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La Hechicera, Ḿerida 5101, Venezuela,
e-mail: parias@fisica.ciens.ucv.ve.

R. Gaitan D.
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Se estudian los vı́nculos lagrangianos de la teorı́a autodual de espı́n 2 en un espacio-tiempo plano2 + 1 dimensional y la acción reducida
de un grado de libertad es obtenida. Partiendo de esta formulación se calcula eĺalgebra de operadores mecánico-cúanticos y se explora la
contribucíon del esṕın en los generadores de transformaciones.

Descriptores:Formulacíon Lagrangiana de campos;álgebra de Poincaré.

Lagrangian constraints of the spin 2 selfdual theory in a2 + 1 flat space-time are studied and the one degree of freedom reduced action
is obtained. From this formulation, the quantum operator algebra is computed and the spin contribution on transformation generators is
explored.
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1. Introducción

Las teoŕıas autoduales en dimensiones impares han recibido
atencíon desde hace tiempo [1]. Particularmente, en dimen-
sión2+1 poseen un interés inspirado fundamentalmente por
su relacíon con la f́ısica de altas temperaturas en3+1 dimen-
siones [2] y con la f́ısica de la materia condensada [3,4].

En la siguiente sección estudiamos los vı́nculos lagran-
gianos de la teorı́a autodual de espı́n 2 y construimos la ac-
ción reducida que permite establecer de manera inmediata el
álgebra de operadores sin pasar por el procedimiento canóni-
co de Dirac. En la Sec. 3 discutimos el espı́n de la excitacíon
via los generadores del grupo de Poincaré.

2. La accíon reducida

La accíon de la teoŕıa autodual del campohµν con esṕın 2 en
un espacio plano es [5]

Ssd =
m

2

∫
d3x(εµνλhµ

α∂νhλα −m(hµνhνµ − h2)),

(1)

dondeh es la traza del campo autodual,ε012 ≡ ε12 = +1 y
métricaη = diag(−1, +1,+1). Por ser una teorı́a de primer
orden, la ecuación de movimiento proveniente de la extremal
deSsd constituye los nueve vı́nculos lagrangianos primarios

Eµρ ≡ εµνλ∂νhλ
ρ + m(ηµρh− hρµ) ≈ 0. (2)

La preservacíon deéstos proporciona las aceleracionesḧkρ

más tres v́ınculos secundarios, que pueden ser escritos en la
capa de masa como

∂µEµρ −mερµαEµα ≡ −m2ερµαhµα ≈ 0. (3)

Siguiendo con el procedimiento,éstos conducen a tres nue-
vos v́ınculos,

−m2ερµαḣµα ≈ 0 . (4)

Obśervese que la combinación sobre la capa de masas
−m2ερµα∂ρhµα ≈ 2m3h ≈ 0 es un v́ınculo, con lo cual
la preservacíon de (4) proporciona las aceleracionesḧok y el
último v́ınculo,

2m3ḣ ≈ 0, (5)

que al ser preservado permite despejar la aceleración faltante
ḧoo, culminando el proceso. Entonces se tiene un sistema de
9 + 3 + 3 + 1 = 16 vı́nculos, indicando que hay una sola
excitacíon.

Si el v́ınculo secundario es reescrito en la capa de ma-
sas como∂µEµρ ≡ m∂ρh − m∂µhρµ ≈ 0, se puede ver
fácilmente que el sistema de vı́nculos lagrangianos equi-
vale a describir un campo simétrico, transverso y sin tra-
za que satisface la ecuación (∂2 − m2)hTt

µν = 0, donde
∂2 ≡ ∂µ∂µ = −∂o∂o + ∆.

Para exponer a nivel lagrangiano laúnica excitacíon de la
teoŕıa, consideramos la descomposición2 + 1 [6]:
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n = h00, Ni = hi0, Mi = h0i,

Hij = 1
2 (hij + hji), V = 1

2εijhij , (6)

con componentes transverso-longitudinales dadas por

Ni ≡ εik∂kNT + ∂iN
L,

Mi ≡ εik∂kMT + ∂iM
L,

Hij ≡ (δij∆− ∂i∂j)HT + ∂i∂jH
L

+ (εik∂k∂j + εjk∂k∂i)HTL, (7)

en la accíon (1). Usando las ecuaciones de movimiento que se
obtienen es posible reescribir la acción autodual en la forma
reducida

S∗sd =
∫

d3x
[
PQ̇− 1

2P 2 + 1
2Q(∆−m2)Q

]
, (8)

donde se han definido las variablesQ ≡ √
2∆HT y

P≡√2m∆HTL, que satisfacenP = Q̇. Si promovemos los
camposhµν a sus operadores mecánico-cúanticos, se puede
obtener eĺalgebra déestos partiendo de la regla fundamental

[
Q(x), P (y)

]
xo=yo = iδ2(~x− ~y) , (9)

con la ayuda de la descomposición 2 + 1 transverso-
longitudinal. Utilizando propiedades del sı́mbolo de Levi-
civita, los conmutadores no nulos que se obtienen son

[
hio(x), hjk(y)

]
=

[
hoi(x), hjk(y)

]
=

i

2m2

[
p(m)

ij∂k

+ p(m)
ik∂j − p(m)

jk∂i

]
δ2(~x− ~y), (10)

[
hio(x), hoo(y)

]
=

[
hoi(x), hoo(y)

]

= − i

2m4
∂i∆δ2(~x− ~y), (11)

[
hio(x), hok(y)

]
=

[
hio(x), hko(y)

]
=

[
hoi(x), hko(y)

]

=
i εki

2m3
∆δ2(~x− ~y), (12)

[
hoo(x), hij(y)

]
=

i

2m
{εki p(m)

kj

+ εkjp
(m)

ki}δ2(~x− ~y), (13)

[
hij(x), hkl(y)

]
=

i

4m
{εik p(m)

jl + εjkp(m)
il

+ εil p
(m)

jk + εjlp
(m)

ik}δ2(~x− ~y), (14)

dondep
(m)
ij = δij − ∂i∂j/m2 es el proyector transversal en

la capa∆ = m2.
Es de esperarse que elálgebra de operadores obtenida

mediante el procedimiento de la acción reducida sea equi-
valente al de la realización a la Dirac [7], hecho que está sus-
tentado por un teorema [8] que garantiza la igualdad entre
los corchetes de Dirac y los de Poisson calculados con las
variables reducidas.

3. Generadores deĺalgebra de Poincaŕe

Con la finalidad de construir los generadores delálgebra de
Poincaŕe, uno puede determinar el tensor momento-energı́a
simétrico del campo autodual (Tαβ) extendendiendo la ac-
ción autodual (1) al caso de un espacio-tiempo dotado con
una ḿetrica generalgµν , con lo cual

Tαβ =
[

2√−g

δS

δgαβ

]

gµν=ηµν

=
m2

2

(
hσαhβ

σ + hσβhα
σ − hhαβ − hhβα

− ηαβhµνhνµ + ηαβh2
)

− m

2

(
∂σtαβσ + hσ

αEσβ + hσ
βEσα

)
, (15)

donde

tαβσ ≡ εµανhµ
βhν

σ + εµβνhµ
αhν

σ

y

Eµρ ≡ εµνλ∂νhλ
ρ + m(ηµρh− hρµ),

como en (2).
Los generadores de translacionesPµ =

∫
d2xT oµ se

expresan en términos deQ y su momento conjugado, ob-
serv́andose que coinciden con los de un campo escalar, es
decir,

Po =
1
2

∫
d2x

(
P 2 + ∂iQ∂iQ + m2Q2

)
, (16)

Pi = −
∫

d2xP∂iQ. (17)

De igual manera ocurre con los generadores de rotaciones
J ij =

∫
d2x(xiT 0j − xjT 0i) ≡ εijJ , donde

J = −
∫

d2xPεklxk∂lQ, (18)

ya que en dos dimensiones ellas están descritas por el grupo
O(2). Pero la contribucíon expĺıcita del esṕın se pone de ma-
nifiesto cuando escribimos los generadores de losboostsde
Lorentz

J i0 =
1
2

∫
d2xxi

(
P 2 + ∂iQ∂iQ + m2Q2

)− x0Pi

+2m
∫

d2xP
εij∂j

∆
Q, (19)

donde se observa el tı́pico factor 2 de espı́n en el t́ermino
“singular infrarrojo”, indicando queQ no transforma como
un campo escalar, como debe esperarse.
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Para remover la ”singularidad infrarroja”, se expandeQ
en ondas planas

Q(x)=
∫

d2k

2π
√

2w(k)

[
e−ikµxµ

a(k)+eikµxµ

a+(k)
]
, (20)

conko = w(k),
−→
k = k y [a(k), a+(k′)] = δ2(k− k′). En-

tonces, los generadores de translaciones y rotaciones son re-
presentados por

Pµ =
∫

d2k kµa+(k)a(k), (21)

J ij =
∫

d2k a+(k)
εij

i

∂

∂θ
a(k), (22)

con tan θ = k2/k1. En esta representación, el generador de
boostsexhibe la “singularidad infrarroja”

J i0 =
i

2

∫
d2kw(k)[a+(k)∂ia(k)]

−2m

∫
d2k

εijkj

k2
a+(k)a(k), (23)

dondea+(k)∂i a(k) ≡ a+(k)∂i a(k)− a(k)∂i a+(k).
Seguidamente, se realiza una transformación de fase [9]

de la formaa(k) −→ ei s m
|m| θa(k) sobre los operadores

creacíon-aniquilacíon, con lo cual los generadores de trans-
laciones no son afectados, mientras que los de rotaciones y
boostsson ahora

J ij =
∫

d2ka+(k)
εij

i

∂

∂θ
a(k)

+ s
m

|m|
∫

d2kεija+(k)a(k), (24)

J i0 =
i

2

∫
d2kw(k)[a+(k)∂i a(k)]

+ 2
m

|m|
∫

d2k
εijkj

w(k) + |m|a
+(k)a(k)

+ (s− 2)
m

|m|
∫

d2kw(k)
εijkj

k2
a+(k)a(k). (25)

Inmediatamente vemos ques = 2 remueve la singularidad
y que cualquier otro valor diferente asignado a este paráme-
tro mantiene el comportamiento singular de los generadores.
Nótese adeḿas que el valor de espı́n 2(m/|m|) es recupe-
rado, cuya sensibilidad al cambio de signo dem refleja la
helicidad del grado de libertad que se propaga. Desde el pun-
to de vista Lagrangiano, esta manifestación de la helicidad
proviene del signo del término lineal enm de la accíon (1),
y sea cual seáeste debe mantenerse el signo presentado en el
término cuadŕatico enm para poder obtener un Hamiltoniano
positivo-definido, como el que se deduce de la transformada
de Legendre de la acción reducida (8).

Finalmente, puede mostrarse que elálgebra de Poin-
caŕe es satisfecha durante todo el proceso, antes y después
de realizarse la mencionada transformación de fase, siempre
y cuando se defina de manera adecuada el contorno de inte-
gracíon alrrededor de la “singularidad infrarroja”.

4. Conclusíon

En el estudio de la teorı́a del campo autodual hemos
mostrado que la formulación de accíon reducida constituye
una herramientáutil para la construcción de la teoŕıa cúanti-
ca correspondiente, evitando el procedimiento extenuante de
cuantizacíon a la Dirac. Aśı mismo, este formalismo que des-
cribe una exitacíon masiva para el caso estudiado, permite
precisar la contribución del esṕın estableciendo el compor-
tamiento no escalar delúnico grado de libertad. Allı́, hemos
observado que es posible evitar la ”singularidad infrarroja”
mediante una transformación de faséunica sobre los opera-
dores creación-aniquilacíon y queálgebra de Poincaré es sa-
tisfecha.
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