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Se introduce al lector en el llamado “problema del tiempo” inherente a la relatividad general. Se realiza primero una revisión de los funda-
mentos conceptuales de la relatividad especial y general con el fin de fijar las bases conceptuales y técnicas necesarias para la descripción del
“problema del tiempo”. Una vez hecho lo anterior, se enfatiza el hecho de que en el contexto de la relatividad general las coordenadas (o el
atlasA) que etiquetan los puntos de la variedad no tienen siginificado fı́sicoper sey que este hecho requiere una forma (distinta de la que se
usa en la relatividad especial) de describir la evolución de las variables dinámicas involucradas en una forma compatible con la covarianza
bajo difeomorfismos de la teorı́a.

Descriptores:Problema del tiempo; evolución relacional; observador.

The reader is introduced to “the problem of time” present inherently in general relativity. A review of the conceptual fundamentals of both
special and general relativity is done with the aim of fixing the conceptual and technical bases required to make the description of the
“problem of time”. Once this done, it is emphasized the fact that in the context of general relativity the coordinates (or better, the atlasA)
which label the points of the manifold do not haveper sephysical meaning and that this fact requires a suitable form (distinct to the one used
in special relativity) of describing the evolution of the degrees of freedom of the dynamical variables involved in a way compatible with the
diffeomorphism covariance of the theory.
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1. Introducción
Se puede decir, sin exagerar, que la teorı́a general de la rela-
tividad del movimiento exhibe naturalmente el hecho de que
ciertos conceptos fı́sicos fundamentales, empleados en la for-
mulacíon de las leyes de la naturaleza, que se habı́an acepta-
dos como correctos en el contexto de la relatividad especial,
simplemente dejan de tener validez en el contexto de la re-
latividad general. Como su nombre lo indica, la relatividad
generalno es únicamente una teorı́a que provea las nocio-
nes necesarias para la descripción del campo gravitacional.
En particular, las bases conceptuales sobre los cuales yace
la teoŕıa implican que la forma en que debe entenderse la
dinámica enésta sea completamente distinta de la forma en
que se entiende en la relatividad especial. Es lacomparacíon
de las formas de entender la dinámica en ambas teorı́as lo que
da origen alproblema del tiempoen la relatividad general. De
hecho, el problema del tiempo no es una particularidad de la
relatividad generaĺunicamente sino de toda teorı́a covariante
bajo difeomorfismos. Basta pues hacer la descripción del ca-
so de la relatividad general para familiarizarse con la esencia
del hecho.

La covarianza bajo difeomorfismos de la relatividad ge-
neral est́a ı́ntimamente relacionada con la noción de “obser-
vador”. En la mećanica newtoniana, en la relatividad espe-
cial, en la mećanica cúantica no relativista y en la mecánica
cuántica relativista el “observador” es un elemento ajeno al
“sistema”que “observa.al “sistema”. En el contexto concep-
tual de cada una de las cuatro teorı́as mencionadas, la existen-

cia del observador se establece de manera verbalúnicamente.
El observador “está incluido” en el formalismo de cada teorı́a
únicamente por afirmación. Se trata de un “observador ideal”
en el sentido de que su dinámicano est́a incorporada dentro
de los diversos formalismos previamente mencionados. Su
aparente presencia se establece por decreto bajo el pretexto
de que “no contribuye a la dinámica del sistema”. Estas si-
tuaciones constituyen una idealización, que no corresponde
a la realidad desde un punto de vista conceptual, puesto que
todo observador está hecho de materia.

El lector pragḿatico podŕıa decir que se está adoptando
una posicíon fundamentalista para hacer la descripción de los
fenómenos f́ısicos. . . y se equivocarı́a. Al analizar los ĺımites
de aplicabilidad de una teorı́a f́ısica no se pueden dar conce-
siones, mucho menos de carácter conceptual, como en el caso
que nos ocupa.

Volviendo al papel del observador, digámoslo claramen-
te. En el contexto conceptual de la relatividad general, la
dinámica del observador no puede soslayarse, no puede omi-
tirse, no se puede establecer una distinción entre “sistema” y
“observador” pues existe unasola entidad dińamica. Lo más
que est́a permitido, dentro de los lı́mites conceptuales de la
teoŕıa, es hacer una descripción de una parte de esta entidad
dinámica respecto de la parte restante de la misma, división
que es, por lo deḿas, arbitraria y que da origen a la descrip-
ción relacional de la fı́sica, siendo la evolución relacional de
los grados de libertad de un sistema sólo un caso particular,
correspondiente a la visión relacionista de la dińamica. La
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evolucíon relacional es conceptualmente compatible con la
covarianza bajo difeomorfismos de la relatividad general. El
hecho de que las bases conceptuales de la relatividad gene-
ral no permitan la existencia de estructuras (materiales) de
referencia fijas, es decir, sin dinámica, no tiene parangón en
la fı́sica previa a la relatividad general. Este hecho, a su vez,
coloca a todos los campos materiales (incluyendo el campo
gravitacional en el t́ermino materia) en el mismostatus on-
tológico.

De hecho, la relatividad general está basada en la obser-
vación de que todo lo que existe en el universo son campos
de materia, independientemente de la manifestación concreta
de estos campos. No existe “espacio” ni “tiempo”a priori,
i.e., sin la presencia de materia. La materia da origen, por
decirlo aśı, a las nociones de tiempo y espacio. Los campos
de materia no existen en el “espacio” y “tiempo”, sino que
la existencia objetiva déesta genera tales nociones. El aspec-
to fundamental es simplemente la existencia de la materia.
La variedad y las coordenadas, que etiquetan los puntos de
ésta, son śolo herramientas auxiliares en la descripción de los
fenómenos f́ısicos, y deben ser eliminados cuando se requiera
hacer predicciones de la teorı́a compatibles con la covarianza
bajo difeomorfismos de la relatividad general.

Con base en lo anteriormente expresado, el “problema del
tiempo” en la relatividad generalno es en śı un problema en
el contexto de la teorı́a, sino una propiedad, una caracterı́stica
de la misma. Se presenta como un “problema” cuando se pre-
tende, erŕoneamente, asociar esta caracterı́stica de la teorı́a
con nociones que se encuentran fuera de la estructura con-
ceptual de la misma. De esta forma, para disminuir al mı́ni-
mo las posibles interpretaciones erróneas, he decidido expli-
car ciertas nociones, que son familiares a los investigadores
involucrados con la relatividad general, pero cuya exposición
resulta necesaria en aras de la claridad y completez del tema
del presente artı́culo, el cual est́a dirigido a estudiantes.

2. Relatividad especial

La esencia de la teorı́a especial de la relatividad del movi-
miento o, simplemente, relatividad especial,no se expresa
diciendo que el movimiento es relativo sino es aquella conte-
nida en las observaciones siguientes:

1. La rapidez de propagación de la luz en el vacı́o, c, es
absoluta, i.e., es la misma para todos los observadores
inerciales.

2. Las leyes de la fı́sica deben ser covariantes (invariantes
de forma) bajo transformaciones (de Lorentz) entre los
sistemas de referencia inerciales,i.e, la covarianza es
absoluta.

Es un hecho notable que la reestructuración, por parte de
Einstein, de la mećanica newtoniana haya sido el reemplazo
de los dos entes absolutos de esa formulación, laaceleracíon
~a y el tiempo newtonianot, por dos nuevosentes absolutosen
la teoŕıa de la relatividad especial, que son los listados en los

puntos 1 y 2 anteriores. En efecto, en la mecánica newtoniana
se tiene

t = t′ , ~a = ~a′, (1)

donde las primas se refieren al sistema de referencia inercial
S′ y las cantidades sin primas al sistema de referencia iner-
cial S. Dicho de otra forma, tanto la mecánica de Newton
como la relatividad especial tienen entes absolutos en su for-
mulacíon, la diferencia entre ambas reside en que los entes
absolutos de la Ec. (1) contradicen la experiencia, mientras
que los entes absolutos de los puntos 1 y 2 tienen, en cierto
régimen de aplicabilidad, sustento experimental.

Para proseguir conviene definir el espacio-tiempo de
Minkowski (R4, η). Se trata del conjuntoR4 dotado
de una estructura de variedad y una estructura métrica
η = −d(ct)2 + dx2 + dy2 + dz2. Basta elegir una 4-carta
(R4, Id) para “cubrir”todoR4. El atlasA est́a formado por
todas las 4-cartas compatibles con tal 4-carta [1]. De esta for-
ma (xµ) = (ct, x, y, z) son coordenadas que etiquetan (glo-
balmente) los puntos o eventosp del espacio-tiempo de Min-
kowski (R4, η). El “observador inercial” es toda una red de
relojes colocados en todo el espacio (véase, por ejemplo, la
Ref. 2). Esta serie de relojes son de prueba y a pesar de es-
tar hechos de materia su contenido materialno afecta, por
hipótesis y consistencia de la relatividad especial, el espacio-
tiempo de Minkowski.

2.1. La “obra de teatro” y el “escenario”

Aún cuando la relatividad especial difiere radicalmente de la
mećanica newtoniana, la primera tiene la caracterı́stica de que
la métrica de Minkowskiη est́a fija, no es determinada por la
materia en forma alguna. En el marco conceptual de la relati-
vidad especial, da lo mismo desde el punto de vista teórico si
una part́ıcula se encuentra en la vecindad de una hormiga o de
una estrella supermasiva, no importa la magnitud de la masa,
puesésta no afecta al espacio-tiempo de Minkowski, las re-
laciones causales no se ven afectadas por la presencia de ma-
teria, independientemente de la naturaleza de estaúltima. De
esta forma śolo los campos materiales, denotados genérica-
mente porφ, a diferencia de la ḿetrica, son entes dinámicos,
y su dińamica viene dada por alguna acción

Smatter[φ] =
∫
Lmatter[φ], (2)

invariante bajo transformaciones de Lorentz, la cual propor-
ciona las ecuaciones de movimiento

E [φ] = 0, (3)

de los campos materialesφ. De esta forma, el espacio-tiempo
de Minkowski(R4, η) es un “escenario” fijo donde los cam-
pos de materiaφ existen representando la “obra de teatro”
correspondiente a la dinámica dada por la Ec. (3). Si se pu-
dieran, de alguna manera, “remover” los campos de materiaφ
aún quedaŕıa el espacio-tiempo de Minkowski(R4, η) como
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remanente. Como veremos después, en la relatividad gene-
ral el espacio-tiempo no está fijo, sino que es determinado
dinámicamente. A diferencia de lo que sucede en la relati-
vidad especial, la eliminación hipot́etica de los campos de
materia (incluyendo en el término materia el campo gravita-
cional caracterizado por el tensor métricog) en el contexto de
la relatividad generalno implicaŕıa una variedad suave como
remanante, ni siquiera el aspecto topológico de la misma, no
habŕıaalgo remanente [3].

2.2. Tensor de enerǵıa-momentoTµν no nulo

Por otra parte, la existencia de observadores privilegiados en
la relatividad especial, que son los observadores inerciales, se
traduce en quéestos observan y asocian un tensor de energı́a-
momentono nulo, Tµν , con los campos de materiaφ. Por el
contrario, como veremos a continuación en la subsección 3.2,
en la relatividad general, debido a la covarianza general de la
misma,no pueden existir observadores privilegiados, por lo
que el tensortotal de enerǵıa-momento (incluida la contribu-
ción del campo gravitacionalg) tiene que seridénticamente
nulo.

3. Relatividad general

3.1. Espacio-tiempo dińamico: el escenario se vuelve ac-
tor

Las ecuaciones de Einstein pueden obtenerse del principio de
accíon de Einstein-Hilbert

S[g, φ] =
c3

16πG

∫

M
d4x

√−gR

+
∫

M

d4xLmatter[φ], (4)

dondeR es la curvatura escalar yLmatter[φ] denota la con-
tribución de materia (no gravitacional), el cual proporciona
las ecuaciones de movimiento

Gµν =
8πG

c4
Tµν , (5)

dondeGµν = Rµν − (1/2)Rgµν es el tensor de Einstein.
Aśı pues, en la relatividad general la métricag del espacio-
tiempoM es dińamicamente determinada mediante las ecua-
ciones de Einstein mismas. Para ser más precisos, la terna
(g, φ,M) tiene que ser dińamicamente determinada (hasta
transformaciones de norma: difeomorfismosf : M −→ M
del espacio-tiempoM sobre śı mismoM, como veremos
despúes).

3.2. Tensor total de enerǵıa-momentotµν nulo

Debido a que la acción (4) es invariante bajo difeomorfismos
f : M −→M del espaciotiempoM sobre śı mismoM, el
tensor total de energı́a-momentotµν = Tµν − (c4/8πG)Gµν

de los campos de materia (incluida la contribución del tensor
métricog) es id́enticamente nulo [4]

tµν = 0, (6)

debido a las ecuaciones de movimiento (5). De esta forma,
respecto al “observador ideal” asociado al atlasA existe un
“balance enerǵetico” entre el “flujo” asociado a la materiaφ
(contenido enTµν) y el asociado al campo gravitacionalg
(contenido en−(c4/8πG)Gµν) en forma tal que ambos “flu-
jos”se cancelan debido a las ecuaciones de Einstein. En el
contexto conceptual de la relatividad general no puede existir
un tensor totaltµν de enerǵıa-momento no nulo, puesto que,
si aśı fuera, se tendrı́an observadores (ideales) privilegiados;
lo cual iŕıa en contra de la covarianza general de la relativi-
dad general. Desde este punto vista las ecuaciones de Eins-
tein (5) tiene un doble papel: por una parte son ecuaciones de
movimiento y por otra reflejan el hecho de que el tensor de
enerǵıa-momento total es nulo. Es importante enfatizar que
por razones conceptuales no se pueden hacer modificaciones
al tensor total de energı́a-momento usando el ḿetodo de Be-
linfante, puesto que tal hecho implicarı́a, debido al doble pa-
pel de las ecuaciones de Einstein, modificar las ecuaciones
de Einstein y no hay, actualmente, sustento experimental pa-
ra ello [4].

4. Gravedad en el formalismo de t́etradas

Para facilitar al autor la discusión y en aras de incluir fermio-
nes dentro de los campos de materia es necesario introducir
el formalismo de primer orden (o de tétradas) de la relativi-
dad general. La acción que describe el campo gravitacional
es la accíon de Palatini:

S[e, ω] =
c3

16πG

∫

M

L[e, ω]

=
c3

16πG

∫

M

∗(eI ∧ eJ ) ∧RIJ [ω], (7)

dondeRIJ [ω] = dωIJ +ωI
K∧ωKJ es la curvatura de la co-

nexiónωI
J con valores en eĺalgebra de Lie del grupo de Lo-

rentzSO(3, 1), ∗T IJ := (1/2)εIJKLTKL es el tensor dual
interno (respecto a lośındices de LorentzI, J = 0, 1, 2, 3)
del tensorTIJ , eI = eI

µdxµ es un conjunto de cuatro 1-
formas, base dual de la base del espacio tangenteeI =
eµ
I (∂/∂xµ), µ = 0, 1, 2, 3. El śımbolo∧ indica el produc-

to tensorial antisiḿtrico [1].
La variacíon de la accíon respecto a la tétradaeI propor-

ciona la ecuación de movimiento

EJ [e, ω] := eI ∧ ∗RIJ [ω] = 0, (8)

mientras que la variación respecto a la conexiónωI
J propor-

ciona

EIJ [e, ω] := D(∗(eI ∧ eJ)) = 0, (9)
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donde

DvI := dvI + ωI
K ∧ vK .

4.1. Covarianza bajo difeomorfismos

Si se realiza un difeomorfismof : M−→M de la variedad
M sobre śı mismaM, el efecto déeste (del difeomorfismo)
se puede considerar como que los puntosno se mueven y lo
que cambia es la configuración de los campos respecto almis-
moatlasA. De esta forma, si(eI , ωJ

K) representan las con-
figuraciones de los campos respecto al atlasA antesde rea-
lizar el difeomorfismo, entonces(f∗eI , f∗ωJ

K) representan
las configuraciones (respecto al mismo atlasA) despúesde
realizar el difeomorfismof : M −→ M. Por lo tanto, el
efecto del difeomorfismo sobre el principio de acción es el
siguiente:

S[f∗e, f∗ω] =
c3

16πG

∫

M
L[f∗e, f∗ω]

=
c3

16πG

∫

M
f∗ (L[e, ω])

=
c3

16πG

∫

f(M)

L[e, ω]

=
c3

16πG

∫

M
L[e, ω] = S[e, ω], (10)

lo cual indica que la acción (7) es invariante bajo difeomor-
fismos. Pero, ¿cuál es el efecto de los difeomorfismos sobre
las ecuaciones de movimiento y las soluciones deéstas?

Proposicíon. Si el par de campos(eI , ωJ
K) satisfacen las

ecs. de Einstein en vacı́o, (8) y (9), entonces(f∗eI , f∗ωJ
K)

tambíen.
Prueba. En efecto,

EJ [f∗e, f∗ω] = f∗ (EI [e, ω]) ,

EIJ [f∗e, f∗ω] = f∗
(EIJ [e, ω]

)
, (11)

∀f ∈ Diff(M). Por lo tanto, los dos términos en el lado
izquierdo en (11) se anulan si se cumplen (8) y (9). QED.
[Véase el Aṕendice A].

Por supuesto que se puede acoplar una lagrangiana de
campos de materiaφ y la prueba en el caso de incluir materia
seŕıa esencialmente la misma, simplemente habrı́a que agre-
gar los campos de materiaφ antes y despúes del difeomorfis-
mo y usar, en vez de (8) y (9), las ecuaciones de Einstein del
campo gravitacional acopladas con los campos de materia.

4.2. El argumento del hoyo

Del ańalisis desarrollado en la subsección anterior se des-
prende que(eI , ωJ

K) y (f∗eI , f∗ωJ
K) son configuracio-

nes (funcionalmente distintas entre sı́) respecto al mismo at-
lasA, que satisfacen lasmismasecuaciones de movimiento
(8) y (9) [véase la subsección 4.1 y el Aṕendice A]. Este he-
cho perturb́o a Einstein durante varios años a tal punto que

su primera reacción a tal hecho fuerechazarla covarianza
bajo difeomorfismos, lo cual hizo empleando el llamado “ar-
gumento del hoyo”. Es decir, Einsten inventó el “argumento
del hoyo”para concluir queno pod́ıa existir una teorı́a de la
gravedad covariante bajo difeomorfismos. El argumento es el
siguiente: [5]

Supongamos que se tiene una variedadM con una re-
giónH dondeno hay materia, es decir, hay un hoyoH de
materia. Dentro del hoyoH sólo existe campo gravitacional
(eH, ωH). Fuera del hoyoH, existen tanto campo gravitacio-
nal (efuera, ωfuera) como materiaφfuera. Las ecuaciones
de Einstein acopladas con los campos de materiaφ son sa-
tisfechas dentro y fuera del hoyo, obviamente. En la frontera
del hoyo,∂H, las configuraciones de campo gravitacional y
material dentro y fuera del hoyoH se pegan de manera suave.
Ahora realizemos un difeomorfismof : M −→ M tal que
sólo mueve los puntosdentrodel hoyoH y tiende de manera
suave a la identidad en la frontera del hoyo y fuera deéste.
Como ya hemos visto, el efecto del difeomorfismo se codifi-
ca en que los puntos dentro del hoyo no se mueven y todo lo
que cambia es la configuración de los campos. En resumen:

Antesde realizar el difeomorfismo. Dentro del hoyoH la
configuracíon es(eH, ωH, φH = 0) mientras que fuera del
hoyoH es(efuera, ωfuera, φfuera).

Despúes de realizar el difeomorfismo. Dentro del ho-
yo H la configuracíon es (f∗eH, f∗ωH, f∗φH = 0)
mientras que fuera del hoyoH es la originalmente dada
(efuera, ωfuera, φfuera) puesto que ahı́ el difeomorfismo es
la identidad.

Con base en lo anterior, Einstein concluyó que el he-
cho de tener soluciones analı́ticas distintas,(eH, ωH) y
(f∗eH, f∗ωH) para unf ∈ Diff(M), dentro del hoyo no
teńıa sentido y que por lo tanto no podı́a existir una teorı́a
covariante bajo difeomorfismos para el campo gravitacio-
nal. Sin embargo, después de varios ãnos Einstein se re-
tract́o cuando se percató que hab́ıa cometido un error en lain-
terpretacíonde los resultados involucrados en el “argumento
del hoyo”. Apelando al determinismo, Einstein concluyó que
las dos configuraciones,(eH, ωH) y (f∗eH, f∗ωH) para un
f ∈ Diff(M), representan lamisma solucíon f́ısica (el mis-
mo estado f́ısico de campo gravitacional) debido al hecho de
que las coordenadasi no tienen siginificado f́ısicoper se. En
palabras de Einstein: [2]

“Now it came to me: . . . the independence of the gravita-
tional acceleration from the nature of the falling substance,
may be expressed as follows: In a gravitational field (of small
spatial extension) things behave as they do in a space free of
gravitation. . . This happened in 1908. Why were another se-
ven years required for the construction of the general theory
of relativity? The main reason lies in the fact that it is not so
easy to free oneself from the idea that coordinates must have
an immediate metrical meaning”.

Desafortunadamente, la referencias estándares sobre la
relatividad general no incluyen un análisis claro y concep-
tualmente correcto de la covarianza bajo difeomorfismos, lo
cual ha llevado a generaciones de investigadores y estudiantes
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de la relatividad general a subestimar este hecho e interpre-
tarlo, erŕoneamente, como un cambio de coordenadas. Por si
hiciera falta, enfatizamos una vez más: el atlasA es la estruc-
tura mateḿatica asociada con la definición de coordenadas.
Un difeomorfismof : M −→M no tiene nada que ver con
elegir o no coordenadas sobre la variedadM [1]. Afortuna-
damente, se puede consultar ya un texto moderno, reciente,
que transpira fı́sica y que analiza, ḿas detalladamente que
el presente artı́culo, las bases conceptuales de la relatividad
general [6].

5. Evolución de los grados de libertad

Tenemos, finalmente, los elementos necesarios para discutir
el “problema del tiempo.en la relatividad general.

5.1. Evolucíon carente de significado f́ısico: evolucíon
respecto al observador idealA

Aún cuando no todos los espacio-tiempos tienen la topologı́a
M = Σ× R, dondeR corresponde con la “coordenada tem-
poral x0 2Σ corresponde al “espacio”, nos restringiremos a
este caso. De lo discutido en la Sec. 4 deberı́a resultar claro
que, debido a la covarianza bajo difeomorfismos,x0 es śolo
una etiqueta, un parámetro, y queno representa una cantidad
con significado f́ısico por śı misma. Este hecho es enfatiza-
do áun más cuando se considera la formulación 3 + 1 de la
relatividad general. En cualesquiera de esas formulaciones,
por ejemplo en variables ADM [7],x0 no puede ser identi-
ficado a priori (con anticipacíon), en forma alguna, con el
“tiempo”puesto que una noción de tiempo coordenado tie-
ne sentido una vez que se tienetodo el espacio-tiempoM,
es decir, no puede definirse una noción de tiempo coorde-
nado con antelación cuando apenas se está evolucionando el
espacio-tiempo a partir de la configuración inicial de los cam-
pos sobreΣ. Inicialmente, pues,x0 es śolo un paŕametro, que
al final, cuando se tiene el espacio-tiempo completo, pue-
de ser identificado con un tiempo coordenado, el cual a su
vez carece de significado fı́sico por śı mismo. Supongamos
que se tiene una configuración de las variables de espacio fa-
se(gij , π̃

ij) que satisfacen al valor inicialx0 = x0
inical del

paŕametrox0 las constricciones de primera clase de la teorı́a,
C̃ ≈ 0, C̃i ≈ 0. El hecho de que se satisfagan las constriccio-
nes no es suficiente para evolucionar la configuración inicial,
se requiere especificar la configuración de los multiplicado-
res de LagrangeN, N i, i = 1, 2, 3 para ello. Sin embargo,
la “evolución.aśı obtenida es una “transformación de norma2

no tiene significado fı́sico. Es decir, la configuración de las
variables de espacio fase al tiempo coordenadox0

inicial y la
configuracíon al tiempo coordenadox0

final est́an relaciona-
das por una transformación de norma: por un difeomorfismo.
Más áun, la configuracíon generada con la elección particu-
lar de la configuración de los multiplicadores de Lagrange
(N, N i) no tiene nada de especial, otra elección de la confi-
guracíon deéstos es igualmente posible, digamos(N2, N

i
2).

De esta forma, las dos configuraciones de las variables de es-

pacio fase al tiempo coordenadox0
final, obtenidas mediante

el uso de(N,N i) y de (N2, N
i
2) a partir de lamismacon-

figuracíon inicial ax0
inicial, representan lamismaconfigura-

ción f́ısica de campo gravitacional a pesar de diferir funcio-
nalmente entre sı́, la raźon de ello es que ambas configura-
ciones est́an relacionadas mediante un difeomorfismo. Toda
historia o “evolucíon.obtenida de la misma configuración ini-
cial mediante diferentes elecciones de los multiplicadores de
Lagrange representan el mismo estado fı́sico, i.e., el mismo
punto en el espacio de estados fı́sicos del campo gravitacio-
nal.

5.2. Evolucíon provista de significado f́ısico: evolucíon
relacional

Hemos visto pues que la especificación anaĺıtica de la con-
figuracíon de campo gravitacional,(e, ω) en el formalismo
de t́etradas, respecto al atlasA sobre la variedadM tiene
un “contenido de norma”, puesto que una configuración dada
puede ser transformada en otra, matemáticamente distinta a
la primera, mediante un difeomorfismo. Este hecho implica
que la evolucíon respecto del parámetrox0 de las variables
de espacio fasecarecede signicado f́ısico alguno: la evolu-
ción respecto dex0 es un difeomorfismo, una transformación
de norma. Este hecho plantea entonces la pregunta: ¿Es po-
sible, en una teorı́a covariante bajo difeomorfismos, descri-
bir la evolucíon de las variables involucradas en una forma
que la evolucíon sea invariante bajo difeomorfismos o, equi-
valentemente, invariante de norma?La respuesta es sı́, y la
propuesta se conoce comoevolucíon relacional[6,8–10].

La evolucíon relacional de los grados de libertad del cam-
po gravitacional (o del campo gravitacional acoplado a cam-
pos de materiaφ si se desea) está ı́ntimamente basada en la
ausencia de una estructura de referencia fija respecto a la cual
los campos “cambien” y “evolucionen”. A pesar de que la
covarianza bajo difeomorfismos implica que tal estructura de
referencia fija no existe, es posible hablar de “evolución”de
los campos gravitacionales y materiales. Lo que cambia, por
supuesto, es la noción de evolucíon. En el presente contex-
to, evolucíon significa ćomo cambian unos campos respecto
de alǵun otro que se toma como relojT . La diferencia entre
la variable relojT y el tiempo coordenadox0 reside en que
la primeraT est́a asociada a un campo material (incluyendo
dentro del t́ermino materia al campo gravitacional) y por lo
tanto tiene dińamica, la cual afecta al espacio-tiempo, mien-
tras que la segundax0 no tiene dińamica, su existencia, aso-
ciada a relojes de prueba, se estableceúnicamente de manera
verbal al asociarse con el atlasA.

6. Comentarios finales

Es claro que la inclusión de observadores realistas (por ejem-
plo, los aceleradores de partı́culas) en el formalismo de la
teoŕıa, los cuales estén definidos por campos de materia y
con dińamica acoplada al campo gravitacional es necesario
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para tener predicciones que sean covariantes (invariantes) ba-
jo difeomorfismos y que tengan por lo tanto contenido fı́si-
co. Tambíen es claro que tal hecho sucede siempre (de ma-
nera experimental) cada vez que los aparatos de medida to-
man mediciones, por lo cual no hay ningún problema desde
el punto de vista experimental. El problema radica en cómo
incorporar de manera teórica este hecho experimental. Final-
mente, en este artı́culo he desarrollado la parte clásica de la
evolucíon relacional. El lector interesado en explorar las con-
secuencias a nivel cuántico de este hecho en modelos con
un ńumero finito de grados de libertad, pero que mimetizan
conceptualmente la relatividad general, puede consultar las
Refs. 11-13 para una discusión clara de los conceptos involu-
crados. Hay, todavı́a, muchas cosas que podemos decir acerca
de las bases conceptuales de la relatividad y sus implicacio-
nes, pero no en este trabajo.
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Apéndice A: La clase de Minkowski

La métrica de Minkowskiη sobreR4 est́a dada por

η = −d(ct)2 + dx2 + dy2 + dz2, (12)

donde(xµ)=(ct, x, y, z) son las coordenadas minkowskianas
usuales. Ahora tomemos la métrica

η1 = −a2d(ct)2 + b2dx2 + d2dy2 + e2dz2, (13)

cona, b, d, e constantes reales no nulas, definida también so-
breR4 y respecto al mismo atlasA, al igual que (12). Am-
bos tensores ḿetricos, (12) y (13), satisfacen las ecuaciones

de Einstein en el vacı́o y adeḿas son planas, en el sentido de
que sus correspondientes tensores de curvatura se anulan. Sin
embargo, a pesar de diferir funcionalmente (respecto al mis-
mo atlas), las ḿetricas (12) y (13) representan, en el contexto
conceptual de la relatividad general, lamisma solucíon f́ısica,
puesto queη1 = f∗1 η, conf1 un difeomorfismo deR4 sobre
śı mismo, definido por

(ct, x, y, z) 7−→ (
ct

a
,
x

b
,
y

d
,
z

e
). (14)

Dicho de otra forma, las ḿetricas (12) and (13) son sólo dos
elementos representativos de todos aquellos que forman la
misma solucíon f́ısica, la cual es laclase de Minkowski, en
el ejemplo mencionado. Todos los elementos de la clase de
Minkowski son{R4, f∗η}, ∀f ∈ Diff(R4). De esta forma,
existe un ńumero infinito de ḿetricas, funcionalmente distin-
tas entre śı respecto al mismo atlasA, en tal clase. Todos los
elementos de la clase tienen la propiedad de que su curvatu-
ra se anula, lo cual nos dice que el espacio-tiempo es plano.
Consideremos ahora la métrica

η2 = d(ct)2 − dx2 + dy2 + dz2, (15)

la cual se puede obtener de (12) mediante el difeomorfismo
f2 : R4 −→ R4

(ct, x, y, z) 7−→ (x, ct, y, z). (16)

Es decir,η2 = f∗2 η; por lo que (15) es otro elemento de la
clase de Minkowski. El lector seguramente dirá que ya hemos
llegado demasiado lejos, puesto que la coordenadact “no es
temporal” en (15). . . y se equivocará. Las ḿetricas (12), (13)
y (15) exhiben una de las caracterı́sticas esenciales de la re-
latividad general: las coordenadas(xµ) = (ct, x, y, z) no tie-
nen, debido a la covarianza bajo difeomorfismos, significado
fı́sicoper se, como ya se ha mencionado previamente. El at-
lasA no representa, en forma alguna, por ejemplo, los ace-
leradores de partı́culas tomando mediciones. Dicho de otra
forma, las ḿetricas de la clase de Minkowski sólo reflejan el
hecho de que la dińamica de los relojes y reglas de pruebano
ha sido incorporada matemáticamente en el formalismo.

∗. Associate Member of the Abdus Salam International Centre for
Theoretical Physics, Trieste, Italy.

i. Con mayor precisión, el atlasA no representa, en forma algu-
na, un conjunto de observadores materiales. Por supuesto que
usualmente se asocia el atlasA con conjunto de relojes sincro-
nizados colocados en la “red” del espacio. Sin embargo, tales
relojes son ideales en el sentido de queno contribuyen al cam-
po gravitacional. Por lo tanto, en base a lo anterior, es correcto
llamar al atlasA un “observador ideal”.
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