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Mediante simulaciones de Monte Carlo, utilizando escalamiento de tamaño finito y transformaciones conformes se reportan evidencias de
una transicíon de fase topológica en cristales lı́quidos en dos dimensiones. A altas temperaturas se presenta una fase paramagnética, mientras
que a bajas temperaturas se encuentra un fase de cuasi-largo-orden (QLRO). Se encuentra que a muy bajas temperaturas el exponente de la
función de correlacíon de la fase QLRO es lineal con la temperatura, teniéndose de esta manera un comportamiento tı́pico de ondas de espı́n.
Estoúltimo contradice predicciones de que para sistemas con grupo de simetrı́a global no abeliano las ondas de espı́n no son relevantes.
Adicionalmente se discute qué implicaciones tendrı́a la presencia de impurezas en este tipo de transiciones.

Descriptores:Transicíon de fase topológica; cristal ĺıquido; tarnsfromación conforme.
By means of Monte Carlo simulations, using finite size scaling and conformal transformations, evidences of a topological phase transition in
liquid crystals in two dimensions are reported. A paramagnetic phase appears at high temperature whereas a quasi-long-range-order (QLRO)
phase is founded at low temperatures. It is determined that the correlation function exponent, at very low temperatures, is linear with the
temperature, a typical behavior of spin waves. This contradicts predictions that for systems with non-abelian group of global symmetry the
spin waves are not relevant. Aditionally, the implications that would have the presence of impurities in this type of transitions is discussed.
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1. Introducción

Mermin y Wagner [1] establecieron que para sistemas con
grupo de simetrı́a continuo no existe fase ferromagnética o de
orden a largo alcance (LRO), a temperatura diferente de cero,
para dimensiones menores o iguales que dos. Sin embargo,
sistemas de este tipo pueden presentar un tipo de transición
que est́a determinada por la aparición de defectos topológi-
cos en pares a bajas temperaturas que justo en la transición,
TKT , se desligan [2–4]. A este fenómeno se le llama transi-
ción de fase topológica o transicíon de Berezinskii, Kosterlitz
y Thouless (BKT).

El modelo XY, con grupo de simetrı́aO(2), presenta este
tipo transicíon en dos dimensiones [4]. Entre sus caracterı́sti-
cas resaltantes tenemos que la fase LRO es sustituida, a bajas
temperaturas, por un orden a cuasi-largo-alcance (QLRO). A
muy bajas temperaturas, las correlaciones son dominadas por
las ondas de espı́n obteníendose una dependencia del expo-
nente de la función de correlacíon,η, con la temperatura,T ,
de la forma:η = T/2π, donde la constante de Boltzmann
kB = 1 y el factor de acoplamientoJ = 1. Debido a este
comportamiento QLRO, a temperaturas menores queTKT ,
la susceptibilidad, que mide las fluctuaciones de la magneti-
zacíon, diverge. Otra caracterı́stica de este tipo de transición
es que a temperaturas justo por encima de la temperatura de
transicíon t = (T − TKT )/TKT & 0, la longitud de corre-
lación, ξ, diverge de una manera mucho más fuerte que la
tı́pica ley de potencias,ξ ∼ t−ν , encontrada en las transicio-

nes de segundo orden. Dicha divergencia es del tipo de una
singularidad esencial:ξ ∼ exp(bt−1/2).

Por otro lado, otro modelo de simetrı́a continua como el
de Heisenberg ferromagnético, con grupo de simetrı́a O(3),
no presenta ninǵun tipo de transicíon de fase end = 2, mien-
tras que śı presenta la tı́pica transicíon para-ferromagńetica
end = 3 [5, 6]. Por esta raźon surgío la pregunta de que si
sistemas con grupo de simetrı́a no abelianos podı́an presentar
transiciones del tipo BKT. Se ha reportado que el modelo de
Heisenberg antiferromagnético completamente frustrado pre-
senta una transición del tipo BKT, pero sin correlaciones del
tipo de ondas de espı́n a bajas temperaturas [7,8].

Kunz y Zumbach [9] realizaron un estudio intensivo en
d = 2, mediante simulaciones, del modeloRP 2, el cual con-
siste en un sistema con grupo de simetrı́a globalO(3), pero
con grupo de simetrı́a localZ2. El modeloRP 2 describe la
transicíon neḿatica iśotropa de cristales lı́quidos end = 3.
Ellos determinaron la longitud de correlación parat & 0 y en-
contraron un buen ajuste para una singularidad esencial. Por
otro lado, mediante escalamiento de tamaño finito, estima-
ron que tambíen era v́alido un ajuste del tipo ley de potencia.
Sin embargo, en base a cálculos de energı́a y calor espećıfi-
co aśı como de ciertas cantidades que estiman el número de
defectos topoĺogicos, argumentaron que la transición de fase
debeŕıa ser del tipo BKT.

En el ãno 2003 se retoḿo el estudio, pero ahora utilizan-
do el modelo de Lebwohl-Lasher(LL) [10] para describir a
los cristales ĺıquidos end = 2. Este modelo ha sido muy exi-
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toso para detectar la transición de fase discontinua débil que
se observa en los experimentos de cristales lı́quidos end = 3.
En este modelo se representan las moléculas mediante vecto-
res unitarios~σw colocados en los sitios de una red hipercúbi-
caΛ de longitudL. Para este sistema el hamiltoniano viene
dado por

− H

kBT
=

J

kBT

∑
w

∑
µ

P2(~σw · ~σw+µ), (1)

dondeP2 es el segundo polinomio de Legendre y la interac-
ción es de primeros vecinos. End = 2, se determińo [11]
la presencia de un orden del tipo QLRO a bajas tempera-
turas con soluciones del tipo de ondas de espı́n cuandoT
tiende a cero. Esto se hizo mediante el novedoso método de
las transformaciones conformes. De esta manera se concluyó,
que sistemas con grupo de simetrı́a no abeliano tenı́an tran-
sición BKT con correlaciones del tipo de ondas de espı́n a
bajas temperaturas.

En el presente artı́culo revisaŕa el ḿetodo de transforma-
ciones conformes y su utilidad para determinar exponentes de
la función correlacíon para sistemas con invarianza de esca-
las. Luego, estudiando el parámetro de orden neḿatico bajo
TKT , mediante escalamiento de tamaño finito, se obtendrá de
nuevo el exponente de la correlación y se mostraŕa la exce-
lente concordancia entre los dos procedimientos. Finalmente
se discutiŕa el efecto de la presencia de impurezas sobre este
tipo de transicíon.

2. Método de las transformaciones conformes

Uno de los grandes problemas que existe al simular un siste-
ma f́ısico es el de tener evidencia de lo que ocurre en el lı́mite
termodińamico. Por lo general, en los estudios de fenómenos
cŕıticos, se simulan sistemas a diferentes tamaños y se estudia
cómo escalan las cantidades termodinámicas en función de
L. El exponente de escalamiento de dichas cantidades tiene
relacíon con los exponentes crı́ticos asociados a dichas can-
tidades. El costo computacional es demasiado alto. Recien-
temente, para sistemas end = 2 se ha comenzado a utilizar
las transformaciones conformes (TC). Esta técnica consiste
en realizar simulaciones en sistemas finitos y conectar los re-
sultados con los de un sistema infinito vı́a una TC. Esto lo
podemos realizar en sistemas que presenten invarianza de es-
calas y parad = 2.

Sistemas con invarianza de escala cumplen con la hipóte-
sis de homogeneidad para la función de correlacíon de dos
puntos para cualquier densidadφ, tal como el paŕametro de
orden, la enerǵıa, etc.,

〈φ(b~r2)φ(b~r1)〉 = b−η〈φ(~r2)φ(~r1)〉,
dondeb es un factor de escala yη es la dimensíon ańoma-
la o exponente de la correlación. De la misma manera, si
existe invarianza de escala, podemos relacionar mediante la
hipótesis de homogeneidad la función de correlacíon en-
tre sistemas que se conectan bajo una transformación con-
forme. Supongamos que las simulaciones se realizan en

un sistema cuadrado (w = u + iv) de tamãno L × L
(−L/2 ≤ u ≤ L/2, 0 ≤ v ≤ L) y mediante una transforma-
ción de Schwarz-Christoffel lo mapeamos en el plano semi-
infinito (z = x + iy, 0 ≤ y < ∞). Para esta transformación
el cambio de escala es local y las funciones de correlación se
relacionan mediante

〈φ(w1)φ(w2)〉 = |w′(z1)|−xφ |w′(z2)|−xφ〈φ(z1)φ(z2)〉,

dondexφ = (1/2)η.

FIGURA 1. a) Paŕametro de ordenm(w) local en funcíon deκ(w)
para diferentes temperaturas. Se nota un comportamiento del tipo
ley de potencias para valores de temperatura menores que el valor
TKT = 0,513 obtenido por Kunz y Zumbach [9]. b) Exponente de
la función de correlacíon como funcíon de la temperatura utilizan-
do los ajustes de la Fig. 1b junto con los obtenidos paraL = 48 y
L = 200. Los triangulos representan los estimados hechos a partir
de escalamiento de tamaño finito. A temperaturas cercanas a cero
se observa el comportamientoη ∝ T .
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FIGURA 2. a) Paŕametro de orden en función de la temperatura para
diferentes tamãnoL del sistema. Se observa como al incrementarL
el valor deM para cadaT disminuye. El valor deTKT mostrado es
el estimado por Kunz y Zumbach [9]. b) Para cadaT el paŕametro
de orden en función deL. Comportamiento del tipo ley de potencia
paraT < TKT . Por encima de la temperatura crı́tica se abandona
el comportamiento ley de potencia entrando, el sistema, en su fase
paramagńetica.

Si las simulaciones se realizan en una red cuadrada con
condiciones de borde fijas se obtiene que el perfil de densidad
(función de correlacíon de un punto) se comporta como una
ley de potencia de la forma:〈φ(w)〉sq∼ κ(w)−η/2 con

κ(w) = =[z(w)](|1− z(w)2||1− k2z(w)2|)−1/2,

dondez(w) = sn(2Kw/L), siendoK la integral eĺıptica
completa de primera clase, sn el seno elı́ptico de Jacobi y
k una constante. Esta expresión se obtiene, ya que el perfil

para una red semi-infinita con condiciones de borde fijas se
conoce exactamente〈φ(z)〉 1

2∞ ∼ y−xφ [12].
Gracias a la invarianza de escalas presente en las fases del

tipo QLRO, la metodoloǵıa de las TC se aplićo conéxito en la
determinacíon de los exponentes de la función de correlacíon
del modelo XY end = 2 at < 0 [13,14]. Más recientemente,
utilizando las TC en el modelo LL para los cristales lı́quidos
end = 2, se concluýo la existencia de un orden QLRO en es-
te sistema [11]. Para este problema la función de correlacíon
de un punto utilizada esm(w) = 〈P2(~σw · ~h∂Λ(w))〉sq, don-
de~h∂Λ(w) indica que todas las moléculas en el borde∂Λ(w)
tienen la orientación fija~h. En la Fig. 1a se muestran los perfi-
les del paŕametro de orden como función deκ. Se nota ćomo
a temperaturas menores queTKT se presenta un comporta-
miento del tipo ley de potencias, mientras que muy por enci-
ma de esta temperatura dicho comportamiento es abandonado
indicando que el sistema se encuentra en una región donde no
existe invarianza de escalas. La determinación del cambio de
comportamiento se puede hacer de manera cuantitativa cal-
culando elχ2 [11]. En la Fig. 1b se grafican los exponentes
de la correlacíon obtenidos a partir de los ajustes de la Fig.
1a como funcíon deT . A muy bajas temperaturas se observa
el comportamiento lineal tı́pico de las ondas de espı́n.

3. Escalamiento de tamãno finito

En el presente trabajo se realizaron simulaciones del modelo
LL en dos dimensiones con condiciones de borde periódicas.
Las simulaciones se hicieron para temperaturas comprendi-
das entreT = 0,4 y T = 0,58. Se simularon sistemas con
longitudes comprendidas entreL = 16 y L = 512. Se em-
pleó el algoritmo de Wolff [15]. Se tomaron del orden de
105 pasos de equilibración y106 pasos de promediación. Los
tiempos de relajación para todos los tamaños y longitudes
no sobrepasaron los200 pasos de Monte Carlo. En particu-
lar, se reportan estimaciones del exponente de la función de
correlacíon del paŕametro de orden utilizando la técnica de
escalamiento de tamaño finito para el paŕametro de orden.

Un buen paŕametro de orden para describir la transición
de fase neḿatica-iśotropa, end = 3, para el modelo LL es

M=L−2

〈∑
w

P2(~σw · n̂)

〉
=L−2

〈∑
w

P2(cos θw)

〉
, (2)

donden̂ es un vector unitario que indica la dirección prefe-
rencial y se le denomina director yθw es elángulo entre~σw

y el director.M tiende a1 a muy bajas temperaturas y a0 a
altas temperaturas. End = 2, M debeŕıa ser0 para todoT ya
que no puede haber rompimiento de la simetrı́a continua [1].

En la Fig 2a se tiene una gráfica del paŕametro de orden
como funcíon de la temperatura. Se observa un valor finito de
este paŕametro a temperaturas bajas. Sin embargo, la tenden-
cia es que disminuya al aumentarL. En la Fig. 2b se muestra
el comportamiento del parámetro de orden con la longitud del
sistema. Obśervese que para temperaturas bajas el comporta-
miento es del tipo ley de potencia. Esto indica la presencia de
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invarianza de escalas paraT < TKT o lo que es lo mismo un
orden del tipo QLRO. SobreTKT la cáıda es ḿas fuerte que
una ley de potencia entrando el sistema a la fase desordenada
o de alta temperatura. El exponente de la ley de potencia ob-
tenido a bajas temperauras es el correspondiente a la función
de correlacíon de un punto, es decir,(1/2)η. Colocando los
exponentes provenientes de los ajustes realizados con los da-
tos de la Fig. 2b en la Fig. 1b tenemos que la correspondencia
entre las dos metodologı́as reportadas es excelente.

4. Discusíon

En el presente trabajo se reportan evidencias de que a bajas
temperaturas existe un orden del tipo QLRO. La manera más
eficiente de realizar estas estimaciones es mediante el uso de
la técnica de las transformaciones conformes, ya que sólo se
necesita hacer simulaciones en un sólo tamãno de red, in-
clusive para los primeros resultados bastó el uso de una red
pequẽna (L = 48). El costo computacional del ḿetodo de
escalamiento de tamaño finito es mucho mayor al tener que
simular para muchas longitudes de red y tamaños mayores.
Realizando estudios del escalamiento de la susceptibilidad se
tiene un procedimiento alternativo para el cálculo del expo-
nenteη al igual de una forma muy precisa para determinar
que enTKT la singularidad es esencial [16]. Por lo tanto, de-

finitivamente se concluye que, para los cristales lı́quidos en
d = 2, se tiene un sistema con grupo de simetrı́a global no-
abeliano que presenta una transición BKT con orden QLRO
a bajas temperaturas.

En la literatura se ha reportado que para sistemas con
transićon de tipo BKT, la introduccíon de desorden en los
enlaces es totalmente irrelevante [17]. Esto se debe a que de-
bido a la singularidad esencial parat > 0 el exponente del
calor espećıfico α → −∞ (2 − dν = α) y debido al criterio
de Harris [18] los exponentes crı́ticos del sistema puro no de-
beŕıan cambiar. Sin embargo, debido a cambios que aparecen
en la coordinacíon el valor deTKT debeŕıa depender de la
intensidad,c, del desorden. Si se realizaran simulaciones del
LL con enlaces aleatorios obtendrı́amos que el exponente de
la correlacíon seŕıa idéntico para todos los valoresTKT (c).

Donde resulta muy interesante discutir el problema del
desorden serı́a end = 3 con campo magńetico aleatorio.
Seǵun el criterio de Imry y Ma [19] la fase neḿatica de-
beŕıa desaparecer y podrı́a ser sustituida por un orden del tipo
QLRO [20,21].
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