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Recent investigations have looked at the many-body spectra of random two-body interactions. In fermion systems, such as the interacting
shell model, one finds pairing-like spectra, while in boson systems, such as IBM-1, one finds rotational and vibrational spectra. We discuss
the search for random ensembles of fermion interactions that yield rotational and vibrational spectra, and in particular present results from a
new ensemble, the “random quadrupole-quadrupole ensemble”.
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Recientemiente se han investigado los espectros de interacciones aleatorias entre dos cuerpos. En sistemas fermiónicos, como el modelo
de capas nucleares, se encuentran espectros con caracterı́sticas de apareamiento, mientras sistemas bosónicos, como el modelo de bosones
interactuantes, dan lugar a espectros rotacionales y vibracionales. Se discute la búsqueda de conjuntos aleatorios de interacciones fermiónicas
con espectros rotacionales y vibracionales. En particular, se propone un conjunto nuevo, el “conjunto aleatorio cuadrupolar-cuadrupolar”.

Descriptores: Modelo de capas; caos en sistemas nucleares.

PACS: 21.60.Cs, 24.60.Lz

1. Introduction: the puzzle of collectivity

Even-even nuclei have long been known to exhibit a wide
range of collective behavior. The broadest classification of
collective behavior is into three groups: pairing, vibrational,
and rotational collectivity [1, 2]. The first is in analogy with
superconductivity in metals, and the latter two based upon
quadrupole deformations of a liquid drop.

The spectral signatures of collectivity are:

1) The quantum numbers of the ground state. In particular
for pairing one expects Jπ

g.s. = 0+.

2) Regularities in the excitation energies, in particular
among the lowest Jπ = 2+, 4+, 6+, . . . states rela-
tive to the Jπ = 0+ ground state. Particularly use-
ful measures are the ratios R42 ≡ Ex(4+

1 )/Ex(2+
1 )

and R62 ≡ Ex(6+
1 )/Ex(2+

1 ). For pairing, vibrational,
and rotational collectivity one expects R42 = 1, 2, and
3.33, respectively.

3) Strong, correlated B(E2) transition strengths, which
measure the collectivity of the wavefunctions. (In par-
ticular one expects strong intraband transitions and
weak interband transitions, but we will not consider
that further here.) Traditionally one either compares
B(E2) strengths to the single-particle limit (Weisskopf
units) or ratios of B(E2)s.

Simple and successful models of collectivity, usually
based upon group theory, are well known [2] ; in fact more
sophisticated classifications are possible and are used, but we
do not consider them here.

In order to understand the roots of collectivity, start from
the coordinate-space Hamiltonian

Ĥ =
∑

i

− ~2

2MN
∇2

i +
∑

i<j

V (~ri, ~rj). (1)

with a chosen nucleon-nucleon potential. Although there are
many ways to solve this Hamiltonian, we consider the shell-
model route: one chooses a single-particle basis {φi(~r)}
and writes the Hamiltonian in occupation space using second
quantization, where â†i creates a particle in the single-particle
state φi,

Ĥ =
∑

i

εiâ
†
i â +

1
4

∑

ijkl

Vijklâ
†
i â
†
j âlâk. (2)

The εi’s are the single-particle energies and the Vijkl’s are
the two-body matrix elements, in principle computed from
antisymmeterized integrals of the nucleon-nucleon potential:

Vijkl =
∫

d3rd3r′φ∗i (~r)φ
∗
j (~r

′)V (~r, ~r′)

× [φk(~r)φl(~r′)− φl(~r)φk(~r′)] (3)

Any interacting shell-model code, such as the one we
use, REDSTICK [3], reads in: the list of valence single-
particle states (such as the 1s1/2-0d3/2-0d5/2 or sd space or
the 1p1/2-1p3/2-0f5/2-0f7/2 or pf space); information on the
many-body space, such as valence protons and neutrons; and
finally a list of the single-particle energies and two-body ma-
trix elements, both of which are read in as numbers. The
two-body matrix elements also conserve angular momentum
J and frequently, but not always, isospin T .

As mentioned, there exist simple algebraic models of
collectivity. Importantly, they have representations both in
fermion and boson spaces, with the two-body matrix ele-
ments derived from the group generators. Furthermore, these
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algebra-based models describe well much of the experimen-
tal spectra of even-even nuclides. Therefore, the default as-
sumption has long been that the data in turn imply that the
real nuclear interaction must have buried deep inside strongly
“algebraic” components. This assumption can be tested by
sampling a large number of Hamiltonians and seeing if any
signatures of collectivity arise [4].

2. The two-body random ensemble (TBRE)

The simplest test is to replace the two-body matrix elements
with random numbers, independent except that angular mo-
mentum J (and isospin T ) is (are) conserved. This is known
as the two-body random ensemble (TBRE) and, as long as
the ensemble is symmetric about zero, the results are broadly
insensitive to the details of the distribution [5], e.g. weight-
ing with J , uniform or Gaussian distribution, etc. (The dis-
placed TBRE, or DTBRE [6], which is not symmetric about
zero, will be discussed briefly below.) The TBRE was origi-
nally used to investigate quantum chaos [7], and so such in-
vestigations considered only states with the same quantum
numbers. It was not until a few years ago that investigations
compared spectral properties of states with different quantum
numbers [4].

Use of the TBRE is straightforward. A sample interac-
tion from the ensemble is generated, and fed into a shell-
model diagonalization code. For the TBRE this means that
VJT (ij, kl) = an independent random number. The many-
body system is referenced by its nuclear physics analog,
e.g., “22O” mean six “neutrons” (identical fermions) in an
sd valence space, although the actual many-body space is ab-
stracted and is no longer tied to, for example, the radial wave-
functions. The output (for example, the angular momentum
of the ground state) is stored in a file for later analysis. Typi-
cally one compiles several hundred or even several thousand
runs to generate good statistics.

Previous investigations into the properties of the TBRE
in fermion systems yielded the following results:

• Dominance of ground states with Jπ = 0+. (Hereafter
we will drop parity, as most of the model spaces in-
vestigated do not have abnormal parity states.) Specifi-
cally, in many-body spaces where the fraction of J = 0
states is small, typically 4-11 %, after diagonalization
of Hamiltonians drawn from the TBRE, the fraction of
ground states with J = 0 is 45-70%. This is the best
known result from random interactions.

• Pairing-like behavior [8]. In addition to J = 0 ground
states, one also finds odd-even staggering of ground
state binding energies, and a ground state “gap.”

For a pairing system, one expects R42 ∼ 1. Fig. 1 shows
the distribution of R42 over a thousand samples from the
TBRE for several different many-fermion systems. All are
peaked near 1 (pairing), but with broad distributions that in-
clude R42 = 2 (vibration) and 3.33 (rotational).

FIGURE 1. Probability distribution of R42 for TBRE (solid line)
and RQQE (dashed line) for (a) 24Mg; (b) 28Si; (c) 22O; (d) 48Ca.

Many-boson systems, in particular the IBM-1, have
also been studied using the TBRE, also yielding a dom-
inance of J = 0 ground states [9]. In contrast to
fermion systems, however, the distribution of R42 is sharply
peaked at 2 and 3.33. Bijker and Frank studied the ratio
B(E2 : 4+

1 → 2+
1 )/B(E2 : 2+

1 → 0+
1 ), which turns out for

IBM-1 to be strongly correlated with R42 and agrees with
analytic algebraic limits; plots of such correlations we will
call Bijker-Frank plots. This is interpreted as evidence for
band structure in bosons systems with random interactions.
The boson results have been successfully explained using a
mean-field analysis [10].

There have been numerous papers “explaining” the
fermion results; for reviews see [11, 12]. Much of the fo-
cus has been on the predominance of J = 0 ground states;
few have considered band structure beyond J = 4, save for a
few exceptions [4,11]. In Fig. 2 we give a correlation plot for
for R62 vs. R42. Fig. 2a shows results using “realistic” in-
teractions calculations in the sd [13] and pf [14] shell; 2b-2d
are results for the TBRE in several different fermion

FIGURE 2. Correlation of R62 vs. R42 (a) “realistic” calculations
in sd and pf shells; TBRE in (b) 24Mg; (c) 44Ti; (d) 48Ca.
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systems. Somewhat surprisingly, we get a strong correlation
that follows exactly the naive predictions for pairing, vibra-
tional, and rotational collectivity. (Although we do not show
it, this result does not appear in single-j systems frequently
used as testbeds for random interactions). This higher-order
band structure is a challenge to any claim to understanding
random interactions results for fermion systems. Although
we do not show it, similar (and sharper) results occur in the
IBM with random interactions.

Figure 3 shows correlations of the ratio

B(E2:4 → 2)/B(E2:2 → 0)

vs. R42 (Bijker-Frank plots), for “realistic” sd and pf
shell calculations in Fig. 3a, and for the TBRE in 24Mg in
Fig. 3b. (For the B(E2) transitions in TBRE, for lack of other
constraints we assume harmonic-oscillator radial wavefunc-
tions.) While IBM-1 Bijker-Frank plots show sharp correla-
tions, the fermion TBRE does not show very strong correla-
tions. (Another approach to collectivity in fermion systems
with random interactions is the Alaga ratio [11]). While this
lack is not surprising for a random interaction, given prior
experience as well as the evidence in Fig. 2 it is worth inves-
tigating.

Figure 4 shows correlations between

B(E2:6 → 4)/B(E2:2 → 0) and B(E2:4 → 2)/B(E2:2 → 0),

which has not been previously studied. Again, Fig. 4a shows
realistic results, while Fig. 4b is for the TBRE. The correla-
tions are sharper than for the Bijker-Frank plot. Not shown
are results for IBM-1, which has still sharper correlations.

To summarize: fermion systems with TBRE interactions
show some signatures of collectivity, but much more weakly
than boson systems. Why is not understood. This motivates
the next section.

FIGURE 3. Bijker-Frank plots for fermion systems. (a) “Realis-
tic” systems in the sd and pf shell. (b)-(d) for 24Mg: (b) TBRE.
(c) RQQE with standard quadrupole transition operator. (d) RQQE
with ‘consistent’ transition operator.

FIGURE 4. Correlation of B(E2) ratios B(E2: 6→4)/B (E2: 2→0)
versus B(E2: 6 → 4)/B(E2: 2 → 0) for (a) “Realistic” systems in
the sd and pf shell. (b)-(d) for 24Mg: (b) TBRE. (c) RQQE with
standard quadrupole transition operator. (d) RQQE with ‘consis-
tent’ transition operator.

3. The random quadrupole-quadrupole en-
semble (RQQE)

One way to probe the difference between random interac-
tions in boson and fermion systems is to search for a random
ensemble that yield stronger collective structure in fermion
systems. One proposal is the displaced TBRE, or DTBRE,
where the two-body matrix elements are given a constant dis-
placement. While an appealing suggestion, we have found
that the DTBRE displays collective behavior only for a hand-
ful of even-even systems. Even worse, as discussed below,
the resulting ensemble is not very “random.”

Therefore, inspired by the “consistent-Q” formulation in
the interacting boson model [9], we propose the following.
Consider the general one-body operator of angular momen-
tum rank 2:

Q̃m =
∑

ij

qij

[
â†i × âj

]
2m

. (4)

If qij = 〈i||r2Y2||j〉, then Q̃ is the standard quadrupole oper-
ator. But instead we choose the qij randomly. We then define
the random quadrupole-quadrupole ensemble to be interac-
tions

Ĥ = −λQ̃ · Q̃. (5)

The antisymmeterized matrix elements are

Vijlk = qikqjl − qilqjk

(here and above we have left out details of the angular mo-
mentum coupling which are straightforward, if tedious, to in-
clude). There is also a one-body single-particle energy in-
duced by normal ordering of the operators.

Any member interaction of the RQQE has fewer random
parameters than the TBRE. For example, in the sd shell, the
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TBRE has 63 independent, randomly generated two-body
matrix elements, while the RQQE, if one assumes time-
reversal symmetry (that is, qab = (−1)ja−jbqba), has only
5 independent parameters; for the pf shell, the TBRE has
195 independent matrix elements and the RQQE has 9.

The RQQE has J = 0 ground states > 99% for all even-
even nuclides we tried. In Figs. 1-4 we show other results
for the RQQE alongside those for the TBRE. To summarize
them:

• In Fig. 1 we see R42 for the RQQE peaks between 2
and 3.3, that is, somewhere between vibrational and
rotational.

• Although not shown, the correlation of R62 vs. R42 for
the RQQE is similar to that of the TBRE in Fig. 2.

• In Fig. 3c-3d, the Bijker-Frank plot shows the corre-
lation between ratios of B(E2)s and R42. Unlike in
the TBRE, the RQQE shows much stronger correla-
tion. Fig. 3c uses the “standard” quadrupole transition
operator, assuming harmonic oscillator single-particle
states; Fig. 3d uses a “consistent” quadrupole transition
operator, the same Q̃ used in the Hamiltonian. Both
results are similar, although the consistent-quadrupole
results are sharper.

• In Fig. 4c-4d we show correlations in B(E2)s in the
yrast band 6-4-2-0. The correlations are much sharper
than for the TBRE, and sharpest for the consistent-
quadrupole calculation.

4. Test for randomness

Although the RQQE shows stronger spectral signatures for
band structure in fermion systems than the TBRE, because
the former has many fewer random parameters than the lat-
ter, we are concerned if the RQQE results are truly ‘random.’
We propose the following as a necessary, if not sufficient, test
of randomness.

For any given many-fermion system, let N0 be the di-
mension of the J = 0 subspace. Therefore, any J = 0
wavefunction can be represented as a vector of unit length
in an N0-dimensional space. If we choose the vectors ran-
domly, then they will uniformly cover a unit sphere, and it
is straightforward to show that the angle θ between any two
vectors will have a probability ∝ sinN0−2 θ.

We compared ground state vectors for J = 0 ground
state. (We ignored interactions that did not have have J = 0
ground states. ) We took the dot product between two ran-
domly chosen ground state vectors, computed the angle be-
tween them, and binned the results, shown in Fig. 5 for 48Ca.
The expected sin(N0−2) θ is shown for comparison.

Figure 5a shows the distribution for the fermion TBRE. It
follows exactly the expected sin(N0−2) θ form.

Figure 5b shows the distribution for RQQE. It is closer to
the expected sin(N0−2) θ than the DTBRE in (c) and (d) but

FIGURE 5. Distribution of angles between different J = 0 ground
state wavefunctions (for 48Ca) for (a) TBRE; (b) RQQE; (c) DT-
BRE with displacement c = 1; (d) DTBRE with displacement
c = 3. Dashed line is sin(N0−2) θ, where N0 is the dimension
of the J = 0 subspace.

is not completely random. The distortion may be due to the
low number of independent random parameters.

Figure 5c and 5d shows the distribution for the displaced
TBRE (DTBRE) for displacements c ≈ 1, 3, respectively.
(Following the original paper, the width of the displaced
Gaussian is 0.6.) Note as displacement c gets larger, the dis-
tribution moves further from sinN0−2 θ and becomes more
peaked towards θ = 0. These ground state wavefunctions
are not randomly distributed; rather they are clustered about
the limit wavefunction for c → ∞. Thus in retrospect this
result is not surprising, although it was not anticipated in the
original study [6].

This is strong evidence that TBRE wavefunctions are ran-
domly and uniformly distributed; it is also evidence that the
DTBRE wavefunctions are not uniformly distributed. The
results from RQQE are inconclusive; they are not uniformly
distributed as the TBRE wavefunctions are, but they are
“more random” than DTBRE.

5. Conclusions

We have revisited the question of signatures of collectivity
in the spectra of random, two-body interactions in fermion
systems. Some surprising, previously unknown correlations
show up even in the two-body random ensemble (TBRE). We
proposed a new “random” ensemble, the random quadrupole-
quadrupole ensemble (RQQE), and found it had significantly
sharper signatures of collectivity than the TBRE. While this
does not solve the puzzle of collectivity, it does demonstrate
that typical spectral signatures of collectivity do not rigor-
ously require the standard Elliot quadrupole-quadrupole or
SU(3) interaction.

Of course, collective behavior is not surprising if the “en-
semble” is not very random, and we looked at the dot prod-
uct between ground state wavefunctions: the RQQE deviates
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from the expected random distribution but much less so than
the displaced TBRE or DTBRE.

Acknowledgments

The U.S. Department of Energy supported this investigation
through grant DE-FG02-96ER40985.

1. A. Bohr and B.R. Mottelson, Nuclear Structure, Vol II
(W. A. Benjamin, Inc., Boston, 1975).

2. I. Talmi, Simple Models of Complex Nuclei (Harwood Aca-
demic Publishers, Chur, Switzerland, 1993).

3. W.E. Ormand, REDSTICK shell model code (private commu-
nication).

4. C.W. Johnson, G.F. Bertsch, and D.J. Dean Phys. Rev. Lett. 80
(1998) 2749.

5. C.W. Johnson, Rev. Mex. Fı́s. 45 suppl. 2 (1999) 25.

6. V. Velázquez and A. P. Zuker, Phys. Rev. Lett. 88 (2002)
072502.

7. S.S.M. Wong and J.B. French, Nucl. Phys. A198 (1972) 188.

8. C.W. Johnson, G.F. Bertsch, D.J. Dean, and I. Talmi, Phys. Rev.
C 61 (2000) 014311.

9. R. Bijker and A. Frank, Phys. Rev. Lett. 84 (2000) 420.

10. R. Bijker and A. Frank, Phys. Rev. C 64 (2001) 061303.

11. V. Zelevinsky and A. Volya, Phys. Rep. 391 (2004) 311.

12. Y.M. Zhao, A. Arima, and N. Yoshinaga, Phys. Rep. 400 (2004)
1.

13. B.H. Wildenthal, Prog. Part. Nucl. Phys. 11 (1984) 5.

14. M. Honma, T. Otsuka, B.A. Brown, and T. Mizusaki, Phys. Rev.
C 69 (2004) 034335.

Rev. Mex. Fı́s. S 52 (4) (2006) 44–48


