This amounts to the decomposition between the compleWhereR,, = 9,3, — 9,3, w,] is the SL(2,C)

noncommutative field strength Tﬁns action does not depend

orthogonal Lie groupSO(3,1) and the product of two
complex Lie groupsSL(2,C) given by the isomorphism """ .
S50(3,1) = SL(2,C) x SL(2,C), such thatw,’ is a com- itis given by a divergence,
plex SL(2,C) connection. If we choose the algebi&2, C)

T W po -~ -~ 2. -~ -~
to Satisfy[Ti, Tj] = Qifiika and TI(TZTJ) = 20;;, then we I:Tl“/d4CE ghvp a,u (WV * apwa+§wu * Wy k wa) . (41)

on the metric of X. Indeed, as well as the commutative one,

ljy

can write
I=Tr | RAxR Thus, a variation of (40) with respect to the noncommu-
4 tative connection will vanish identically because of the non-
commutative Bianchi identities,
= Tr/d4a: eMPIR (W) R po (W), (36) ~ . o
b ool = 8Tr/ eMP?6&, * DyR,y» =0, (42)
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wheref)ﬂ is the noncommutative covariant derivative. The action (40) is not real, as well as the limiting commu-
At this stage, we can make use of the first Cartan structurative action. Hence, it is not obvious that the signature (39)
equation; then the SO(3,1) connection, and thu§ ii§2, C) will be precisely its real part. In this case, we could not say
projection wlj, can be written in terms of the tetrad and that x(X) is given by its imaginary part. In fact we could
the torsion. Furthermore, from the Seiberg-Witten map, thenly say thaty(X) could be obtained from the difference
noncommutative connection can be written as welbés). of (40) and (39). However, the real and the imaginary parts
Therefore, a variation of the action (40) with respect to theof (40) are invariant under SR, C) and consequently under
tetrad of the action, can be written as SO(3,1), and thus they are the natural candidates (6f)
~ R o~ andx(X), as in (37) and (38). In order to write down these
Ol = 8Tr/5wp056“’#(6) * DRy =0; (43)  noncommutative actions as an expansior,imve will take
as generators for the algebra 8f.(2,C), the Pauli matri-
ces. In this case, to the second ordefithe Seiberg-Witten
map for the Lie algebra valued commutative field strength
=R,," (w)a;, is given by

hence it is topological, as the commutative one.

As we will show later, the explicit expansion of the ac-
tion (40) in the noncommutative parametgrgives terms
that one does not expect to vanish identically. Thus, we see*>
from (41) that, in a@@—power expansion of the action, each
one of the resulting terms will be independent of the metric, R, = Ry + 0°°R). 5 + 090 RE) o 4., (44)
as well as being be given by a divergence. Therefore, these
terms will be topological. (For the case of Euler characterisyhere, from Eq. (21) we get
tic, compare with the noncommutative nontrivial generaliza-
tion of it given by Connes in pp. 64-69 from Ref. 2). (1) 1, . ;

Furthermore, the whole noncommutative action, ex- 0" Ryivpo = 590 [QRWRW”’
pressed in terms of the commutative fields by the Seiberg-
Witten map, is invariant under the SO(3,1) transformations.

Thus, each term of the expansion will also be invariant. Thus _ _ .
these terms will be topological invariants. where 1 is the unity 2«2 matrix. Further, by means of

| Eqg. (25), we get,

~w," (s Ryvi + DoRywi) |1, (45)

onNT 2 1 onT 7 . ] j i ;
0rrgTORY) = 10770 0 <ejk [i0: RS, , 09 RE , + 8,;w109(05 + Dy)RE)] — wi0rwl0gR s
+ R,[2RY, Rooj — Wi (9 + Do) Ruos] — Ry, [2R, Rovj — wi(De + Do) Ryo]
1 . ; ; A ,
+ iwﬁ((%wm— + Repj)(ag + DU)R#V — 2wp {28673{“.72,,9]' — 80 [w{,(é)g + D(?)R;Lllj}} ) g;. (46)
Therefore, to the second orderfinthe action (40) will be given by,

T=Tr / d*x et {RWRPU + 207 R, R, + 07007 (2RWRS‘QTW + RS)THR%C) } . (47)
X

Taking into account (45), we get that the first order term is proportional {e;Tiand thus vanishes identically. Further
using (46), we finally get

nz

~ ) 1 ) . .
7= / d*x swa{m;unm + 19799’94 { —eijiRl,, [09 R}, OcREy — 09wld: (09 + Do) RE,]
X

i L j L
+ [Ryr Ruoi — 5wr(09 + Do) Riyuw ][Ry Rocj — 503(0¢ + Do) Ryo]

; . . 1 :
+ Ry { Rigo[2R0y Rrcj — wy(Oc + D) Rprj] + 7(90 + Do) Rpoiwy(Ocwrj + Rery)

. 1 . 1. .
+ wgi[& (RZﬁRUQ) — 587—(&11]9 (8< + DC)Rpg‘j]} — QRLUwTiaﬁwganggj} }, (48)

where the second order correction does not identically vanish.
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Similarly to the second order term (46), the third ordervalued quantity. The constraints are given by
term for R can be computed by means of Eq. (25). The re-

sult is given by a rather long expression, which however is $AB A RCP = 1<5(C;‘5,’§’)EEF AYEp
proportional to the unity matria, like (45). Thus the third 3
order term in (47), given by and, as shown in Ref. 23, their solution implies the existence
of a tetrad one-form, which squared gives the two-fanin
9fT101 7202 97305y, / chvpo <R WR(?’) the Iangua_lge of SO(3,1), this two-form is a second rank, an-
J He T po 1017202730 tisymmetric, self-dual two-form;+e® = I17% y2¢¢, where
+ab __ 1 ab - _ab
+R2137191R;?T2927393>, (49) ey = 7 (06 —ie"2a) -
In this case, the constraints can be recast into the equivalent
vanishes identically, because @ is proportional too;. form
Thus, (48) is valid to the third order. In fact, it seems that 1
all its odd order terms vanish. yrab A ypred = —§H+ab“‘d2+ef AT,
6. Self-dual Gravity: An Overview with solution
£ = 2¢% A eb.

In this section, we briefly overview the formulation of Self-
dual gravity in the approach by Plelski [23] and of great For the purpose of the noncommutative formulation, we
interest in the Ashtekar’s hamiltonian description of Self-will consider self-dual gravity in a somewhat different way as
dual gravity [24] and in loop quantum gravity (for a review, in the papers [23,24]. In this section we will fix our notations
see [25]). and conventions.
One of the main features of the tetrad formalism of  We start from the S[2, C) complexBF-action
the theory of gravitation is that it introduces local Lorentz
SO(3,1) transformations. In this case, the generalized I= —4z‘Tr/B/\F, (50)
Hilbert-Palatini formulation is written as
whereB = B;T" and the connectiof = Q;T7, is s/(2,C)
/%“%”Ruﬁb(w)d4% Lie algebra-valued anfl = dQ+Q? is the field strength. We
choose a hermitian representation for the algebra generators
wheree / is the inverse tetrad, ant,2*(w) is the so(3,1) such thafT"?, T9] = 2ic", T" andTr(T"T7) = 26%. Fur-
valued field strength. The decomposition of the complexther, we decompose the fields into their real and imaginary
Lorentz group as SO(3,1)=%L, C)®SL(2,C), and the ge- parts,Q = (1/2)(w + iw), andB = (1/2)(X + iX). Thus
ometrical structure of four-dimensional space-time, makes itve getF' = (1/2)(R + iR), where
possible to formulate gravitation as a complex theory, as in

- , , , i
Refs. 23 and 24. These formulations take advantage of the Ry’ = 0wy, — Opwy, — ' (W) + wjwy), (51)
properties of the fundamental or spinorial representation of B 05 — 0.0 — e (o ik 52
SL(2,C), which allows a simple separation of the action in pr = Oy, = Oyl — € p(0y +wjwy). - (52)

the fields of both factors of SO(3,1), as shown in great defor the action we get,

tail in Ref. 23. All the Lorentz Lie algebra-valued quantities,

in particular the connection and the field strength, decom- | — _22'/ {giRi — YR +i(Z'R; + f}iRi)} . (53)
pose into the self-dual and anti-self-dual parts, in the same

way as the Lie algebra so(3,1)%8, C)®st(2, C). However,
Lorentz vectors, like the tetrad, transform under mixed transy,, t
formations of both factors and so this formulation cannot be
written as a chiral S[2, C) theory. Various proposals inthis R, = 0,w," + w,"w,// + w,'w,d — (u < v). (54)
direction have been made (for a review, see [25]). In an _ _ _

early formulation, this problem was solved by Plaski [23], Further, if we defines,” = —w,” = w,’, w,” =0
where by means of a constrained Lie algebra valued two-for@Nd R,.,”" = R,.,", then after putting together (51) and (54)
¥, the theory can be formulated as a chiraIC) invariant ~ We get,

Now let us defines’/ = e, andR,,,"” = ¥, RE,.
his case we get,

BF-theory, Rw‘lb = 0w, — 0w, ™ + W, W, — w, w0, (55)
TT/E A R(w). where the indiceg, b, c run from0 to 3. In this case, if we
define also

In this formulation X has two SI(2, C) spinorial indices, and . ) .
. . AB BA EU’L _ _Zz() — 3
it is symmetric on themy*” = ¥4, as any such#&2, C) pr = TRy = Huws
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it turns out that 7. Noncommutative Self-dual Gravity

I:—E /gul/po <_EabR b+£€ bed S R cd> . (56) Now we intend to formulate the self-dual gravity from the
2 ppTIpean T Tt Tee above section on noncommutative grounds. The noncommu-
tative action can be obtained following the Seiberg-Witten
construction [6], further developed in [7]. The same symme-
) try principle is applied, however now with the field dependent
ool = 459Tr/(_dBQ +BYY) enveloping algebra-valued transformation parameters, given
the first order in the noncommutativity parameter by

If we now vary over in (50), we have

= —4Tr / DBéQ =0, (57) L 1
A=MTA =2+ Zaf“f{a,m, QY+.... (64)

whereDB = dB + [, B] is the covariant derivative of the : . .
T . In order to obtain the enveloping algebra, a choice of the rep-
gauge group S(2,C). This is a complex equation, whose

resentation of generators ef(2,C) has to be made. If we
real and imaginary parts vanish separatedly, giving us the fol-

take for instance the Pauli matrices, then the enveloping
lowing equations,

algebra will be given by the four generators

gﬂupaDuzgip =0, (58) {TA} _ {O’O _ 170_71}.
and 1 . Thus, the action, invariant under the noncommutative
—e' e D, Yk = 0, (59)  transformations,
2 4
where 00, = 9+ [Q, 1 N, (65)
EIWPUDHZBZ = Euupaauzfjp - Eijlc(wuj izlfp + CT}szupk) S\E = [/): > E}’ (66)
and will be,
T —4iTy / BAF, (67)

1, , ~
se'jketP? DSl = P9,
2 whereF),, = 0,8, — 9,8, ’leQ ] is the field strength

+ (W, - BITE ). andF,, = 9, 0, -0, Q, — i, * Q,] is the noncommu-
_ _ tative field strength The noncommutative fielsand() are
That is, gathering all that, we get given by the Seiberg-Witten map,
vpo ab __ -~ 1

e Dy, = 0. (60) 2, (Q)=Q, - Zeyp {0, 0,0 + Fou} + 0O (92) )

Let us now make the usual ansatz N 1 i
B=B— 0" ([Qu,0,B] — - [Q, [, B]]
Eab __ab a b, 2 2
uy e,uel/ - eye;u

o _ +0(6?), (68)
in this case, the action turns out to be
Further, the action can be written as,
I= /(deteR M e PT R ) dre. (B1) L
g e I=—4i / BAF
Moreover, the Eq. (60) resulting from the variatiorfbfurns
into = —16i / eMro Bl (apszm- + igijrY) *ij). (69)
07 (1,0, — T, et) =0, (62)
Although we are taking the commutative fields as the fun-
from which it turns out that the torsion vanish@.” = 0,  jamental ones, the action is written in terms of the non-

resulting in the fact that the second term in (61) vanisheg,mmytative ones. Furthermore, the relation between the
|dent;::ally, dui to the Bianchi identities. Moreover, we ob- ., ative and the noncommutative degrees of freedom is
tain the second Cartan structure equation, one to one [6], so the variation of the action with respeci to

1 . . . . will be equivalent to the variation with respect@) We have
Wavp = 5 [ew(&,ep’ — 0pey) — eya(ﬁpeu’ — auep)
T — uvpo i
— epa(Op€), — 8&5)}, (63) opl 16/5 <8PB;W
which, put into the action (61), gives us the Einstein-Hilbert +iel), (ﬁﬂ « BY,+ B, « @ﬁ) ) «00,,.  (70)
action.
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That is, we obtain the noncommutative version of (60) whichOn the side of the noncommutative topological gravity, our
is given by proposal is based on the complex action (40), in terms of
the self-dual and anti-self-dual connections, and from which
we found that the noncommutative natural generalization of
the (37) and Euler (38) topological invariants can be ex-
tracted. More precisely, it is shown that the corresponding

6/wpoDHB — gHvpo

uv

x [0,5h, + ik, (3]« Sk, + 50, + 3 ) | =0, (72)

which substituted back into the action, gives us noncommutative versions of signature and the Euler topo-
logical invariants are given by the real and imaginary parts
I = —162'/5#”#052'].,6@{‘ % ggjp % Qi (72)  of (40) respectively. This proposed action can be written as

an SL(2, C) action, whose noncommutative counterpart can

Equation (71) is covariant under the non-commutativebe obtained in the same way as in the Yang-Mills case, by
transformations (68), which means that their Seiberg-Wittermeans of the Seiberg-Witten map. We compute this action up
expansion will correspond to the one of a matter field, as théo the thirdd-order, and we obtain that the first and the third
one of the fieldB. Moreover, as can be seen at the first or-order vanish, but the second order is different from zero. The
der in @ in (68), if the commutative field vanishes, so will action to this order is given by (48). It seems that all odd
the noncommutative one, as can be also verified at all od-orders vanish identically. Thus we found that these natu-
ders. Thus, it is enough to set equal to zerofthe 0 part  ral generalizations for the topological invariants are modified
of (71),e"??D,B = 0. In order to obtain noncommuta- non-trivially by the noncommutative deformation.
tive gravity, the expansion in real and imaginary parts of the
commutative fieldsB;,, and2, must be performed inside of
the Seiberg-Witten map then the identification of these field
with the Lorentz covariant ones,*® andy:,,,*’, and then we
must go back to the vierbein,

Some comments are in order: on a (commutative) Rie-
mannian manifold, signature and Euler topological invariants
Tharacterize gravitational instantons. Thus the study of non-
commutative topological invariants should allow us, through
the Seiberg-Witten map, to deform gravitational instantons
Wl = e, — el into noncommutative versions for them. In order to make ex-
plicit computations, specific gravitational (noncommutative)
After that we have the solution to the Egs. (71), given by themetrics need to be chosen. In this context, it seems necessary

D)

connection,,*" in terms of the vierbein (63). to implement a noncommutative formulation for dynamical
We can now write (68) as gravity, following the lines of this work.
ﬁu =Q,+ GP"QSP)U + 0 (92) , In this direction we have proposed a noncommutative
generalization for the Plebanski-Ashtekar gravitation [15],
and which is invariant under the noncommutative gauge transfor-
éw =B, + QPUBSV)M L0 (92) , mations. It is torsionless and can be written perturbatively in

a straightforward way in terms of the vierbein and its deriva-

where, as well as for the commutative fiefds andB,,,, the  tives. Still we have the challenge of constructing a noncom-
correction@ﬁ,}a andBLl,)pg, depend on the vierbein and its mutative gravity closer to Einstein gravity and of providing

derivatives. predictions of this theory concerning the classical tests of
At the first order, the action will be given by, general relativity, including black holes, cosmological solu-
tions, gravitational waves and weak field approaches to this

I= —162’/5“””" (aijka;inij noncommutative Einstein theory. We would like to pursue

some of these topics in the near future.

+ 0707 {0 ([Bup, Q0] + 2B, ) | >d4x. (73)
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