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This paper is divided in two main sections focusing on different aspects of collective nuclear behavior. In the first section, solutions are
considered for the collective pairing Hamiltonian. In particular, an approximate solution at the critical point of the pairing transition from
harmonic vibration (normal nuclear behavior) to deformed rotation (superconducting behavior) in gauge space is found by analytic solution
of the Hamiltonian. The eigenvalues are expressed in terms of the zeros of Bessel functions of integer order. The results are compared to
the pairing bands based on the Pb isotopes. The second section focuses on the experimental search for the Giant Pairing Vibration (GPV) in
nuclei. After briefly describing the origin of the GPV, and the reasons that the state has remained unidentified, a novel idea for populating
this state is presented. A recent experiment has been performed using the LIBERACE+STARS detector system at the 88—Inch Cyclotron of
LBNL to test the idea.
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Este articulo consiste en dos secciones en las cuales se presentan aspectos diferentes del comportamiento colectivo nuclear. En la primera
parte, se consideran soluciones para Hamiltonianos describiendo el apareamiento colectivo. En particular, se discute una solucién aproxi-
mada para el punto critico de la transiciéon de apareamiento entre vibraciones armonicas (comportamiento regular) y rotaciones deformadas
(comportamiento superconductor). Se hace una comparacién con las bandas de apareamiento en los isétopos de Pb. La segunda seccién se
concentra en la bisqueda experimental de la vibracién de apareamiento gigante (GPV por sus siglas en inglés) en la fisica nuclear. Después
de haber discutido el origin de la GPV y las razones por las cuales hasta la fecha no ha sido identificada, se presenta una idea novedosa
para poblar esta modo de excitacién. Recientemiente, se llevé a cabo un experimento con el detector LIBERACE+STARS en el ciclotrén de

LBNL para comprobar este método.
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1. The critical-point description of the transi-
tion from vibration to rotation in the pair-
ing phase

Pair correlations in electron motion are directly related to
macroscopic phenomena such as superconductivity [1]. The
concepts that were developed to describe such correlations
found immediate application in nuclear physics and provided
a key to understanding the excitation spectra of even—A nu-
clei, odd—even mass differences, rotational moments of in-
ertia, and a variety of other phenomena [2, 3]. Pair correla-
tions are also of great importance in describing the behavior
of other finite Fermion systems such as 3He clusters, Fermi—
gas condensates, fullerenes, quantum dots, and metal clus-
ters [4]. Ideas to describe phenomena associated with pair
correlations in any one system are likely to find application
in the others.

An early approach to describing pair correlations in nu-
clei was the development of a collective model by Bes and
co-workers [5]. The variables in the model are a pair de-
formation, o (which can be related to the gap parameter),
and a gauge angle, ¢ (which is the canonical conjugate to the
particle-number operator, N). The collective pairing Hamil-
tonian was derived in direct analogy to the Bohr collective
Hamiltonian which describes the quadrupole degree of free-
dom for the nuclear shape [6].

Notable benchmarks of nuclear behavior such as the har-
monic vibrator [7], the symmetrically deformed rotor [8], and
the soft triaxial rotor [9] correspond to analytic solutions of
the Bohr Hamiltonian. They also correspond to limits of the
Interacting Boson Model (IBM) [10]. An algebraic descrip-
tion of the nature of the transition between these limits has
been developed in direct analogy with classical phase transi-
tions [11]. The Bohr Hamiltonian has recently received re-
newed attention due to the suggestion that simple analytic
approximations can be made to describe the critical-point of
the transitions between nuclear shapes [12—14]. These can
then serve as new benchmarks against which nuclear proper-
ties can be compared.

In this paper similar approximations are applied to ob-
tain an analytic solution of the collective pairing Hamilto-
nian corresponding to the critical point of the transition from
a “normal” to a “superconducting” nucleus. Note, some of
this work is described in a recent publication [15]. Nuclei
with two identical particles added or removed from a closed—
shell configuration should be close to the normal limit, where
there is no static deformation of the pair field and the fluc-
tuations of the field give rise to a pairing vibrational spec-
trum [16]. Pairing vibrational structures have been observed
around 2°%Pb [17], although large anharmonicities must be
included in this interpretation. In nuclei with many particles
outside of the closed—shell configuration, a static deforma-
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tion of the pair field arises and rotational behavior results.
This corresponds to the superconducting limit. The angular
variable in the rotational motion is the gauge angle, ¢, which
describes the orientation in gauge space. This broken sym-
metry in gauge space results in a pair—rotational band [18]
comprising the sequence of ground—states of even—even nu-
clei, differing by pairs of identical nucleons, and with many
nucleons outside a closed shell.

Here, the transition from the pair—vibrational to pair—
rotational regimes can be investigated. To do this solutions
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FIGURE 1. Schematic of the potential energy surfaces, u(«), as
functions of the deformation of the pair field, v, for the transition
from a) spherical vibrations, through b) the critical point (the in-
finite square well approximation with an outer wall at a=qy, is
shown with a dashed line), and to c) deformed rotation.

must be found to the collective pairing Hamiltonian [5]:
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where « is the deformation of the pair field, & is an inertia
parameter, B is a mass parameter, M=A—A (number of parti-
cles, A, relative to a reference Ag), and V(«) is the potential.
In general, & and B are functions of the pair deformation, c.
By choosing suitable potentials analytical solutions of equa-
tion 1 can be found in the different limits. Consider the poten-
tial energy surface as a function of the pair-field deformation
parameter, o, as schematically illustrated in Fig. 1. In the
vibrational limit the potential is parabolic with a minimum
at a=0. The transition to the rotational pairing regime gives
rise to a deformed minimum in the potential. At the criti-
cal point, these two minima cross and the deformation of the
pair—field changes from spherical to deformed. This picture
is supported by boson calculations of potential surfaces [19].

In the pair-rotational limit the potential can be approx-
imated by assuming a static deformation of the pair field,
a=cagp. Under this assumption the derivatives in equation 1
tend to zero implying that:

E o (A - Agp)® )
giving the expected parabolic dependence between energy
and particle number for pair rotations.

In the case in which the equilibrium deformation is zero
and fluctuations of the pair field are small, then B is a con-
stant and 3=4Ba? [5]. Equation 1 then becomes:

B2 0% h2 o [ hEM?>
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Introducing the reduced energy, e=(2B/h?)E, and reduced
potential, u(c)=(2B/h?)V(c), equation 3 can be rewritten

%Y 10y M?
— + —— — - — =0 4
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For pair—vibrations the potential can be taken to be a parabola
with a minimum at zero pair deformation (see Fig. 1a). With
u(a)=a? and m=M/2, equation 4 can be expressed as:
0? 10 m?
¢+w+<e—a2—a2)w:0 Q)

da?  «ada

Equation 5 has the same form as the radial equation of an
isotropic oscillator (see, for example, Ref. 20) and can be
solved by using a trial wavefunction of the form:

P =ame2W (a) (©6)
Solving equation 5 it is found that:
F x (A - Ao) (7)

which is the expected linear dependence between energy and
particle number in the vibrational limit.

An analytical solution for the critical point of the tran-
sition from the vibrational to rotational pairing regimes can
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also be found. As pointed out by Iachello [12] the situation
in which a potential has a flat behavior as a function of some
coordinate appears typically when the system undergoes a
phase transition at a critical point. A simple approximation to
the critical-point potential (see Fig. 1b) is an infinite square
well:

u(a) =0,a < ay
u(a) =00, > ay (®)

This approximation to the potential at the critical-point of
the pairing phase transition is identical to the assumption of
infinite square well potentials used in the critical-point de-
scriptions of nuclear shape transitions [12-14]. Using this
potential in Eq. (4) one obtains a Bessel equation:

2 2
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where z=ak with k=e*/2. The boundary condition v (cr,)=0

determines the eigenfunctions to be related to Bessel func-
tions of integer order such that:

Yem (2) = ce, w2 (2) (10

where c¢ 3 are constants of normalization. The associated
eigenvalues are given by:
€M = kéM, ke v = ZeM (11)
Qg

where x¢ 5 is the fth zero of the Bessel function Jj/2(2).

In this paper, the focus is the use of the eigenvalues given
by equation 11 to find the spectrum of states for comparison
to experimental data. Transition matrix elements, related to
two-nucleon transfer probabilities [5], could also be deter-
mined since:

Qo
(e a1 |Oltpe ar) o /ZZJEI,M/Otgwg,MdOé (12)
0

where, O is the pair transfer operator. An extensive compar-
ison of all data, including pair transfer probabilities, will be
the subject of future work.

The energy spectrum of the states can be found from the
zeros of the related Bessel functions using equation 11. Nor-
malizing the energies of excited states to that of the first ex-
cited state forms a reduced spectrum of states defined as:
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TABLE 1. Excitation energies of the critical-point description.

¢=1 =2 =3 £=4
IM|=0 0.00 2.77 7.77 14.97
IM|=2 1.00 4.88 10.98 19.30
IM|=4 231 731 14.52 23.95
IM|=6 3.92 10.06 18.39 28.93
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FIGURE 2. Plots of normalized energies for the lowest sequence of
states of the rotor, vibrator, and critical-point descriptions.

The normalized excitation energies found in this way for
some states are given in Table I. In Fig. 2 it can be seen that
the energies for the =1 sequence of states follow a behavior
which is between the linear dependence for a pure harmonic
vibrator (equation 7) and the parabolic dependence for a de-
formed rotor (equation 2) as expected for this description of
the transition between the two limits. The sequence of states
with £=1 correspond empirically to the sequence formed by
the 0 ground-states of neighboring even—even nuclei along
an isotopic or isotonic chain. States with £ >1 correspond to
excited 07 states formed from pair excitations.

Before proceeding it is worth commenting on the alge-
braic structure associated with the solutions of the pairing
Hamiltonian. Following Iachello [13], the square—well ap-
proximation of the critical-point in a generalized phase tran-
sition of the form U(n)«=SO(n+1), with n>2, has the E(n) dy-
namic symmetry, where E(n) is the n—dimensional Euclidean
group. For the pairing phase transition n=2 and the corre-
sponding symmetry at the critical point is E(2). The eigen-
functions of the critical-point solution are Bessel functions
of integer order and form a basis for the representations of
this group.

Comparison of calculations with experiment can be made
by using the known data on the mass excesses [21], (A),
along an isotopic sequence. Such a comparison for the Pb
isotopes is shown in Fig. 3. The empirical neutron pairing
energy can be defined, Epq;r-(A), as:

Epair = [ (A) —e(Ag)] — C (A — Ayp) (14)

where £(A)—e(Ay) is the difference between the mass excess
for a given isotope with mass number A and the mass excess
of the chosen reference nucleus with mass number Ag. A lin-
ear term is subtracted and the constant, C, is chosen to make
Epair(Ao-2)=Epqir(Ao+2) [22]. The values of E,,4;, in Fig. 3
are again normalized to the first excited state.
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FIGURE 3. Plots of the empirical neutron pair energies for the se-
quence formed by the 0" ground—states of the Pb isotopes using as
areference 2°2Pb (open circles), 2°*Pb (open squares), 2°°Pb (open
diamonds), and 2°®Pb (open triangles). For comparison are shown
the expectations of the pure vibrator, pure deformed rotor, and the
critical-point description (solid lines).

For Ag=202 or 204 it is found that the sequence follows
the parabolic dependence of the rotational pairing regime.
This indicates a large static deformation of the pair field (as-
sociated with a superconducting phase). With Ay=206, de-
viations from the rotational parabolic dependence are seen.
With Ap=208 the sequence is closer to the vibrational (nor-
mal) phase. Empirically, the transition to the rotational
regime requires only a few pairs outside of the closed shell
configuration. This result is closely related to the fact that
only a few nucleon pairs contribute to the pairing gap [23].

The isotopes around 2°®Pb have been used as the text-
book example of pair vibrations in nuclei [22]. Deviations
from the pure vibrational spectrum were described in terms
of large anharmonicities. These deviations in the energies are
clearly seen in Fig. 3 and the sequence around A=208 lies
much closer to the transitional description. The sequences
of Ni and Sn isotopes using the doubly magic nuclei °5Ni
and 32Sn as references have also been examined. Again, the
spectra of neutron pair energies lie closer to the transitional
description than to the vibrational description. Comparison to
the proton—pair sequence formed by the N=82 isotones based
on the 132Sn doubly—magic nucleus also shows a similar be-
havior. These observations suggest a general phenomenon
(see Fig. 4). In using the collective pairing Hamiltonian, a
square—well potential provides a simple analytic approach
that can naturally account for the observed anharmonicities
associated with the harmonic oscillator solution. The mea-
surement of properties of new doubly magic nuclei such as
1008n [24] and "®Ni [25], and their even—even neighbors, will
be of great interest in testing this idea.
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FIGURE 4. Plots of the empirical pair energies for the sequences
formed by the 0T ground-states of the Ni, Sn, and Pb isotopes and
the N=82 isotonic chain using as references “°Ni (open circles),
13291 (open squares), 2°8Pb (open triangles), and '32Sn (open di-
amonds), respectively. For comparison are shown the expectations
of the pure vibrator, pure deformed rotor, and the critical-point de-
scription (solid lines).

In the future, it should be possible to apply many of the
modifications and ideas that have arisen as a consequence
of the introduction of the critical-point descriptions of shape
transitions to the description of the pairing—phase transition.
For instance, modifying the infinite—square well potential to a
finite square—well potential [26], varying the stiffness of the
wall of the potential [27], and changing the softness of the
deformation [28], are all important problems open to analyti-
cal solution. An advantage of the collective model is that the
role of fluctuations of the pair gap are naturally accounted for
by the choice of potential. For instance, by varying the soft-
ness one can investigate the extent to which these fluctuations
might alter the nature of the phase transition.

The comparison with the experimental data can be ex-
panded to include energies of excited states (corresponding
to £ >1 in the description) and transfer strengths between
the different states. In the case of excited 07 states in 2°°Pb
and 208Pb, suggested as pair excitations, the energies lie close
to the vibrational limit. It would be interesting to see if the
first-excited pairing band continues this trend over a longer
sequence of states.

2. Searching for the Giant Pairing Vibration

It has long been predicted that there should be a concentra-
tion of strength, with L=0 character, in the high—energy re-
gion (~10 MeV) of the pair—transfer spectrum [29]. This is
called the Giant Pairing Vibration (GPV) and is understood
microscopically as the coherent superposition of 2—particle
(or 2-hole) states in the second major shell above the Fermi
surface. It is analogous to the giant resonances of nuclear
shapes which involve the coherent superposition of ph exci-
tations. The GPV should be populated through pair—transfer
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TABLE II. Calculated cross—sections (in mb) for ground—state and
GPV transitions (based on Ref. 31).

14C—>12C 6He—>4He
1165n4)1188ng'5. 19.4 0.4
208pp_,210pp, 153 1.8
1165n—>118$ncpv 0.14 2.4
208pp_,210pp g pyr 0.04 3.1
120.0
210
% Pb
80.0 + 1
2 210
g 209
g Pb Pb

Transition Energy (keV)

FIGURE 5. Spectrum of gamma rays in coincidence with both pro-
tons and alpha particles from the “Li+2°%Pb reaction. Transitions
in 2'1°Pb populated via two—neutron transfer from fragments of the
Li break—up are marked.

reactions. Despite efforts using conventional transfer reac-
tions, such as (p,t) [30], the GPV has never been identified.

A recent paper [31] has studied the problem of exciting
high—energy collective pairing modes in two—neutron trans-
fer reactions and pointed out that, using conventional reac-
tions with strongly—bound beam nuclei, one is faced with a
large energy mismatch that favors the transition to the ground
state over the population of high—lying states. Instead, the Q-
values in a stripping reaction involving the weakly bound *He
nucleus are much closer to the optimum for the transition to
excited states in the 10-15 MeV range.

Particle—particle RPA calculations on 2%Pb and
BCS+RPA calculations on ''®Sn were performed as exam-
ples of the response to the pairing operator in a closed—shell
and open—shell nucleus, respectively. Two—neutron transfer
form factors were then constructed via a collective model
and used in a DWBA calculation to estimate cross—sections
for the ground—state and GPV transitions for the (*4C,'2C)
and (°He,*He) reactions. The results, which are shown in
Table II, indicate a large enhancement of the population of
the GPV when using the (°He,*He) reaction.

The low intensity of available beams of radioactive ‘He
makes the experiment difficult. However, recent studies [32]
of the break—up of a "Li beam indicate that there may be a
large (>10 mb) cross—section for the p+®He channel. The

idea is that the ®He fragment may then transfer two neutrons
to the target nucleus, as discussed above, and populate the
GPV. By looking at the coincidence of remnant protons and
alpha particles one should be able to identify states, including
the GPV, populated in the neutron—pair transfer from frag-
ments of the initial “Li beam.

An experiment, was performed to test this idea. The
"Li+208Pb reaction was used at a beam energy of 49 MeV.
The beam, accelerated by the 88-Inch Cyclotron of the
Lawrence Berkeley National Laboratory, was incident on a
target comprising a 900 pg/cm? self—supporting foil of en-
riched 2°8Pb.

Charged—particles were detected with the STARS
(Silicon Telescope Array for Reaction Studies) Si AE-E tele-
scope system which consisted of two annular silicon strip
detectors with inner radius 11 mm and outer radius 59 mm.
The detectors were electrically segmented into 24 concentric
rings on the front face and 8 wedge—shaped sectors on the
back face. The AE detector was of ~140 ym thickness while
the E detector was ~1000 pm in thickness. The detectors
were placed at forward angles with respect to the beam di-
rection. The configuration had a target—to—detector distance
of ~3 cm to the AE detector which was separated from the
E detector by ~1 cm. This gave an angular coverage from
~20° to ~55° with respect to the beam direction.

Gamma rays were detected with the new LIBERACE
(Livermore Berkeley Array for Collaborative Experiments)
Ge—detector array which consists of up to six Compton—
suppressed clover detectors situated in the horizontal plane
around the target chamber with two detectors each at £45°
and two at 90°. The distance between the target and the front
of each Ge detector was ~17.25 cm.

The data is still under analysis but as a first step the ~y
rays in coincidence with both a proton and an alpha particle
were examined. The resultant spectrum is shown in Fig. 5.
Transitions in 2'°Pb populated via two-neutron transfer from
fragments of the “Li beam can be clearly seen. The next stage
in the analysis is to examine the particle spectra of coincident
protons and alpha particles in order to reconstruct which frag-
ments are involved in the transfer process and to attempt to
identify the GPV.

3. Summary

In the first section of this paper, I have presented analytical
solutions of the collective pairing Hamiltonian [5] by using
simple approximations to the potential in the limits of har-
monic vibrations (zero deformation of the pair field corre-
sponding to normal behavior), deformed rotation (static de-
formation of the pair field corresponding to superconduct-
ing behavior), and at an intermediate transitional point. In
the latter situation the potential is approximated as an infi-
nite square well. The eigenvalues are expressed in terms of
the zeros of Bessel functions of integer order. Comparison
to the pairing bands based on the Pb isotopes suggests that
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this description may provide a simple approach to explain-
ing the observed anharmonicities of the pairing vibrational
structure around 2°Pb. In the second section of this paper, I
discussed some issues related to the experimental search for
the Giant Pairing Vibration (GPV) in nuclei. In particular, a
technique is proposed to use a two—step process of break—up
followed by two—neutron transfer of a "Li primary beam that
may result in enhanced population of the GPV. Results from
a preliminary analysis of data taken with the new LIBER-
ACE+STARS detector system at LBNL suggest that we see
two—neutron transfer from fragments of the “Li break—up.
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