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Legendre polynomial in space charge potentials for velocity analysers with
spherical geometry
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The analysis of space-charge effect in spherical geometries has been performed using kinetic theory. The current collected by central
electrodes immersed in plasmas with a discriminant grid has been determined through the Poisson equation and truncated Maxwellian
Distribution functions for the ions. We have assumed that the electrons are repelled by an entrance grid hold at a negative potential. This
analysis leads to a strongly non linear dimensionless equation, where the lapalacian operator depends only of r andθ. The case of plane
geometry was already published [8], and a preliminary work in cylindrical geometry has been reported [4]. This equation has been solved
approximately by expanding the above functions around the potentialφp, and the solution is given by the spherical Bessel functions and the
Legendre polynomials.

Keywords:Space charge effects.

El ańalisis del efecto de carga espacial en geometrı́a esf́erica ha sido elaborado con teorı́a cińetica. La corriente colectada por electrodos
inmerso en un plasma con rejilla discriminante ha sido determinada usando la ecuación de Poisson y funciones de distribución Maxwelliana
truncada para los iones. Hemos asumido que los electrones son repelidos por la rejilla de entrada mantenida a potencial negativo. El
ańalisis nos lleva a una ecuación adimensional fuertemente no lineal, donde el operador Laplaciano depende de r yθ. El caso de geometrı́a
plana fue publicado[8], y trabajos preliminares en geometrı́a ciĺındrica han sido reportados[4]. Esta ecuación ha sido resuelta en una forma
aproximada por expansión de la funcíon alrededor del potencialφp; la solucíon esta dada en término de las funciones de Bessel y los
polinomios de Legendre.

Descriptores:Efectos de carga espacial.

PACS: 07.07.Df

1. Introduction

The space-charge effect for planar electrodes has been ex-
tensively studied, using both fluid equations and Kinetic the-
ory (Page and Adams, 1958; Braunet al.,1973)for planar
velocity analyzers, thermoionic diodes,and other engineering
problems. For cold plasmas and simple boundary conditions,
the fluid equations can be integrated and the result is known
as the Langmuir-Chid equation (Langmuir,1923)[1,7]. This
equations do not include temperature effects and they can
be considered only as a first approximation of the Martı̀n-
Donoso’s papers [8]. The analysis using kinetic theory in
spherical geometry leads to a non linear, second-order dif-
ferential equation which can be solved using a linear ex-
pansion around the point of zero potential [5,8–12]. In ki-
netic theory treatment, there are two possibilities of truncated
Maxwellians depending on whether the trapped charged par-
ticles in the entrance grid are included or not. Experiments
using velocity analyzers of variable interelectrodic distance
seem to confirm that the trapped particles participate in the
space-charge phenomena, and the they should be included
Refs. 8, and 10, thus the analysis done here in detail seems to
be the most appropriate one.

2. Theory

The study of the electric potential curves and its compari-
son in presence of spatial charge effects is of great relevance.
To illustrate this, the potential curve is studied in spherical
geometry. In the interelectrodic region, between the maxi-
mum potentialVp and the discriminating gridG1at r̃ = r̃c,
there are no reflected particles because it is assumed that all
the ions arriving at the discriminating grid are collected by
the collectorG0, at the origin. The ion distribution func-
tion f(ρ, ρ̇, θ̇, ϕ̇) for a homogeneous spherical symmetric ion
plasma with potentialV (r̃) is a Maxwellian distribution func-
tion:

f(ρ, ρ̇, θ̇, ϕ̇) = n0
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where the temperatureT of the ions is given in electron volts
eV, and the total velocity isv2 = v2

ρ +v2
θ +v2

ϕ. The ions with
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radial kinetic energy large thanqVp will be reflected. There-
fore, the distribution function in the interval(a, rp), whererp

is the maximum, will be

f(ρ, ρ̇, θ̇, ϕ̇) =
{

f0(ρ, v(r̃)), vr̃ > −vp(r̃)
0, vr̃ < −vp(r̃)

;

r̃a < r̃ < r̃p, (2)

wheref0(ρ, v(r̃)) is the truncated Maxwellian distribution
function, andVp is defined by the equation

1
2
m[vp(r̃)]2 + qV (r̃) = qVp. (3)

We have asumed that̃r=(ρ, θ), thereforev(r̃)=(vρ, vθ);
in such a way thatφ(r̃p) = 0 for r̃ = r̃p, and both distribution
functions are coincident. In this way, the continuity of the
current is secured. Using the Debye lengthλ2

D = T/4πn0e
2,

and the dimensionless variables

r =
ρ

λD
; rp =

ρp

λD
;

φ(r̃) =
q[Vp − V (r̃)]

T
; φP =

qV (r̃p)
T

, (4)

the Poisson equation can be written as

∇2φ =
1
2
e(φ−φp)

[
1± erf

(
φ

1
2

)]
. (5)

Using the laplacian operator in spherical coordinates, and
assuming an axis of symmetry (i.e. ∂/∂ϕ = 0); as well as
the new variables

ψ = R(r)Y (θ, 0); ψ = (φ− φp);

R± = α0± ± β2
0ψ, (6)

then the following dimensionless equation is obtained

d2R

dr2
+

2
r

dR

dr
− (

l (l + 1)∓ β2
0

)
R = 0 (7)

where

R(r) = Ajl(β0r) + Bnl(β0r). (8)

The solution of the differential equation in terms of the
Legendre polynomials in the intervalrp ≤ r ≤ rc, is

φ(r) =
∑

cl

(
Ajl(β0r) + Bnl(β0r) + C+

)

×Pl(cos θ). (9)

The solution of the differential equation in terms of the
Legendre polynomials in the intervalra ≤ r ≤ rp, is

φ(r) =
∑

cl(Cil(β0r) + Dkl(β0r) + C−)

×Pl(cos θ). (10)

FIGURE 1. In figure is shown the space charge potential includ-
ing temperature effects when the symmetry is spherical, the dimen-
sionless potentials areφa = 0.44 andφc = 0.39,the dimensionless
interelectrodic distance is one.

Now, the boundary conditions of the solution are

φa = φp − Va

T
; φc = φp − Vc

T
;

dφ

dr

∣∣∣∣
r=rp

= 0 (11)

whereVa = V (r̃a), andVc = V (r̃c).
Therefore, we have the system of equations

cl(Ajl(β0c) + Bnl(β0c) + C+)Pl(cos θc)

= φ(r̃c) = φc, (12)

cl(Cjl(β0a) + Dnl(β0a) + C−)Pl(cos θa)

= φ(r̃a) = φa, (13)

0 = (Ajl(xp) + Bnl(xp) + C+)Pl(cos θp) (14)

= (Cil(xp) + Dkl(xp) + C−)Pl(cos θp). (15)

Aj′l(xp) + Bn′l(xp) = 0 (16)

Ci′l(xp) + Dk′l(xp) = 0 (17)

wherexp = β0rp, and the solution of this system of equa-
tions is given by

A = C−x2
pnl(xp), B = −C−x2

pjl(xp), (18)

C = C+x2
pkl(xp), D = −C+x2

pil(xp). (19)
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Finally, we obtain the pair of equation for intervalsrp ≤
r ≤ rc, andra ≤ r ≤ rp, respectively

φ(r) =
∑

l=0

cl

(
C+x2

pkl(xp)il(β0r)

− C+x2
pkl(xp)kl(β0r) + C+

)
Pl(cos θ), (20)

φ(r) =
∑

l=0

cl

(
C−x2

pnl(xp)jl(β0r)

− C−x2
pjl(xp)nl(β0r) + C−

)
Pl(cos θ). (21)

This it is the potential function of the depending on the
variable position and between the electrodes.

For instance, whenl = 0, in such a way that ifφp = 2 and
rp = 3.1, the graphic on Fig. 1, is a representation obtained.

3. Conclusion

The space charge analysis performed here in detail for spher-
ical electrodes leads to a non-linear differential equation,
which is solved when the laplacian operator and the poten-
tial depend onr andθ. The advantage of studying this phe-
nomenon withθ is very important because it enables preci-
sion in the space charge effect. The curve of the potential in
spherical probes was drawn for certain values ofl, rp, φp. It
is for that reason that the range of validity is limited to some
range of parameters.
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