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Propagation of linear MHD waves in a hydrogen plasma:
the mode crossing problem
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Here we use linear analysis to investigate the propagation of small thermal and magnetohydrodynamic (MHD) disturbances in a heat-
conducting, ionizing-recombining, hydrogen plasma threaded by an external uniform magnetic field. Linearization of the governing MHD
equations for this model leads to a dispersion equation for the wavenumberk as a function of the frequencyω, which may be either quadratic
or cubic ink2, depending on the orientation of the magnetic field. In either case, the solution of the dispersion equation is such that crossing
of the roots may happen at some frequencies, implying that they may not always correspond to the same particular physical wave. The
crossing of modes is merely a mathematical property of the solution and must not be interpreted as an interchange of the thermal and MHD
waves’ physical nature at the crossing frequency. Here we find that mode crossing is a function of the wave frequency, plasma temperature,
magnetic field strength and orientation.
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Mediante un ańalisis lineal se estudia la propagación de perturbaciones térmicas y magnetohidrodinámicas (MHD) en un plasma de hidrógeno
sujeto a la acción de un campo magnético externo de intensidad uniforme, incluyendo los efectos de conducción de calor, fotoionización
y fotorecombinacíon. A partir de la linealización de las ecuaciones MHD para este modelo se obtiene una ecuación de dispersión para el
número de ondak en funcíon de la frecuenciaω, que puede ser cuadrática o ćubica enk2 dependiendo de la orientación del campo magńetico.
En ambos casos, la solución de la ecuación de dispersión es tal que las raices pueden cruzarse a determinadas frecuencias. De este modo,
las raices no siempre corresponderán a la misma onda para todo el espectro de frecuencias. El cruce de modos es una propiedad matemática
de la solucíon y no debe interpretarse como un intercambio de la naturaleza fı́sica de las ondas. Se encuentra que el cruce de modos es una
función de la frecuencia, de la temperatura del plasma y de la orientación e intensidad del campo magnético.

Descriptores:Magnetohidrodińamica y plasmas; ondas magnetohidrodinámicas; ondas acústicas; propagación de ondas.

PACS: 95.30.Qd; 52.35.Bj; 52.35.Dm; 94.20.Bb

1. Introduction

The study of the propagation and growth of small distur-
bances in an optically thin hydrogen plasma is fundamental
for understanding the evolution of inhomogeneities appear-
ing at different length and time scales in astrophysical plas-
mas. An approximate method for dealing with such problems
relies on linear analysis, in which a perturbed equilibrium
state is assumed and the gas-dynamic differential equations
are solved by retaining only first-order terms. The lineariza-
tion procedure leads to a complex polynomial (or dispersion
equation) whose solution can be expressed in terms of the
wavenumberk as a function of the frequencyω.

The propagation of linear sound and thermal waves in a
heat-conducting hydrogen plasma, in which photoionization
and photorecombination [H+ + e− ­H+hν(χ), with χ de-
noting the ionization energy of hydrogen] processes are pro-
gressing was previously studied in Ref. 1. More recently, the
same model was re-examined in Ref. 2, and extended in Ref.
3 to include the effects of an external uniform magnetic field
in order to investigate the propagation of thermal and mag-
netohydrodynamic (MHD) waves for varying field strengths
and orientations. Here we shall consider the same magne-
tized hydrogen model of [3] and derive from a heuristic point
of view the dependence of mode crossing on the relevant

physical parameters. For simplicity we shall assume that the
magnetic field is oriented perpendicularly to the direction of
wave propagation. In this case, the resulting dispersion equa-
tion is a complex quadratic polynomial ink2 and its solution
admits two distinct roots, sayk1 andk2, which may cross at
some given frequencies depending on the plasma temperature
and field strength.

2. The Mode Crossing Problem

Linearization of the MHD equations for a heat-conducting,
ionizing-recombining, hydrogen plasma threaded by an ex-
ternal magnetic field leads to a quadratic complex polyno-
mial provided that the field is oriented perpendicularly to the
direction of wave propagation (B ⊥ k). The same is also true
in the limit of a vanishing magnetic field (B0 = 0) [2]. There-
fore, its solution admits two independent roots, sayk1 andk2,
as functions of the wave frequencyω. One of the roots cor-
responds to the thermal mode (kT ), while the other is a lon-
gitudinal magnetosonic wave propagating with a phase speed
vms =

√
c2 + v2

A, wherevA = B0/
√

4πρ is the Alfvén ve-
locity andc denotes the sound speed. For the present model,c
may be either the isothermalciso or isentropiccs sound speed,
wherec2

iso = (∂p/∂ρ)T = c2
s/γ (see Ref. 3). Note that in

the absence of magnetic fieldsvA = 0, so the magnetosonic
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FIGURE 1. Logarithm of the absolute value of the dimensionlesse-folding conducting timesωtκT (thin line) andωtκms (thick line) as
functions of the normalized frequencyωn for a sequence of temperatures fromTn = 0.5 (almost neutral hydrogen) toTn = 2.0 (fully
ionized hydrogen), whenB ⊥ k andβ ∼ 1. The vertical thick lines mark the crossing frequencies.

wave reduces to an ordinary sound wave. For a detailed ac-
count of the form of the MHD equations, the linearization
procedure and assumptions made, the reader is referred to
Ref. 3. A full description of the hydrogen plasma model and
specialized expressions for the dissociation, recombination,
and cooling rates can be found in Ref. 4.

For this specific model, the coefficients of the dispersion
equation depends on the relevant physical parameters in such
a way that crossing of the roots (k1 ↔ k2) may happen at

some given frequencyωcross. Thus, if at frequencies less than
ωcross, one root corresponds to the magnetosonic mode (kms)
and the other to the thermal mode (kT ), we must then relabel
the roots for all frequencies higher than the crossing value
in order to get a correct representation of both waves. We
call this mathematical property of the solutionmode crossing
and we emphasize that it should not be interpreted as an in-
terchange of the thermal and magnetosonic waves’ physical
nature.
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3. Dependence of Mode Crossing with Tem-
perature and Field Strength

In order to keep consistency with the analysis of Refs. 2
and 3, we take an initial plasma temperatureT0 of≈15062 K,
as determined by assuming chemical equilibrium, a density
ρ0 of 4.12 × 10−26L0 g cm−5 s3, fixed by assuming ther-
mal equilibrium, andω0 = 1.5 × 10−15L0 cm−2 s2, where
L0 ≈ 3.25 × 10−4 cm2 s−3 is the approximately constant
galactic heating rate [5]. We further consider values of the
initially uniform magnetic inductionB0 of 0, 2.5× 10−8 and
2.0× 10−6 gauss, corresponding to ratiosβ = 6c2

s/(5v2
A) of

the plasma pressure to the magnetic pressure of∞ (β À 1),
≈ 1.0108 (β ∼ 1) and≈ 1.5795 × 10−4 (β ¿ 1), respec-
tively. A value of2.0× 10−6 gauss is close to the strength of
the interstellar magnetic field observed in our Galaxy [6].

The wave-frequency and plasma-temperature depen-
dence of the phase velocity and scale-length for wave am-
plification (or damping) of the thermal and magnetosonic
modes is fully described in reference [3] and will not be
repeated here. The dependence of mode crossing on the
relevant physical parameters is better illustrated in terms of
the e-folding conducting timesωtκT andωtκms as defined
in Ref. 3. Figure 1 shows these times as functions of the
normalized frequencyωn = ω/ω0, for a sequence of tem-
peraturesTn = T/T0, ranging fromTn = 0.5 (almost neu-
tral hydrogen) toTn = 2.0 (fully ionized hydrogen) when
B0 = 2.5 × 10−8 gauss (i.e., β ∼ 1). The vertical thick
lines mark the exact frequency at which mode crossing oc-
curs. We see that for this case mode crossing occurs only
at temperatures where the plasma is weakly (Tn = 0.5 and
0.7) and highly (Tn = 1.5 and 2.0) ionized. At low frequen-
cies, k1 labels the thermal mode andk2 the magnetosonic
mode (Figs. 1a and b), with mode crossing (k1 ↔ k2) first
occurring atlog ωn = 4.54 (for Tn = 0.5) and 2.43 (for
Tn = 0.7). A second crossing happens at much higher fre-
quencies: log ωn = 11.05 and 12.01 forTn = 0.5 and
0.7, respectively. Thus, rising the temperature in a weakly

ionized plasma causes the first crossing to occur at lower
frequencies and the second one at higher frequencies. At
temperatures ofTn = 0.9 and 1.0, where the plasma is
partially ionized, mode crossing is never seen to occur (see
Figs. 1c and d). In contrast with the previous cases, when
the plasma becomes highly ionized (Tn = 1.5 and 2.0),k2

labels the thermal mode andk1 the magnetosonic mode at
very low frequencies (Figs. 1e and f). This time mode cross-
ing occurs atlog ωn = 1.95 (for Tn = 1.5) and 3.36 (for
Tn = 2.0), implying that the crossing frequency is shifted
toward higher values as the temperature increases in a highly
ionized plasma.

Similar trends to those shown in Fig. 1 are also seen in the
limit when B0 → 0. In this case, for low-ionization temper-
atures, the first and second crossings occur at comparatively
lower frequencies:log ωn = 4.29 and 8.57 forTn = 0.5 and
log ωn = 2.14 and 6.01 forTn = 0.7. Evidently, decreas-
ing the strength of the field causes mode crossing to occur at
progressively lower frequencies in a weakly ionized plasma.
However, the opposite is true at high-ionization temperatures,
where crossing occurs atlog ωn = 2.01 for Tn = 1.5 and
3.45 for Tn = 2.0. In the opposite case of increased field
strength (B0 = 2.0 × 10−6 gauss), mode crossing is com-
pletely inhibited at low-ionization temperatures. Only for
Tn = 1.5 and 2.0 mode crossing is observed at slightly lower
frequencies (log ωn = 1.91 and 3.12, respectively) compared
to Figs. 1e and f. Thus, as the field strength increases mode
crossing occurs at progressively lower frequencies in a highly
ionized plasma. The picture of mode crossing described here
applies only to the simple cases whereB0 = 0 andB ⊥ k.
For arbitrary orientations of the field, including the case when
B ‖ k, the dependence of mode crossing on the temper-
ature and field strength complicates as the dispersion rela-
tion becomes cubic ink2, admitting three distinct roots [3].
In this case, triple and double mode crossing occur for all
plasma temperatures whenβ ∼ 1 and only at high- and low-
ionization temperatures as long asβ ¿ 1.
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