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Mediante simulaciones de Monte Carlo, utilizando escalamiento dditafirato y transformaciones conformes se reportan evidencias de
una transidn de fase top@lgica en cristalesduidos en dos dimensiones. A altas temperaturas se presenta una fase petiamagientras

gue a bajas temperaturas se encuentra un fase de cuasi-largo-orden (QLRO). Se encuentra que a muy bajas temperaturas el exponer
funcion de correladin de la fase QLRO es lineal con la temperaturagemdse de esta manera un comportamigptod de ondas de eBp
Esto(ltimo contradice predicciones de que para sistemas con grupo deiaigletral no abeliano las ondas de iespo son relevantes.
Adicionalmente se discute gumplicaciones tendk la presencia de impurezas en este tipo de transiciones.

Descriptores: Transicbn de fase topdigica; cristal iquido; tarnsfromadin conforme.

By means of Monte Carlo simulations, using finite size scaling and conformal transformations, evidences of a topological phase transitic
liquid crystals in two dimensions are reported. A paramagnetic phase appears at high temperature whereas a quasi-long-range-order (Q
phase is founded at low temperatures. It is determined that the correlation function exponent, at very low temperatures, is linear with
temperature, a typical behavior of spin waves. This contradicts predictions that for systems with non-abelian group of global symmetry
spin waves are not relevant. Aditionally, the implications that would have the presence of impurities in this type of transitions is discusse

Keywords:Topological phase transition; liquid crystal; conformal mapping.
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1. Introduccion nes de segundo orden. Dicha divergencia es del tipo de una
singularidad esenciaf: ~ exp(bt—'/2).
Mermin y Wagner [1] establecieron que para sistemas con Por otro lado, otro modelo de simigtrcontinua como el
grupo de simeta continuo no existe fase ferromagica o de  de Heisenberg ferromagtico, con grupo de simé&O(3),
orden a largo alcance (LRO), a temperatura diferente de cerap presenta nirign tipo de transid@n de fase ed = 2, mien-
para dimensiones menores o iguales que dos. Sin embargoas que spresenta laipica transigbn para-ferromaggtica
sistemas de este tipo pueden presentar un tipo de tr@msiciend = 3 [5, 6]. Por esta ram surgod la pregunta de que si
gue esh determinada por la aparici de defectos topoyi-  sistemas con grupo de sini@tno abelianos pddn presentar
cOos en pares a bajas temperaturas que justo en la téamsici transiciones del tipo BKT. Se ha reportado que el modelo de
Tk, se desligan [2-4]. A este fémeno se le llama transi- Heisenberg antiferromagtico completamente frustrado pre-
cion de fase topdigica o transi@n de Berezinskii, Kosterlitz  senta una transian del tipo BKT, pero sin correlaciones del
y Thouless (BKT). tipo de ondas de egpa bajas temperaturas [7, 8].

El modelo XY, con grupo de simé&O(2), presenta este Kunz y Zumbach [9] realizaron un estudio intensivo en
tipo transicon en dos dimensiones [4]. Entre sus carastier d = 2, mediante simulaciones, del modétd?, el cual con-
cas resaltantes tenemos que la fase LRO es sustituida, a bafiste en un sistema con grupo de sirigegiobalO(3), pero
temperaturas, por un orden a cuasi-largo-alcance (QLRO). Aon grupo de simei local Z,. El modeloRP? describe la
muy bajas temperaturas, las correlaciones son dominadas gsansicbn nenética itropa de cristalesduidos end = 3.
las ondas de e&p obtenéndose una dependencia del expo-Ellos determinaron la longitud de correlawipara > 0y en-
nente de la funéin de correladin, n, con la temperaturd;, contraron un buen ajuste para una singularidad esencial. Por
de la forma: = T/2x, donde la constante de Boltzmann otro lado, mediante escalamiento de tamdinito, estima-
kg = 1y el factor de acoplamientd = 1. Debido a este ron que tamkén era alido un ajuste del tipo ley de potencia.
comportamiento QLRO, a temperaturas menorestye, Sin embargo, en base alculos de eneiig y calor espédéi-
la susceptibilidad, que mide las fluctuaciones de la magneto a$ como de ciertas cantidades que estimaniehero de
zacbn, diverge. Otra caracfstica de este tipo de transici  defectos topdigicos, argumentaron que la tranéitide fase
es que a temperaturas justo por encima de la temperatura debefa ser del tipo BKT.
transicbnt = (T — Tkr)/Tkr 2 0, la longitud de corre- En el &0 2003 se retomel estudio, pero ahora utilizan-
lacion, &, diverge de una manera muchdsnfuerte que la do el modelo de Lebwohl-Lasher(LL) [10] para describir a
tipica ley de potenciasg, ~ t—, encontrada en las transicio- los cristalesiuidos end = 2. Este modelo ha sido muy exi-
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toso para detectar la trangiai de fase discontinuaedil que
se observa en los experimentos de cristatpgdos end = 3.
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un sistema cuadradaw( = u + v) de tam@io L x L
(—L/2 <u < L/2, 0 <wv < L)ymediante una transforma-

En este modelo se representan laséoolas mediante vecto- cion de Schwarz-Christoffel lo mapeamos en el plano semi-

res unitarios’,, colocados en los sitios de una red higsrie

infinito (z = = + iy, 0 < y < o). Para esta transformaci

caA de longitudL. Para este sistema el hamiltoniano vieneel cambio de escala es local y las funciones de coriaieazs

dado por
H

kel @
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relacionan mediante

dondeP, es el segundo polinomio de Legendre y la imerac'donde% = (1/2)1.

cibn es de primeros vecinos. Eh= 2, se determia [11]

la presencia de un orden del tipo QLRO a bajas tempera-
turas con soluciones del tipo de ondas deireguandol’
tiende a cero. Esto se hizo mediante el novedoétodo de

las transformaciones conformes. De esta manera se cancluy
gue sistemas con grupo de sini@tno abeliano tdan tran-
sicion BKT con correlaciones del tipo de ondas deiesp
bajas temperaturas.

En el presente ddulo revisaa el nétodo de transforma-
ciones conformesy su utilidad para determinar exponentes de
la funcion correladdn para sistemas con invarianza de esca-
las. Luego, estudiando el @anetro de orden neftico bajo
Twxr, mediante escalamiento de tamdinito, se obtendrde
nuevo el exponente de la correlaciy se mostrax la exce-
lente concordancia entre los dos procedimientos. Finalmente
se discutia el efecto de la presencia de impurezas sobre este
tipo de transid@n.

a) !

m(w)

2. Metodo de las transformaciones conformes

b)

. . . 0,75
Uno de los grandes problemas que existe al simular un siste

ma fisico es el de tener evidencia de lo que ocurre €iméte
termodiramico. Por lo general, en los estudios defeenos
criticos, se simulan sistemas a diferentes famsey se estudia
como escalan las cantidades termadhinicas en funéin de 0,50
L. El exponente de escalamiento de dichas cantidades tien
relacbn con los exponentesiticos asociados a dichas can-
tidades. El costo computacional es demasiado alto. Recien&
temente, para sistemas én= 2 se ha comenzado a utilizar
las transformaciones conformes (TC). Estaniica consiste
en realizar simulaciones en sistemas finitos y conectar los re-
sultados con los de un sistema infinitawna TC. Esto lo
podemos realizar en sistemas que presenten invarianza de e
calasy para = 2.

Sistemas con invarianza de escala cumplen con Etdrip
sis de homogeneidad para la fumtide correladén de dos
puntos para cualquier densidadtal como el paametro de
orden, la enefig, etc.,
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FIGURA 1. a) Paametro de ordem(w) local en funcbn dex(w)

(p(br2)p(b1)) = b~ {p(72)p(71)),

dondeb es un factor de escalaryes la dimengin arbma-
la 0 exponente de la correléci. De la misma manera, Si

para diferentes temperaturas. Se nota un comportamiento del tipo
ley de potencias para valores de temperatura menores que el valor
Trxr = 0,513 obtenido por Kunz y Zumbach [9]. b) Exponente de

la funcion de correladin como funaddn de la temperatura utilizan-

existe invarianza de escala, podemos relacionar mediante |, os ajustes de la Fig. 1b junto con los obtenidos fara 48 y

hipotesis de homogeneidad la fuami de correladén en-
tre sistemas que se conectan bajo una transfomazon-

forme. Supongamos que las simulaciones se realizan ese observa el comportamienjax 7T
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L = 200. Los triangulos representan los estimados hechos a partir
de escalamiento de tafma finito. A temperaturas cercanas a cero
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T ' ' para una red semi-infinita con condiciones de borde fijas se
KT (@) i conoce exactamente(z)) 1., ~ y~*¢ [12].

Gracias a la invarianza de escalas presente en las fases de
tipo QLRO, la metodolom de las TC se aplicconéxito en la
determinadn de los exponentes de la fuaride correladin
7 del modelo XY enl = 2 at < 0[13,14]. Mas recientemente,
utilizando las TC en el modelo LL para los cristalegiidos
end = 2, se conclug la existencia de un orden QLRO en es-
te sistema [11]. Para este problema la fénaile correladn
de un punto utilizada esi(w) = (Py(F - HaA(w)»Sq, don-
de HBA(W) indica que todas las metulas en el bord@A (w)
tienen la orientaéin fijaﬁ. En la Fig. 1a se muestran los perfi-
les del paametro de orden como furisi dex. Se nota 6mo
a temperaturas menores dligr Se presenta un comporta-
miento del tipo ley de potencias, mientras que muy por enci-
ma de esta temperatura dicho comportamiento es abandonadc
indicando que el sistema se encuentra en unametpnde no
existe invarianza de escalas. La determidaciel cambio de
comportamiento se puede hacer de manera cuantitativa cal-
culando ely? [11]. En la Fig. 1b se grafican los exponentes
de la correladn obtenidos a partir de los ajustes de la Fig.
1la como fundn deT'. A muy bajas temperaturas se observa
el comportamiento linealgico de las ondas de dsp
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3. Escalamiento de taméao finito

En el presente trabajo se realizaron simulaciones del modelo
LL en dos dimensiones con condiciones de bordebpléras.
Las simulaciones se hicieron para temperaturas comprendi-
das entrel’ = 0,4y T = 0,58. Se simularon sistemas con
longitudes comprendidas entfe= 16 y L = 512. Se em-
pled el algoritmo de Wolff [15]. Se tomaron del orden de
10° pasos de equilibragn y 10° pasos de promedidm. Los
| tiempos de relajabn para todos los tarfias y longitudes
01 1 L1 1 1111 1 11 1 1 111 .
10 100 1000 no sobrepasaron a0 pasos de Monte Carlo. En particu-
lar, se reportan estimaciones del exponente de ladurde
L correlacon del paametro de orden utilizando l&dnica de
escalamiento de tarfia finito para el paametro de orden.

FIGURA 2. a) Paaimetro de orden en furtm de la temperatura para Un buen paimetro de orden para describir la transici
diferentes tani@o L del sistema. Se observa como al incrementar de fase neftica-i$tropa, enl — 3, para el modelo LL es

el valor deM para cadd disminuye. El valor dd xr mostrado es
el estimado por Kunz y Zumbach [9]. b) Para cddal paametro

de orden en funén deL. Comportamiento del tipo ley de potencia M =12 <Z Py(Gy, - ﬁ)> :L‘2<Z Ps(cos Qw)> , (2)
paraT < Tkr. Por encima de la temperaturatira se abandona w w

el comportamiento ley de potencia entrando, el sistema, en su fas
paramagatica.

gondeﬁ es un vector unitario que indica la diregniprefe-
rencial y se le denomina directorty, es elangulo entres,,

Si las simulaciones se realizan en una red cuadrada cohel director.) tiende al a muy baj:":\s temperaturas Ya
condiciones de borde fijas se obtiene que el perfil de densidadtas temperaturas. kh= 2, M debefa serl para toddl" ya
(funcion de correlacin de un punto) se comporta como unadue no puede haber rompimiento de la sifiaetontinua [1].

ley de potencia de la formég(w))sq ~ #(w)~"/2 con En la Fig 2a se tiene una&fica del paimetro de orden
como funcon de la temperatura. Se observa un valor finito de
r(w) = S[z(w)](]1 — z(w)2||1 — k2z(w)2|)_1/2, este pasimetro a temperaturas bajas. Sin embargo, la tenden-

cia es que disminuya al aumenfarkn la Fig. 2b se muestra
dondez(w) = sn2Kw/L), siendoK la integral eiptica el comportamiento del pametro de orden con la longitud del
completa de primera clase, sn el seniptalo de Jacobi y sistema. Ob&rvese que para temperaturas bajas el comporta-
k una constante. Esta expr@sise obtiene, ya que el perfil miento es del tipo ley de potencia. Esto indica la presencia de
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invarianza de escalas pafa< Tk 0 lo que es lo mismo un finitivamente se concluye que, para los cristalgsitios en
orden del tipo QLRO. Sobréx la cdda es mas fuerte que d = 2, se tiene un sistema con grupo de sifizetjlobal no-

una ley de potencia entrando el sistema a la fase desordenaalaeliano que presenta una tran&icBKT con orden QLRO

o de alta temperatura. El exponente de la ley de potencia ola-bajas temperaturas.

tenido a bajas temperauras es el correspondiente a lfunci  En la literatura se ha reportado que para sistemas con
de correladin de un punto, es decif] /2)n. Colocando los transién de tipo BKT, la introducéin de desorden en los
exponentes provenientes de los ajustes realizados con los dailaces es totalmente irrelevante [17]. Esto se debe a que de-
tos de la Fig. 2b en la Fig. 1b tenemos que la correspondenciado a la singularidad esencial para> 0 el exponente del
entre las dos metodolaas reportadas es excelente. calor espeifico « — —oo (2 — dv = «) y debido al criterio

de Harris [18] los exponentesiticos del sistema puro no de-
beiian cambiar. Sin embargo, debido a cambios que aparecen
en la coordinadin el valor deT'x+ debefa depender de la

En el presente trabajo se reportan evidencias de que a bajiggensidadc, del desorden. Si se realizaran simulaciones del
temperaturas existe un orden del tipo QLRO. La manera m LL con enlaces aleatorios obtef@mnos que el exponente de
eficiente de realizar estas estimaciones es mediante el uso @ecorrelacdn sefa identico para todos los valorér(c).

la tecnica de las transformaciones conformes, ya glese Donde resulta muy interesante discutir el problema del
necesita hacer simulaciones en wostamaio de red, in- desorden sém end = 3 con campo maggtico aleatorio.
clusive para los primeros resultados Bast uso de una red Segin el criterio de Imry y Ma [19] la fase neatica de-
pequda (L = 48). El costo computacional del &odo de beiia desaparecer y pddrser sustituida por un orden del tipo
escalamiento de tarfia finito es mucho mayor al tener que QLRO [20,21].

simular para muchas longitudes de red y tAosamayores.

Realizando estudios del escalamiento de la susceptibilidad gggradecimientos

tiene un procedimiento alternativo para élaulo del expo-

nenteyn al igual de una forma muy precisa para determinaiEste trabajo cuenta con el apoyo del programa PCP
que erl'k7 la singularidad es esencial [16]. Por lo tanto, de-Venezolano-Frares titulado “Fluidos Petroleros”.
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