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Se estudian losinculos lagrangianos de la té@rautodual de edp 2 en un espacio-tiempo plaro+ 1 dimensional y la acéin reducida
de un grado de libertad es obtenida. Partiendo de esta foriomlaeicalcula ehlgebra de operadores naico-clanticos y se explora la
contribucbn del esin en los generadores de transformaciones.

Descriptores: Formulacon Lagrangiana de campddgebra de Poincar

Lagrangian constraints of the spin 2 selfdual theory ih-a 1 flat space-time are studied and the one degree of freedom reduced action
is obtained. From this formulation, the quantum operator algebra is computed and the spin contribution on transformation generators is
explored.
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1. Introduccion La preservadin deéstos proporciona las aceleracioﬁiﬁcg

_ _ _ ~mas tres inculos secundarios, que pueden ser escritos en la
Las teofas autoduales en dimensiones impares han recibidgapa de masa como

atencon desde hace tiempo [1]. Particularmente, en dimen-

sibn2 + 1 poseen un int@&s inspirado fundamentalmente por O EH'P — mePHE o = —mze”“ahw ~ 0. 3)
su relacdn con la fsica de altas temperaturas®# 1 dimen- o o
siones [2] y con laifica de la materia condensada [3,4]. Siguiendo con el procedimientéstos conducen a tres nue-

En la siguiente secon estudiamos losimculos lagran-  VOS Mnculos,
gianos de la teda autodual de e&p 2 y construimos la ac-
cion reducida que permite establecer de manera inmediata el
algebra de operadores sin pasar por el procedimientmecan
co de Dirac. En la Sec. 3 discutimos el #sge la excitadn
via los generadores del grupo de Poiigcar

—m2eP N, 0 (4)

Obstrvese que la combindm sobre la capa de masas
—m2ePr*d,h, ~ 2m3h ~ 0 es un ¥nculo, con lo cual
la preservadin de (4) proporciona las aceleraciorgs y el
Gltimo vinculo,

2. Laaccibn reducida

2m3h ~ 0, (5)
La accbn de la tedia autodual del campl,,, con esjin 2 en ) )
un espacio plano es [5] que al ser preservado permite despejar la gcetmaialt_ante
hoo, culminando el proceso. Entonces se tiene un sistema de
Ssa = %/dsx(ﬁuwhuaax/hm — m(hy, k" = h?)), thifa:bi_Jr 1 = 16 vinculos, indicando que hay una sola
(1) Si el vinculo secundario es reescrito en la capa de ma-

b b sas coma), E*? = mo°h — m0,h** ~ 0, se puede ver
donder es la traza del campo autoduel;® = €' = +1y  faciimente que el sistema déneulos lagrangianos equi-

meétricar = diag(—1,+1,+1). Por ser una te@ de primer  vale a describir un campo séftrico, transverso y sin tra-
orden, la ecuadh de movimiento proveniente de la extremal za que satisface la ecuani(92? — m2)nTt,, = 0, donde

de S, constituye los nueveimculos lagrangianos primarios 52 = 0,0 = —9,0, + A.
o — A ) i o Para exponer a nivel lagrangiandilaica excitadn de la
ERP = e20,h\" + m(n*h — ) ~ 0. (2)  teoiia, consideramos la descomposit? + 1 [6]:
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3. Generadores dehlgebra de Poincagé

n=hoo, N;=hio, M;= ho, Con la finalidad de construir los generadoresalgebra de
Hij = 3(hij +hji), V= Lejhy, (6) P_oiflcgé, uno puede determinar el tensor mo_mento-éaerg
- simétrico del campo autodual'(?) extendendiendo la ac-
con componentes transverso-longitudinales dadas por cibn autodual (1) al caso de un espacio-tiempo dotado con

N; = €,0LNT + O;NL una rretrica generag,,,,, con lo cual

MiEEikakMT+8iML’ Taﬁ— |: 2 0S :|

H;j = (0;;A — 8iaj)HT + 87;8jHL V=9 09ap Gur ="

2
+ (eirOnd; + e 0)HTE, (7) - % (hmhﬁg + hoPhe, — hho® — hhPe
enlaacaddn (1). Usando las ecuaciones de movimiento que se o ” 0By
obtienen es posible reescribir la amtiautodual en la forma = 0" h D™ %7 h )
reducida m
o -3 (agtaﬁff + ho“E°P + hJﬁE‘m), (15)
= [ @ [Po- i 4 s -mia). @©
donde

donde se han definido las variabled = v2AHT y

P=v2mAHTL, que satisfaceli’?,:_Q. Si,pr(_)movemos los jaBo — euauhuﬁhua N e
camposh,,,, a sus operadores m@tco-canticos, se puede

obtener eklgebra deestos partiendo de la regla fundamentaly

Q). PW)),._,. = i8(F ) . (©)

con la ayuda de la descomposici2 + 1 transverso-
longitudinal. Utilizando propiedades deimbolo de Levi-

EM = e 0,y + m(n**h — h*),

vita | tad | bii como en (2).
civita, los conmutadores no nulos que se obtienen son Los generadores de translacior@$ — [ d2x T se
[hio(m),hjk(y)] _ [hm( ), hjk(y)] { Ok expresan ene‘rmlnqs deQ Yy su momento conjugado, ob-
2m senandose que coinciden con los de un campo escalar, es
(m) } (#—7), (10) decir,
1
[hio(x), hOO(y)} = [hoi(f) hOO(y)] P = 5 /de (P2 + 0;Q0;Q + m2Q2) ) (16)
_ 2z = _
= gt 8037 = 3, (1) Pi=— / 22P9,Q. (17)
[hio(2), hor(y)] = [hio(2), hio(y)] = [hoi (@), hio(y)]
e De igual manera ocurre con los generadores de rotaciones
=3 MAG (T — ), (12) JY9 = [dx(a'T% — 27T = ¢ 7, donde
m
i m
[hoo(ﬂf)yhij(y)} = T{Ekip( )k:j J = —/dePeklxkalQ, (18)
+ Ekjp kl}az( g)a (13)

ya que en dos dimensiones ellasaestescritas por el grupo
i m ” 0O(2). Pero la contribud@n explcita del espn se pone de ma-

R h =—1¢ (m) (M) '\ U

[ () kl(y)} fen ™ g+ ™ nifiesto cuando escribimos los generadores dévtasstsde

+ e ™+ ™, 162 (7 — §), (14)  Lorentz

dondepE;") = 0;; — 9;0;/m? es el proyector transversal en 70 — %/d%xi (P2 +0,Q0;Q + m2Q2) — 0pi
la capaA = m?.

Es de esperarse que &gebra de operadores obtenida ) J
mediante el procedimiento de la amcireducida sea equi- JFQm/d £P” Q. (19)
valente al de la realiza@n a la Dirac [7], hecho que éssus-
tentado por un teorema [8] que garantiza la igualdad entrdonde se observa €ipico factor 2 de edp en el €rmino
los corchetes de Dirac y los de Poisson calculados con ldsingular infrarrojo”, indicando qué) no transforma como
variables reducidas. un campo escalar, como debe esperarse.
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Para remover la "singularidad infrarroja”, se expadgle
en ondas planas

_ik“mua(k)_’_eik“x“a-ﬁ-(k)} , (20)

d2k
Qo= [ Nerod

conk® = w(k), k =ky [a(k),at (k)] = 6*(k — k). En-
tonces, los generadores de translaciones y rotaciones son
presentados por

PH = / d’kkFat(k)a(k), (21)
i € 9
T = /dzkcﬁ(k)?%a(k), (22)

contanf = ko /ky. En esta representéci, el generador de
boostsexhibe la “singularidad infrarroja”

go-1 / A2l (k) [a* (k) Fra (k)]

—om / d%ifj at(k)a(k), (23)

dondea* (k)9; a(k) = a*t(k)0; a(k) — a(k)d; a* (k).
Seguidamente, se realiza una transforimracie fase [9]

18 @

de la formaa(k) — ¢'° ™1 "a(k) sobre los operadores

creacon-aniquilacbn, con lo cual los generadores de trans-

R. GAITAN D.

Inmediatamente vemos que= 2 remueve la singularidad

y que cualquier otro valor diferente asignado a estarpar

tro mantiene el comportamiento singular de los generadores.
Notese ade#@s que el valor de esp2(m/|m|) es recupe-
rado, cuya sensibilidad al cambio de signorderefleja la
helicidad del grado de libertad que se propaga. Desde el pun-
to de vista Lagrangiano, esta manifesbacde la helicidad
Btoviene del signo deBtmino lineal enn de la acadn (1),

y sea cual seaste debe mantenerse el signo presentado en el
termino cuadatico enm para poder obtener un Hamiltoniano
positivo-definido, como el que se deduce de la transformada
de Legendre de la adm reducida (8).

Finalmente, puede mostrarse queaddebra de Poin-
cak es satisfecha durante todo el proceso, antes y éespu
de realizarse la mencionada transformadie fase, siempre
y cuando se defina de manera adecuada el contorno de inte-
gracbn alrrededor de la “singularidad infrarroja”.

4. Conclusbn

En el estudio de la te@ del campo autodual hemos
mostrado que la formulamn de acdn reducida constituye
una herramientatil para la construcéin de la tedia cuanti-
ca correspondiente, evitando el procedimiento extenuante de
cuantizaddn a la Dirac. Asmismo, este formalismo que des-
cribe una exitaéin masiva para el caso estudiado, permite

laciones no son afectados, mientras que los de rOtaCioneSpYecisar la contribuén del esin estableciendo el compor-

boostsson ahora
ij _ 27, + ﬂﬁ
J _/d ka™ (k) : aﬁa(k)
+s 2 / kela* (k)a(k), (24)
Im|
T = % / kw(k)[at (k)F; a(k)]

m €I kI
2" | BPk——" gt (k)alk
* |m|/ w(i) 1 )@ el

+(s— 2)‘% / d%w(k)%aﬂk)a(k). (25)

tamiento no escalar déhico grado de libertad. Allhemos
observado que es posible evitar la "singularidad infrarroja”
mediante una transformaci de fasdinica sobre los opera-
dores creadin-aniquilacdbn y quealgebra de Poincéres sa-
tisfecha.
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