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Nuclear mass prediction as an image reconstruction problem:
can observed pattern determine mass values?
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Theoretical prediction of nuclear masses is analyzed as a pattern recognition problem on the N-Z plane. A global pattern is observed by
plotting the differences between measured masses and Liquid Drop Model (LDM) predictions. After unfolding the data by removing the
smooth LDM mass contributions, the remaining microscopic effects have proved difficult to model, although they display a striking pattern.
These deviations carry information related to shell closures, nuclear deformation and the residual nuclear interactions. In the present work
the more than 2000 known nuclear masses are studied as an array in the N-Z plane viewed through a mask, behind which the approximately
7000 unknown unstable nuclei that can exist between the proton and neutron drip lines are hidden. We show here that employing a Fourier
transform deconvolution method these by masses can be predicted with similar accuracy than standard methods. We believe that a more
general approach needs to be implemented, however, to optimize the procedures predictive power. Thus, while we see the need to study and
implement alternative image reconstruction and extrapolation methods, the general ideas are already contained in this paper.
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La prediccidn tedrica de masas nucleares es analizada como un problema de reconocimiento de patrones en el plano N-Z. Al graficar las
diferencias entre las masas medidas y las predicciones del modelo de la gota (LDM) se obtiene un claro patrén. La prediccion de los efectos
microscopicos evidentes en este patrén ha mostrado ser una ardua tarea. Las desviaciones de las masas nucleares respecto de la gota contienen
informacién asociada a capas cerradas, a deformaciones y a los efectos de la interaccion nuclear residual. En este trabajo se estudian las més
de 2000 masas nucleares conocidas como un arreglo en el plano N-Z, visto a través de una mascara detras de la cual se ocultan las cerca
de 7000 masas de nicleos inestables, desconocidas actualmente, que pueden existir entre las lineas de estabilidad de emisién de un protén
o de un neutrén. Empleando el método de deconvolucién de las tranformadas de Fourier, las masas conocidas pueden ser reproducidas con
una precison similar a la lograda con los métodos tradicionales. Sin embargo, se requiere un procedimiento mds general para optimizar el
poder predictivo del método. Si bien las ideas basicas estan contenidas en el presente trabajo, es necesario investigar e implementar métodos
altenativos de reconstruccion y de extrapolacién de imagenes.

Descriptores: Masas nucleares; recontruccion de iméges; transformada de Fourier; deconvolucién.
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1. Introduction by Duflo and Zuker (DZ) [4] with surprisingly good results.
Finally, among other mean-field methods it is worth men-
tioning the Skyrme-Hartree-Fock approach [5],which leads

to mass formulas that calculate the masses (and often other

An accurate knowledge of nuclear masses is required to
understand fundamental processes in nuclear physics [1].

Though much progress has been made in measuring the
masses of exotic nuclei, theoretical models are necessary to
predict them in regions far from stability [2]. Nuclear mass
prediction has become a crucial ingredient for the calcula-
tions required in nuclear astrophysics. The simplest example
is that of the liquid drop model (LDM), which incorporates
the essential macroscopic terms, the nucleus being pictured
as a very dense, charged liquid drop, and including other im-
portant nuclear effects, such as the pairing interactions. The
finite range droplet model (FRDM) [3], which combines the
macroscopic effects with microscopic shell and pairing cor-
rections, has become the de facto standard for mass formu-
las. A microscopically inspired model has been introduced

properties) of as many as 8979 nuclides, although its pre-
dictability has not been too impressive. More troublesome is
the fact that different approaches tend to diverge from each
other in their predictions, so there is a permanent search for
better theoretical models that reduce the difference with the
experimental masses and produce reliable predictions for un-
stable nuclei.

Besides the “global” formulas of which the FRDM
method has become the standard, there are a number of ”‘lo-
cal” mass formulas. These local methods are usually effec-
tive when calculating the mass of a nucleus, or a set of nuclei,
which are fairly close to nuclei of known mass, taking
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FIGURE 1. Nuclear mass differences in the nuclear landscape. The

horizontal axis corresponds to neutron number N. The vertical axis
corresponds to atomic number Z.

advantage of the relative smoothness of the masses M(Z,N)
as a function of proton (Z) and neutron (N) numbers to de-
duce systematic trends. Among these methods, there are a
set of algebraic relations for nuclear neighbors known as the
Garvey-Kelson (GK) relations, which can be deduced from
an extreme single-particle picture of nuclei [6].

Detailed analyses of nuclear mass errors have been per-
formed, using the FRDM [3], the shell-model-inspired mass
calculations of Duflo and Zuker (DZ) [4], the Hartree-Fock-
Bogoliubov mass calculations of Goriely et al. [5], as well
as other methods, including the Garvey-Kelson (GK) rela-
tions [6]. The presence of strong correlations between mass
errors calculated in a mean-field approach in neighboring nu-
clei has been exhibited, as well as the existence of a well de-
fined chaotic signal in its power spectrum, but further analy-
sis demonstrates that the inclusion of many-body interactions
or the introduction of local information removes the chaotic
signal [7, 8].

In this paper a new approach to the problem of nuclear
predictions is introduced. The starting point is the striking
color-coded pattern observed on the nuclear landscape when
taking the differences between Liquid Drop Model (LDM)
predictions [9] and measured masses [10], as shown in Fig. 1.

After removing the smooth LDM mass contributions,
what remains are the microscopic components, which have
proved difficult to predict by the different methods, all of
which attempt to minimize the differences with measured
masses. The residual pattern observed in Fig. 1, however,
is quite remarkable and suggests a different approach. These
residual “unfolded” data contain information related with
shell closures, nuclear deformations, and the residual nuclear
interaction, in a compelling graphic form. We therefore sug-
gest that the approximately 2000 known nuclear masses can
be studied as an array in the N-Z plane viewed through a
window. The remaining nuclei (approximately 7000 of them)
which can exist between the proton and neutron drip lines, lie
hidden, covered by a “mask”. So the question is how to “open
the window” and watch and scrutinize the rest of the pattern.
We show here that by employing a Fourier transform decon-
volution method these masses can be predicted with similar
accuracy than standard methods. Other approaches need to

be studied and implemented (one of which we briefly discuss
below) to optimize the procedures predictive power [11]. In
the following sections the deconvolution approach is briefly
described and some preliminary results presented.

2. Mathematical Formulation of the problem

The first step in our analysis consists in translating the nuclear
mass table into an image. A standard two dimensional array
is built in which the horizontal position corresponds to the
number of neutrons and the vertical position to the number of
protons. Differences between experimental mass values and
those calculated using the liquid drop model for each isotope
define the function
Z(n,Z) - mea:p(n7z) 7mLDM(naZ)7 (D
which is plotted in the (n,z) plane introducing a color code
associated with the mass deviations, as shown in Fig. 1. As
both the proton and neutron numbers are integers, this is a
discrete function defined in a restricted domain of I2. It is ap-
propriate to emphasize that i(n, z) is only defined in the lim-
ited region where measured masses m®*?(n, z) are known,
i.e. the colored region in Fig. 1. It can be extended to the
whole N-Z rectangle of interest by assigning null values to
addresses where there are no measured experimental masses.
To predict the nuclear mass differences m(n, z) along
the whole rectangle, a binary mask function w(n, z) is in-
troduced. This mask takes the value 1 for those positions n
and z on which the experimental nuclear masses are known,
and O on the others. This procedure, however, can be made
more general by assigning a different value to w(n, z) in the
region where the masses are known, in order to emphasize the
importance of, for example, the boundary region in Fig. 1. In
this way the extrapolation can be made more reliable [11]. In
this paper we shall henceforth confine our analysis to a binary
mask. Known mass differences i(n, z) are related to the total
mass differences m(n, z) by

i(n,z) = m(n, z) - w(n,z). )

In order to predict unknown masses, we need to extract
m(n,z) from Eq. (2). Formally, this is a deconvolution
problem, which can be solved using discrete Fourier trans-
forms. If I(k,,k.), M(kn,k;) and W(k,,k,) are the
Fourier transforms of i(n, z), m(n, z) and w(n, z), respec-
tively, the Fourier transform of Eq. (2) is given by

I(kn, k2) = (M s W)(kn, kz), 3)

where (M «W) represents the convolution of the functions M
and W. Given that both i(n, z) and w(n, z) are known for the
whole rectangular domain, their Fourier transforms I (k,,, k. )
and W (ky,, k) can be evaluated directly. The problem is
narrowed to obtaining the function M (k,, k) (the discrete
Fourier transform of m(n, z)), from which m(n, z) can be
recovered applying the inverse Fourier transform.
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FIGURE 2. Reconstructed image of the nuclear mass differences
“AMED95 vs ILDM” after 200 iterations.
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FIGURE 3. Differences Experimental vs Reconstructed “AME95
vs ILDM” after 200 iterations.
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FIGURE 4. Garvey-Kelson deviations map calculated using the GK
relations iteratively.

Deconvolution is usually non-trivial and may lead to non-
unique solutions, but there exist several linear algorithms,
such as the inverse filtering and the Wiener filtering, and non-
linear algorithms, such as the CLEAN method, the maximum
entropy method (MEM) and LUCY, which provide testable
methodologies.

The CLEAN method is a deconvolution algorithm often
used in radioastronomy. We have applied a specially adapted
version of the “CLEAN” algorithm, developed by Clark et
al. [12], to the mass reconstruction problem. Our version em-
ploys a deconvolution algorithm to remove the artifacts intro-
duced by the shape of the window (or mask), thereby allow-
ing the Fourier analysis of non-rectangular texture patches.
We assume that the “full” mass pattern m(x, y) can be mod-
eled by a finite number of harmonic components. The de-

convolution algorithm proceeds by detecting which compo-
nents, when corrupted by the shape mask, provide the best
explanation of the patterns observed in the Fourier spectra.
Each component is then relocated to the clean spectrum and
its footprint erased from the corrupted spectrum. The pro-
cess is repeated until only noise residuals are left in the cor-
rupted spectrum. The reconstruction process is repeated for
a series of boxes with different size. The reported results are
obtained averaging over all boxes. Details will be published
elsewhere [13].

As mentioned earlier,a more general prescription is to use
a non-binary mask, that is, to assign unequal weights to dif-
ferent areas of the observed image, e.g., ascribing in this way
more importance to neighboring nuclei in the extrapolation,
given the smoothness of the observed “image”, Fig. 1. Fur-
ther support for this idea arises from the close agreement of
the nuclear mass data to the Garvey-Kelson relations [6].

3. Nuclear Forecasting as image reconstruc-
tion

The CLEAN algorithm described above was programmed in
Mathematica and Fortran, and applied to the pattern of differ-
ences between experimental nuclear masses (AME9S5) [14]
and the theoretically calculated masses using the Liquid Drop
Model [9]. As one possible test of predictability, we com-
pare the calculated masses using the pattern reconstruction
algorithm with the data for a larger set of nuclear masses
(AMEOQ3) [10]. A (consistent) calculation for the nucleon
driplines is also included. The results are shown below.

3.1. Reconstruction of measured masses

To test the ability of the present method to reconstruct known
masses, the set of 1888 nuclei whose masses were reported
in AMED9S5 [14], corrected with the AMEOQO3 [10] information,
was employed as input data. Here we used Z,,q,, = 150,
Nz = 250, which allows for the exploration of possible
stability islands associated with superheavy elements.

The algorithm was applied to reconstruct the “AMEO03
vs ILDM” data. The differences between the reconstructed
masses and those obtained using the Liquid Drop Model are
presented in Fig. 2. There is a clear resemblance in the plots,
as seen in Fig. 1.

In order to gauge the quality of the mass reconstruction,
the rms average error between reconstructed and experimen-
tal masses was studied. After 200 iterations (the introduction
of 200 frequencies) it attains the value 0.2165 MeV, a num-
ber that can be lowered by increasing the number of steps.
The differences between the experimental and reconstructed
masses are plotted in Fig. 3, where we cannot detect any re-
maining pattern.
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FIGURE 5. Same as Fig. 4, but using Moller and Nix mass table.
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FIGURE 6. Same as Fig. 4, but using Hartree-Fock-Bogoliubov
mass table.

3.2. Prediction of new masses

Besides reproducing known masses, the method predicts the
masses of all possible isotopes in the area between the pro-
ton and neutron driplines. Using the reconstructed pattern the
value of 289 new nuclear masses (AMEO03) [10] is predicted.

The new masses have an rms value of 0.800 MeV, which
compares well with most mass prediction formalisms [2]. By
using the masses of AMEO9S that were corrected in the new
compilation [10], the predicted masses deviate by 0.650 MeV,
a very significant improvement and a striking proof of con-
sistency of the image reconstruction method.

A strong test which can be applied to predicted nuclear
masses is provided by the Garvey-Kelson (GK) relations [6].
They are the two sets of equations connecting the masses of
particular neighboring nuclei. These relations do not involve
free parameters and can be derived from a simple nuclear-
model picture. Strictly speaking, they do not yield an inde-
pendent calculational tool, but they do provide strong indica-
tions that a large fraction of the mass values have a smooth
and regular behavior. In this interpretation, the GK relations
can be viewed as a simple methodology to estimate nuclear
masses from those of its neighbors or, equivalently, to apply
an indenpendent test of the quality of a given set of mass pre-
dictions.

It is remarkable that the GK relations are almost exactly
satisfied in the predicted areas, as shown in Fig. 4, which is
not the case for the FDRM and HFB calculations, as shown
in Fig. 5 and 6. The DZ and LDM formulas do satisfy these
relations accurately, but this is due to the simple form used
for the expansion functions in N and Z [6, 13].
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FIGURE 7. Neutron shell gaps as a function of Z for the four mass
tables CLEAN, Moller and Nix (FRDM), Duflo-Zuker (DZ) and
Hartree-Fock Bogoliubov (HFB).
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FIGURE 8. Two neutron separation energies for different isotopic
chains as a function of N for the mass table CLEAN. Calculated
data are indicated by continuous lines. Experimental data is marked
with squares joined by dashed lines.
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FIGURE 9. Same as Fig. 8, but using the mass table of Moller and
Nix.
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FIGURE 10. Same as Fig. 8, but using the mass table of Hartree-
Fock-Bogoliubov calculations.
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FIGURE 11. (a) RMS (input data vs reconstructed data), (b) RMS
(predicted vs new AME’03 data) as a function of number of itera-
tions. Maximum number of iterations was 200, with constant gain
g=1. The rectangular grid used was (Zmaz, Nmaz) = (150, 250).

In Fig. 7 we show a comparison of the N=82 and N=126
shell gaps for different proton numbers, as given by the differ-
ent models discussed in this paper. Two neutron separation
energies for different isotopic chains as a function of N for
the reconstructed masses are presented in Fig. 8. Calculated
data are indicated by continuous lines. Experimental data is
marked with squares joined by dashed lines. Shell closures at
N =28, 50 and 82 are clearly distinguished. However, these
shell closures are predicted to disappear for nuclei far from
stability. Two proton separation energies are plotted for the
same regions as predicted by Moller and Nix in Fig 9, and by
HFB calculations in Fig. 10. In both calculations the shell
gaps are predicted to subsist even for extremely unstable nu-
clei.

3.2.1. Improving mass reconstruction

The process of mass reconstruction is performed selecting
the frequency with the largest squared Fourier amplitude, fil-
tering it through the mask and reproducing the data with it.
In the following step the frequency with the second largest
squared Fourier amplitude is employed, next the third, etc.
The process goes on until the required precision in the data
reconstruction is obtained.

In Fig. 11a the rms value of the adjusted data is shown
as a function of the iteration number, i.e. as the number of
frequencies employed in the reconstruction.

The rms value of fitted vs experimental data displays a
monotonous decreasing behavior as the number of iterations
increase. Eventually, the rms value can be reduced to very
small values for a large number of iterations. The rms er-
ror after 200 iterations was 0.2165 MeV. On the other hand,
the rms value of predicted vs experimental AMEO3 data dis-
plays a decreasing but non-monotonous behavior as func-
tion of the number of iterations. However, it seems that the
rms value (predicted vs experimental AMEQ3 data) reaches a
minimal value (rms=> 0.795 MeV) for certain number of iter-
ations (~ 159) after which the prediction is essentially con-
stant. The final rms after 200 iterations was 0.820 MeV. As
explained before, by using the masses of AME9S that were
corrected in the new compilation [10], the predicted masses
deviate by only 0.650 MeV, a compelling proof of consis-
tency of the image reconstruction method.
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FIGURE 12. Reconstructed pattern bounded by driplines in the
prediction after 200 iterations.

3.2.2. Opening the window

The reconstructed pattern allows us to enlarge the window
and find the predictions all the way up to the driplines. The
results of the 200 frequencies iteration procedure is shown in
Fig. 12.

A stability island is predicted around the superheavy ele-
ment (n, z) ~ (194, 116). Further work is needed to confirm
the robustness of this prediction.

4. Conclusions

Pattern recognition techniques have been applied to the mass
deviations obtained from the LDM formula smooth contri-

butions. Measured masses can be reconstructed with a preci-
sion of 200 keV,while new masses from AMEQ3 are predicted
with an average error of 800 keV, diminishing to 650 keV
when using the corrected AMEQO3 masses. A new stability
island is predicted around (n,z) ~ (194,116). Other ob-
servables besides nuclear masses, like nuclear deformation
and beta decay properties, may be analyzed with the same
techniques.This procedure, however, can be made more gen-
eral by assigning a different value to the window w(n, z) in
the region where the masses are known, in order to empha-
size the importance of, for example, the boundary region in
Fig. 1. In this way the extrapolation can be made more re-
liable [11]. We are currently implementing this generaliza-
tion and carrying out diverse tests to study further constraints,
which may include a ”‘maximal entropy condition™ or math-
ematical conditions (such as smoothness-continuity require-
ments) in the pattern recognition analysis, in order to achieve
a more accurate and robust predictability [13].
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