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We investigate the interrelation of the clusterization and quadrupole deformation of atomic nuclei, as well as the role of the deformation of
the clusters. In our study we incorporate both the energetic preference, and the effect of the Pauli-exclusion principle. The 40Ca nucleus is
considered as an illustrative example. The applied methods can be generalised to heavy nuclei, and to ternary clusterization, too.

Keywords: Cluster models; group theory.

Se investiga la relación entre la formación de cúmulos y la deformación cuadrupolar de núcleos atómicos, ası́ como la importancia de la
deformación de los cúmulos mismos. En el presente trabajo se incorporan tanto a la preferencia energética como al principio de Pauli.
Se considera al núcleo 40Ca como un ejemplo ilustrativo. Los métodos usados pueden extenderse a núcleos pesados y a sistemas de tres
cúmulos.

Descriptores: Modelos de cúmulos; teorı́a de grupos.

PACS: 21.60.Fw; 21.60.Gx

1. Introduction

Clusterization is an important phenomenon both in light and
in heavy nuclei. The two basic natural laws governing the
clusterization (just like the composition of nuclei from nu-
cleons) are the minimum-energy principle, and the Pauli-
exclusion principle. In a fully microscopic description of
clusterization both aspects are taken into account. This kind
of description, however, is limited to the domain of light nu-
clei.

Many interesting aspects of the clusterization, like e.g.
the appearance of exotic cluster-configurations, show up only
in heavy nuclei. Phenomenologic approaches are applied
both to light and to heavy nuclei, on an equal footing, but

these models do not really contain the effects of the antisym-
metrization, or it is not under control, what aspects of the
exclusion principle are incorporated.

In this paper we present an approach, which involves
both the energetic preference and the exclusion principle. We
present the method for two-cluster systems, but it is easy to
generalise to ternary clusterization, or even to multi-cluster
configurations. The antisymmetrization is not carried out ex-
plicitely, it is treated in an approximate way, but it is done mi-
croscopically in a well-controlled manner, and consistency-
check measures, how effective it is.

We calculate the energetic preference of different clus-
terizations both on the basis of simple binding-energy-
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arguments [1], and from the Dinuclear System Model
(DNS) [2], including Coulomb as well as nuclear interac-
tions. The potential energy is calculated both for the usual
pole-to-pole configuration, and for those more compact con-
figurations, which turn out to be allowed from the micro-
scopic viewpoint.

The exclusion principle is treated by the application of a
selection rule, related to the microscopic structure. For light
nuclei it is based on the real U(3) symmetry [3], and it is
exact to the extent to which the leading term representation
is valid. In heavy nuclei it is based on the quasidynamical,
or effective U(3) symmetry [4]. Its validity is shown by the
consistency of the quadrupole deformation of the cluster state
and the state of the parent nucleus.

In these considerations the deformation of the clusters
are taken into account, too. Therefore, we investigate the
interrelation of the quadrupole deformation and the clusteri-
zation from two aspects. On the one side, looking at the pos-
sible clusterizations of states with different quadrupole de-
formation of the parent nucleus, we tend to determine the
deformation-dependence of various cluster-configurations.
On the other side, we can investigate the role of the cluster-
deformation inside the cluster (or molecular) nuclear states;
i.e. figure out, how the relative orientation of deformed clus-
ters can build up different states of the same nucleus.

In this contribution we apply the above methods to the
40Ca nucleus, which is investigated also in the framework of
the Antisymmetrised Molecular Dynamics (AMD) [5], thus
we can compare our results with those of a fully microscopic
treatment. This is interesting for the special case of the 40Ca
nucleus, too, at the same time, however, it can be considered
as a test of our method, which we apply also to heavy nu-
clei [6–8].

40Ca seems to be an ideal tool for this kind of investi-
gation, not only because it is around the upper end of the
domain of applicability of the fully microscopic cluster mod-
els, but also due to the fact that its superdeformed band has
experimentally been observed [9], and theoretically studied
by different methods [5, 10].

The structure of this paper is as follows. In Sec. 2 the
methods of calculation are presented, in Sec. 3 we present
our results for the ground and superdeformed bands of 40Ca,
as well as for its hypothetical hyperdeformed states, finally in
Sec. 4 some conclusions are drawn.

2. Method of calculation

2.1. Exclusion principle

The structural selection rule we apply, is based on the U(3)
symmetry, what is known to be a good approximate symme-
try of light nuclei [3], and its role in the clusterization was
also observed in the early studies [11], followed by the un-
derstanding of its importance from different aspects of clus-

terization [12]. The simple U(3) selection rule reads:

[n1n2n3] = [n(1)
1 n

(1)
2 n

(1)
3 ]⊗ [n(2)

1 n
(2)
2 n

(2)
3 ]⊗ [n(R)00] (1)

where [n1n2n3] is the set of (approximate) U(3) quantum
numbers of the parent nucleus, the superscript (i) stands for
the ith cluster, and (R) indicates relative motion.

Please note that the shape of the nuclei (or clusters) is de-
termined by the U(3) irreducible representation [n1, n2, n3],
which includes spherical, prolate, oblate, as well as triax-
ial shapes. When generalising this selection rule to ternary
cluster-configurations, one has a product of five terms on the
right-side, three characterising the clusters, and two standing
for two independent relative motions.

In medium and heavy nuclei, the U(3) symmetry is
not valid in its original form, due to the importance of the
symmetry-breaking interactions, like spin-orbit and pairing.
Nevertheless, it was found [4] that in spite of the strong
symmetry-breaking interactions a generalised U(3) symme-
try, called effective, or quasi-dynamical U(3) symmetry, may
survive even for heavy nuclei. Then the energy-eigenstates
are:

ψαKJM = ΣξλµCαξλµKφξλµKJM , (2)

where φξλµKJM is a basis vector for an SU(3) irrep, and
ξ stands for all the quantum numbers not belonging to the
SU(3) group [13]. Please, note that the CαξλµK coefficients
of the linear combination are independent of JM , i.e. within
a band the contribution of different SU(3) basis states are
the same. In particular the matrix elements of the SU(3)
generators between these states may approximate the ma-
trix elements of an exact representation. In such a case we
speak about an approximate embedded representation, and
related to it, about an approximate quasidynamical or effec-
tive SU(3) symmetry.

The effective U(3) symmetry provides us with effective
(or average) U(3) quantum numbers, and based on that a se-
lection rule can be formulated. Due to the average nature
of these quantum numbers, however, the effect of the se-
lection rule is different from that of the real U(3) selection
rule. It gives information on the matching, or mismatching of
the average nucleon distributions in the cluster-configuration
and in the shell-model-state. Therefore, it acts like a self-
consistency check of the quadrupole deformation and the
clusterization.

In Ref. 13 a method is developed for the determination
of the effective U(3) quantum numbers of the heavy nuclei,
based on the occupation of the asymptotic Nilsson orbits. The
procedure, which was originally invented for the large pro-
late deformation was extended in [14] for the oblate shape
and small deformations as well, based on the expansion of
single-particle orbitals in terms of asymptotic Nilsson-states.

The concept of effective symmetry is applicable also to
light nuclei, and when the simple leading representation ap-
proximation is valid, the real and effective U(3) quantum
numbers usually coincide [14].
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When a cluster configuration is forbidden, we can
characterise its forbiddenness quantitatively in the fol-
lowing way [15]. The distance between a U(3) re-
action channel and the irrep of the parent nucleus is
defined as: min(

√
(∆n1)2 + (∆n2)2 + (∆n3)2), where

∆ni = |ni − nc
i,k|. Here ni refers to the U(3) representation

of the parent nucleus, while nc
i,k stands for the U(3) repre-

sentation of channel c , obtained from the right-hand-side of
Eq.(1), with the k index distinguishing the different product-
representations. Based on this quantity we determine, for rea-
sons of convenience, the reciprocal forbiddenness S in such

FIGURE 1. Reciprocal forbiddenness for the 40Ca clusterizations.
ND stands for the normal deformed (ground) state, while SD and
HD indicate super and hyperdeformed states, respectively.

a way, that 0 ≤ S ≤ 1:

S =
1

1 + min(
√

(∆n1)2 + (∆n2)2 + (∆n3)2)
. (3)

Then S = 0, and S = 1 correspond to completely forbidden
and allowed clusterizations, respectively.

2.2. Energy preference

The criterium of maximal stability [1], requires the largest
value of the summed differences of the measured binding en-
ergies and the corresponding liquid drop values:

D(1, 2) = [B(1)−BL(1)] + [B(2)−BL(2)], (4)

where B(i) is the experimental binding energy of the ith clus-
ter [16], while BL(i) stands for liquid drop value.

In the generalised version of the method, as we apply it
here, a further condition is also taken into account, which is
called dipole constraint [1]. It is based on the observation
that electric dipole transitions are very weak, therefore, the
decomposition AT → A1 + A2 is expected to be close to
satisfying the constraint:

Z1

A1
≈ ZT

AT
≈ Z2

A2
. (5)

A more detailed calculation of the energetic pref-
erence can be carried out within the Dinuclear Sys-
tem Model. According to this description the clus-
terization process involves the motions in charge
ηZ = (Z1 − Z2)/(Z1 + Z2) (Z = Z1 + Z2) and mass
η = (A1 −A2)/(A1 + A2) (A = A1 + A2) asymmetry co-
ordinates, where Z1 (A1) and Z2 (A2) are the charge (mass)
numbers of the heavy and light nuclei of the dinuclear system
(DNS) [2,17] formed by two touching nuclei or clusters, and
in the relative separation coordinate R between the centers
of mass. The charge (mass) asymmetry ηZ (η) is the relevant
collective variable describing the partition of nucleons be-
tween the nuclei forming the DNS. The wave function in ηZ

can be thought as a superposition of the mononucleus config-
uration with |ηZ |=1 and different cluster-type configurations.
The relative contribution of each cluster component to the
total wave function is ruled by the potential U(ηZ , I) which
is the DNS potential energy for |ηZ | < 1 [18–21]

U(ηZ , I)=V (R=Rm, ηZ , I)+B1(ηZ)+B2(ηZ)−B. (6)

Here Rm is the (touching) distance of the two clusters, which
depends on their deformation and relative orientation.

Since the mode responsible for the N/Z-equilibrium in
the DNS is the fast one (ηZ is slow in comparison with the
ratio ηZ/η), the potential energy U is minimized with respect
to the mass asymmetry η for each fixed charge asymmetry
ηZ . The quantities B1 and B2, which are negative, are the
binding energies of the clusters forming the DNS at a given η,
and B is the binding energy of the parent nucleus. The exper-
imental ground state masses and quadrupole deformation pa-
rameters [16, 22] are used in the present calculations. Due to
the normalization by B in Eq. (6), U(|ηZ | = 1, I = 0) = 0.
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TABLE I. Orientation of clusters in 40Ca. The abbreviations for the shape are: s: spherical, p: prolate, o: oblate, t: triaxial; while the
meaning of the symbols for the orientation are: a: symmetry axis; *: 32S middle axis: x, larger axis in yz plane (closer to y); **: 28Si
symmetry axis close to z; ***: 20Ne (C1) symmetry axis in xy plane at 45o; +: 28Si symmetry axis in zy plane (closer to z); ++: 24Mg
middle axis: x, other two in zy plane, larger axis closer to z; +++: 20Ne (C1) symmetry axis in xy plane at 45◦.

40Ca state C1 Shape Ratio Position C2 Shape Ratio Position

ground 36Ar o 1.27 : 1 a : z 4He s 1 −
[20, 20, 20] 32S t 1.5 : 1.33 : 1 y > x > z 8Be p 2 : 1 a : x

β2 = 0 28Si o 1.66 : 1 a : z 12C o 1.66 : 1 a : z

superdeformed 32S t 1.5 : 1.33 : 1 ∗ 8Be p 2 : 1 a : z

[36, 16, 16] 28Si o 1.66 : 1 ∗∗ 12C o 1.66 : 1 a : y (or x)

β2 = 0.50 20Ne p 1.57 : 1 ∗ ∗ ∗ 20Ne p 1.57 : 1 a : y (or x)

hyperdeformed 28Si p 1.55 : 1 + 6C o 1.66 : 1 a : y (or x)

[48, 12, 12] 24Mg t 1.75 : 1.25 : 1 ++ 16O s 1 −
β2 = 0.86 20Ne p 1.57 : 1 + + + 20Ne p 1.57 : 1 a : z

TABLE II. Energetic preferences of different cluster configura-
tions in 40Ca. D(1, 2) stands for the binding-energy difference
of Eq.(4), thus the larger value corresponds to more probable ap-
pearance. U means potential energy, calculated from the dinuclear
system model, therefore, smaller values correspond to more sta-
ble cluster-configurations. pp indicates the pole-to-pole configura-
tion, typical in DNS calculations, while m stands for the orientation
corresponding to the microscopic consideration. All values are in
MeV. (n), (s), and (h) refer to normal, superdeformed, and hyper-
deformed states.

C1 + C2 D(1,2) U(pp) U(m)
4He + 36Ar 9.64 -3.3 -3.4
8Be + 32S 5.58 3.8 3.8
12C + 28Si 6.61 2.8 1.3 (n,s)

2.8 (h)
16O + 24Mg 3.83 8.6 8.6
20Ne + 20Ne -0.79 12.9 11.9 (s)

14.3 (h)

The nucleus-nucleus potential [21]

V (R, ηZ , I)=VC(R, ηZ)+VN (R, ηZ)+Vrot(R, ηZ , I) (7)

consists of the Coulomb VC , centrifugal
Vrot = ~2I(I + 1)/(2=(ηZ)) and nuclear interaction VN

potentials. =(ηZ) = 0.85(j1 + j2 + µR2) is the moment
of inertia of the DNS, where µ is the reduced mass, j1,2 are
the rigid body moments of inertia of the clusters with re-
spect to the axes parallel to the rotational axis and passing
trough the centers of mass of the clusters. The factor 0.85
was suggested in Ref. 23 and used in Refs. 18 to 20. The
nuclear part VN (R) of nucleus-nucleus potential is taken in
the double-folding form:

VN (R, ηZ) =
∫

ρ1(r1)ρ2(R− r2)F (r1 − r2)dr1dr2.

The well-known two-parameter Woods-Saxon function for

nuclear densities

ρi(r) =
ρ00

1 + exp(|r−Ri|/a0i)
,

is used, where Ri is the radius vector of the nuclear surface
of the cluster i in the direction of r. Here, ρ00=0.17 fm−3 is a
saturation nucleon density of nucleus, r0i=1.16 fm apart from
alpha particle, where r0=1.0 fm, are nuclear radius parame-
ters, and a0i denotes the diffuseness depending on the mass
number of the nucleus. We use in our calculation a0 =0.48,
0.51, 0.53, and 0.55 fm for alpha particle, Be, C, and nu-
clei with Z > 6, respectively. The simplified Skyrme-type
nucleon-nucleon forces

F (r1 − r2) = C0

(
Fin

ρ0(r1)
ρ00

+ Fex

(
1− ρ0(r1)

ρ00

))

× δ(r1 − r2),

Fin,ex = ζin,ex + ζ ′in,ex

A1 − 2Z1

A1

A2 − 2Z2

A2
,

depend on the density of nuclei because
ρ0(r1) = ρ1(r1) + ρ2(R− r2). We used the following con-
stants ζin = 0.09, ζex = −2.59, ζ ′in = 0.42, ζ ′ex = 0.54,
C0 = 300 MeV·fm3 from Ref. [24] where they were tested
for nuclear structure purposes. The Coulomb potential for
two deformed nuclei UC is calculated with the following
analytical formula [25]:

VC(R, ηZ) =
e2Z1Z2

R
+

√
9

20π

e2Z1Z2

R3

∑

i=1,2

R2
0iβiP2(cos θi),

where P2(cos θi) is Legendre polynomial and θi is the an-
gle between the symmetry axis and the axis z connecting the
centers of clusters. In the first order in βi this expression is
valid for any mutual orientation of the nuclei.

The DNS potential energy as a function of ηZ (η) has
minima corresponding to some clusterizations of the system.
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3. Application to 40Ca

The superdeformed band of the 40Ca nucleus has recently
been observed experimentally [9] with spins 0+ . . . 16+.
First a β2 = 0.59 value was determined for its quadrupole
deformation, then it was confirmed in more detailed experi-
mental studies for the high spin states, while for low-J values
β2 = 0.40 was found. The same band has been detected in
an independent measurement up to Jπ = 12+ [26].

Early (shell model, and Hartree-Fock) calculations prior
to the experimental observation predicted these states to have
8-particle 8-hole character [10], and more recent cranked rel-
ativistic mean field studies confirmed this conclusion [9]. The
ab initio type AMD calculations also resulted in a band with
8p-8h nature corresponding to β2 = 0.40 [5].

In the present considerations first we have determined
the reciprocal forbiddenness for different binary cluster-
configurations in the ground, superdeformed, and hyperde-
formed state of 40Ca, and then calculated their energetic pref-
erence, both from the simple binding-energy method, and
from the dinuclear system model.

As for the superdeformed state, we have started from the
joint conclusion of the experimental and previous theoreti-
cal investigations, and accepted its 8p-8h nature. The corre-
sponding real U(3) symmetry is [36, 16, 16] (which indicates
β2 = 0.50). The effective U(3) quantum numbers, belonging
to the β2 = 0.59 deformation (and having also an 8p-8h con-
figuration) are [38, 17, 13]. For the symmetry of the hyperde-
formed state we have two candidates from simple shell model
considerations, which correspond to 12p-12h [48, 12, 12], or
16p-16h excitations [52, 12, 12], and to quadrupole deforma-
tions of β2 = 0.86, 0.93, respectively.

The result is shown in Fig. 1. In the ground state the
asymmetric cluster-configurations are preferred, in the hyper-
deformed state the symmetric ones, while the superdeformed
state has a situation in between. This finding is completely
in line with the case of the 36Ar nucleus [6]. Except for the
A = 18 the allowed or forbidden nature of a cluster in the su-
perdeformed state does not depend on the fact if we apply real
or effective U(3) symmetry. In the hyperdeformed state the
two candidates result in the same cluster-picture. It is remark-
able that the 12C cluster is allowed both in the ground and
in the super- and hyperdeformed states, though the comple-
menter 28Si nucleus is oblate in the two less-deformed states,
and it is prolate in the hyperdeformed one. (This nucleus sits
right in the middle of the sd-shell, and it is known to have a
shape-coexistence.)

The geometrical configurations are shown in Table I for
the alpha-like allowed clusterizations. We showed one of the
possible geometrical configurations (usually it is the simplest
one), but they are not necessarily the only possible ones, since
the antisymmetrization may wash out the difference between
different arrangements.

The energetic preferences for the alpha-like configura-

tions (which are the more prefered ones) are given in Table
II. It is interesting that the simple binding energy arguments,
and the more detailed potential energy-calculations within
the DNS framework give the same preferences for the differ-
ent clusterizations, and it does not depend (qualitatively) on
the fact either, if the nuclear molecule is in the pole-to-pole
configuration, or in the one, preferred by the microscopic ar-
rangement, shown in Table I. This situation is also similar to
that of the 36Ar nucleus [27]. A further remarkable observa-
tion is that the microscopically prefered orientations result in
equal or less values of the potential energy than the pole-to-
pole ones.

4. Summary and conclusions

In this paper we have considered the binary clusterizations
of the ground, superdeformed and hyperdeformed states of
40Ca. The clusters were considered to have deformation, like
the free nuclei, and we applied no constraint for their rela-
tive orientation. We incorporated in our studies both the ex-
clusion principle, and the energetic prefererence. The previ-
ous one was taken into account via a selection rule, based on
the microscopic structure, the latter one was calculated phe-
nomenologically.

We have found that the ground state prefers asymmet-
ric cluster-configurations, the hyperdeformed state symmet-
ric ones, while the superdeformed state shows a more com-
plicated picture. It is interesting, that the 12C+28Si clusteri-
zation is allowed in each state. Nevertheless, they correspond
to different geometrical configurations, since the relative ori-
entation of the deformed clusters are different.

From the energetic viewpoint this clusterization is half-
way between the energetically most preferred and least pre-
ferred alpha-like configurations. The energetic preference
turned out to be similar from the simple binding-energy con-
sideration and from the detailed potential-energy calcula-
tions.

Our finding is very much in line with that of the fully
microscopic AMD calculations [5], which concluded that
the superdeformed state has an 12C+28Si character. Fur-
thermore, the coupling of the clusters is strong in both de-
scriptions. This similarity can be considered as a check of
our method with respect to the fully microscopic description,
which seems to be very promising from the viewpoint of the
more extensive applications to heavy nuclei.
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