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The analysis of space-charge effect in spherical geometries has been performed using kinetic theory. The current collected by ce
electrodes immersed in plasmas with a discriminant grid has been determined through the Poisson equation and truncated Maxwe
Distribution functions for the ions. We have assumed that the electrons are repelled by an entrance grid hold at a negative potential.
analysis leads to a strongly non linear dimensionless equation, where the lapalacian operator depends onl§.oTheaudse of plane
geometry was already published [8], and a preliminary work in cylindrical geometry has been reported [4]. This equation has been sol
approximately by expanding the above functions around the potentiand the solution is given by the spherical Bessel functions and the
Legendre polynomials.

Keywords:Space charge effects.

El analisis del efecto de carga espacial en georaeaisérica ha sido elaborado con teocingtica. La corriente colectada por electrodos
inmerso en un plasma con rejilla discriminante ha sido determinada usando lsbealméloisson y funciones de distribbitiMaxwelliana
truncada para los iones. Hemos asumido que los electrones son repelidos por la rejilla de entrada mantenida a potencial negativ
analisis nos lleva a una ecuaci adimensional fuertemente no lineal, donde el operador Laplaciano depend#.dElroaso de geométr

plana fue publicado[8], y trabajos preliminares en geomaeiiindrica han sido reportados[4]. Esta ecoadha sido resuelta en una forma
aproximada por expar@si de la funddn alrededor del potencial,; la solucbn esta dada eretmino de las funciones de Bessel y los
polinomios de Legendre.

Descriptores:Efectos de carga espacial.

PACS: 07.07.Df

1. Introduction 2. Theory

The space-charge effect for planar electrodes has been ®he study of the electric potential curves and its compari-

tensively studied, using both fluid equations and Kinetic the'son in presence of spatial charge effects is of great relevance.
ory (Page and Adams, 1958; Braed al,1973)for planar To illustrate this, the potential curve is studied in spherical

velocity analyzers, thermoionic diqdes,and other engin??ringeometry. In the interelectrodic region, between the maxi-
proble_ms. For_cold plasma_s and simple boundary co_nd|t|0n§.num potentiallj, and the discriminating grid:,at 7 = 7.,

. Ewd equatlc_)nac]:%n be integrated and.th%result IS knﬁyv ere are no reflected particles because it is assumed that all
as t € Langmuir- o equation (Langmuir,1923)[1,7]. T 'Sthe ions arriving at the discriminating grid are collected by
equations do not include temperature effects and they caf,e collectorGy, at the origin. The ion distribution func-

be considered only as a first approximation of the Mart tion f(p, p, 6, 4) for a homogeneous spherical symmetric ion

Dono;o’s papers [8]. The analysis using Kinetic theory Nhlasma with potentidl (7) is a Maxwellian distribution func-
spherical geometry leads to a non linear, second-order di fon:

ferential equation which can be solved using a linear ex-

pansion around the point of zero potential [5,8-12]. In ki- ) ma

netic theory treatment, there are two possibilities of truncatedf (o, 2, 0, ¢) = no (%)

Maxwellians depending on whether the trapped charged par-

ticles in the entrance grid are included or not. Experiments —im [(p2+p292+p2¢2 sin? g@) —I—qV(?“ﬂ
using velocity analyzers of variable interelectrodic distance X exp T

seem to confirm that the trapped particles participate in the

space-charge phenomena, and the they should be included

Refs. 8, and 10, thus the analysis done here in detail seemswhere the temperatufg of the ions is given in electron volts
be the most appropriate one. eV, and the total velocity is* = v2 +vj +v2. The ions with
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radia| kinetic energy |arge thaIi/p Wl” be reﬂected. There- 005 Dimensionaless Potential Vs Intere!ectmdic distance
fore, the distribution function in the intervéd, r,,), wherer, N A A I '
is the maximum, will be T~
0.05- I AU SUURUUUU UURPRRRR \‘\
ooy J folpu(P), vr > —up(T) osf :
f(p?paeago)_ { 0, UF< *’Up(;f'v) ) 4 4 :

Ta <T <Tp, (2)

where fo(p, v(7)) is the truncated Maxwellian distribution
function, andV, is defined by the equation
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We have asumed that=(p, §), thereforev(7)=(v,, vg); . ‘ :
in such away thap(7,) = 0 for 7 = 7, and both distribution oM 12 s e Disence T2
functions are coincident. In this way, the continuity of the
current is secured. Using the Debye lenifh= T'/47nge?, FIGURE 1. In figure is shown the space charge potential includ-

and the dimensionless variables ing temperature effects when the symmetry is spherical, the dimen-
sionless potentials arg, = 0.44 and¢. = 0.39,the dimensionless
r = P, o Pp . interelectrodic distance is one.
- ) P — 9
AD AD
q[Vp = V(r)] qV (7p) Now, the boundary conditions of the solution are
= : = 4 '
d)(:ﬁ/) T ) d)P T ) ( )
the Poisson equation can be written as ba = bp — %; be = bp — %; % =0 (11)
=T
1 P
V2 = Jeld0) [1 + erf (qs%)} . )

whereV,, = V(7,), andV, = V(7).

Using the laplacian operator in spherical coordinates, and Therefore, we have the system of equations
assuming an axis of symmetrye, 9/0¢ = 0); as well as
the new variables

a(Aji(Boc) + Bny(Boc) + CT)Pi(cosb.)
=¢(rc) = ¢, (12)

ci(Cji(Boa) + Dny(Boa) + C~)Pi(cosb,)
= ¢(Ta) = da, (13)

Y =R(r)Y(0,0); ¥ =(¢— )
Ry = ags * B30, (6)
then the following dimensionless equation is obtained

PR 2dR

Tzt~ I+ D) F ) R=0 (7)
where 0 = (Aji(xp) + Bru(xp) + CT)Pi(cos b,) (14)

R(r) = Aji(Bor) + Bru(Bor). ®) = (Ci(zp) + Dki(xp) + C7)P(cosbp). (15)

The solution of the differential equation in terms of the
Legendre polynomials in the interva) < r < r,, is Aj(zp) + Bnj(zp)

Ci;(xp) + Dkl/(xp)

(16)

0
0 (17)

P(r) = Zcz (Aji(Bor) + Bru(Bor) + CT)
x Pj(cos®). (9) wherex, = [y, and the solution of this system of equa-
tions is given by
The solution of the differential equation in terms of the
Legendre polynomials in the interval <r <, is A= Ca?nmy(xy), B = —Ca2ji(xy), (18)

¢(r) = _a(Cii(Bor) + Dki(Bor) + C7) C=Craphi(zy),  D=-CTajilzy).  (19)
x P(cosd). (10)
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Finally, we obtain the pair of equation for intervals <

r < ¢, andr, <1 < r,, respectively

o(r) = Z a(CTapki(zy)i(Bor)

1=0
- C*xikl(wp)kl(ﬁor) + CT)Pi(cosb), (20)

o(r) = Z a(C™ain(wp)ji(Bor)

1=0
— C™aji(zp)(Bor) + C) Py(cosb). (21)

variable position and between the electrodes.

For instance, wheh= 0, in such away that i$,, = 2 and

3. Conclusion

The space charge analysis performed here in detail for spher-
ical electrodes leads to a non-linear differential equation,
which is solved when the laplacian operator and the poten-
tial depend onr andf. The advantage of studying this phe-
nomenon withd is very important because it enables preci-
sion in the space charge effect. The curve of the potential in
spherical probes was drawn for certain values, of, ¢,,. It

is for that reason that the range of validity is limited to some
range of parameters.
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