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Formación de paredes de dominio en transiciones de fase de primer orden
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Postgrado en F́ısica Fundamental, Universidad de Los Andes, Mérida, Venezuela

A. Melfo y N. Pantoja
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Se estudia la formación de paredes de dominio en transiciones de fase de primer orden producidas por un campo escalar que rompe es-
pont́aneamente una simetrı́a Z2. Se implementa un algoritmo que permite simular la nucleación y colisíon de burbujas de la nueva fase, e
identificar el ńumero de paredes cerradas y abiertas formadas. Se estudia el caso de simetrı́aZ2 aproximada, relevante en recientes propuestas
de solucíon al problema de las paredes de dominio en un contexto cosmológico.

Descriptores:Relatividad general; defectos topológicos; paredes de dominio.

We study formation of domain wall in first order phase transition triggered by a scalar field that breaks spontaneously aZ2 symemetry. An
algorithm that allows simulation of bubble nucleation and collision, and counting of open and closed walls formed, is implemented. The case
of an approximateZ2 symetry, relevant to recent proposals of solutions to the domain wall problem in cosmology is considered.
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1. Introducción

Los defectos topológicos como las paredes de dominio sur-
gen como consecuencia del rompimiento espontáneo de un
determinado grupo de simetrı́a. En un contexto cosmológico
donde las simetrı́as son restauradas por efecto de altas tempe-
raturas [1], el rompimiento espontáneo de simetrı́as puede dar
lugar a transiciones de fase [2] durante las cuales los defec-
tos topoĺogicos, que son soluciones clásicas a las ecuaciones
de movimiento del campo responsable de la ruptura, se crean
efectivamente, debido a la presencia de regiones causalmente
disconexas en el espacio-tiempo [3].

En este tipo de transiciones de fase, el parámetro de or-
den es el valor de expectación en el vaćıo del campo,〈φ〉,
que pasa de tener un valor nulo, en el estado simétrico, a te-
ner uno distinto de cero, rompiendo la simetrı́a. Para ciertos
tipos de potenciales, esta transición es de primer orden, pro-
cediendo mediante nucleación de burbujas. Si la simetrı́a rota
espont́aneamente es discreta, es decir si existe una multipli-
cidad de vaćıos (t́ıpicamente se considera el caso con sime-
trı́aZ2), el valor de〈φ〉 dentro de cada burbuja será indepen-
diente. Esto trae como consecuencia la formación de paredes
de dominio cuando las burbujas logran percolar y cubrir todo
el espaciotiempo.

En simulaciones estándar de producción de defectos to-
pológicos, se toman redes bidimensionales donde a cada cel-
da que representa las regiones desconectadas causalmente,
se le asignan al azar valores positivos o negativos y se es-
tudian la formacíon de grupos de celdas de un vacı́o determi-
nado [4]. Es deseable estudiar un escenario más real, prescin-
diendo del uso de redes preestablecidas y estudiando la pro-
babilidad de formar paredes cuando el sistema efectivamente
consiste de burbujas que crecen y colisionan. En el contexto
similar de ruptura de simetrı́aU(1) para producir v́ortices, se

han estudiado el efecto de la geometrı́a de la colisíon [5] y
de la velocidad de expansion de las burbujas [6]. En el caso
de las paredes de dominio, es de particular interés estudiar la
situacíon en que la simetrı́a discreta no es exacta sino aproxi-
mada, ya que esto podrı́a proporcionar una solución al llama-
do problema de las paredes de dominio. Zel’dovich, Kobsarev
y Okun [7], sugirieron que si la simetrı́a discreta no es exac-
ta, la diferencia de energı́a entre los dos vacı́os podŕıa causar
que las regiones de falso vacı́o desaparecieran, posiblemente
antes de que las paredes comienzen a dominar la densidad de
enerǵıa del universo.

En este trabajo estudiaremos la probabilidad de forma-
ción de paredes de dominio en este caso. Para ello, se estudia
en primer lugar la formación de paredes en una red amor-
fa, formada por burbujas nucleadas en diferentes momentos
y a distancias determinadas por las probabilidades de nuclea-
ción. En segundo lugar se considera el caso de un potencial
no degenerado, donde las probabilidades de nucleación son
distintas. Se estudia la dependencia del número de paredes
formadas con la asimetrı́a del potencial.

2. Nucleacíon de burbujas

La dinámica del campo escalar está dada por el lagrangiano

L =
1
2
∂µφ∂µφ− V (φ). (1)

La probabilidad de que el campo haga túnel entre el ḿınimo
local y el global seŕa [5]

Γ = Ae−SE , (2)

dondeSE es la accíon eucĺıdea. Se puede demostrar que a
temperatura cero, en un espacio-tiempo plano, las soluciones
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que minimizan la acción son invariantes bajo el grupo de ro-
taciones euclı́deas cuadridimensional es O(4) [6]. De mane-
ra que se buscan soluciones a las ecuaciones de movimiento
dondeφ es śolo función de la coordenada radial. Haciendo la
extensíon anaĺıtica al espacio tiempo minkowskiano, puede
verse que esta solución representa una burbuja que se expan-
de, alcanzando asintóticamente la velocidadc.

Consideramos un potencial de la forma

V (φ) =
λ

4
φ2(| φ | −v)2 − εv

3
(| φ |3 −v3) +

ηv

3
φ3. (3)

Los ḿınimos de este potencial son

φ± = v[1 + 2(
ε∓ η

λ
)], φ0 = 0, (4)

y la diferencia de energı́a entre los ḿınimos enφ = 0 (V0) y
φ = φ± (V±) seŕa

∆V±=V0−V (±)=v4

(
ε± η

3

)
;

∆V+−∆V−=−2
3
ηv4. (5)

Con objeto de implementar la simulación, es necesario
estimar el radio inicial de las burbujas y determinar si pue-
de ser comparable a la distancia media entre los puntos de
nucleacíon. Utilizando la accíon euclidea en la aproximación
de pared fina, es posible calcular [6] los radios iniciales de las
diferentes burbujas que se nuclean dependiendo de la transi-
ción hecha por el campo escalar. Para una transición entreφ0

y φ±, tendremos

R± = 6

√
λ

2
1

v(ε± η)
. (6)

Nos referiremos a estas burbujas como “positivas” y “negati-
vas”. Por otra parte, el campo escalar puede decaer desde el
falso vaćıo φ− hasta el verdadero vacı́o φ+, en este caso el
radio inicial seŕa

R3 = 3

√
λ

2
1
ηv

. (7)

Las probabilidades de nucleación van a depender de la di-
ferencia de energı́a entre los vaćıos. Espećıficamente, se en-
cuentra que la probabilidad por unidad de volumen por uni-
dad de tiempo de que se forme una burbuja positiva o negativa
es:

Γ± = A±e−B0/(1±η/ε)3 , (8)

DondeB0 es la accíon eucĺıdea en el caso degenerado, mien-
tras que la probabilidad que se forme una burbuja de radioR3

es
Γ3 = A3e

−SE3 = A3e
−D0/η3

. (9)

Es razonable despreciar los coeficientesA±, ya que la ma-
yor contribucíon a la probabilidad de decaimiento la hace el
término exponencial. Despreciando los términos cuadŕaticos
en(η/ε):

Γ+

Γ−
' 1 +

6B0η

ε
. (10)

Puede verse que el campo escalar prefiere decaer al verdade-
ro vaćıo del potencial. Siguiendo un procedimiento análogo,
se puede demostrar queΓ+/Γtot À 1 , dondeΓtot = Γ−Γ3

corresponde a la probabilidad de que el campo escalar decai-
ga desdeφ0 hastaφ− y luego hastaφ+:

Γtot = e−a(R3
−+R3

3). (11)

y por ende
Γ+

Γtot
= e−a(R3

+−R3
−−R3

3) (12)

Es claro queR3 À R+y por lo tanto el decaimientoΓtot es
menos probable que los anteriores.

De esta manera, la probabilidad de que se forme una bur-
buja dentro de un volumenξ3 por unidad de tiempoξ viene
dada por

Γ± =
1
ξ4±

. (13)

De modo que:
ξ± = eαR

3/4
± À R±, (14)

dondeα es una constante. La expresión anterior indica que
las burbujas formadas tienen un radio inicial mucho menor
que las dimensiones del volumen en donde “nace” cada bur-
buja.

Queremos investigar cómo depende la formación de pa-
redes de dominio con la diferencia de energı́a entre los dos
vaćıos; para ello, hemos implementado una simulación de
formacíon de paredes de dominio en transiciones de fase de
primer orden con un algoritmo diseñado bajo las siguientes
suposiciones:

El decaimientoΓ3 es menos probable que los otros dos
decaimientos (Γ±) y por tanto despreciable.

Las burbujas nacen con un radio mucho menor que las
dimensiones de la celda, luegoR0+ = R0− = 0.

Debido al punto anterior, se puede asumir también que
en el momento en que colisionan las burbujas se ex-
panden con una velocidadv ∼ c.

3. Implementacíon del algoritmo

Consideraremos, por razones de limitaciones de cómputo,
formacíon de burbujas en un espacio-tiempo (2+1) dimen-
sional, lo que permite elegir una escala de longitud

ξ± =
(

1
Γ±

)1/3

. (15)

El programa implementado parte de una distribución
aleatoria de burbujas+ y−, separadas por una distancia cuya
media esξ±, y cuyas paredes se expanden a velocidad1. Para
cada par de burbujas, y tomando en cuenta su signo, se calcu-
la la ecuacíon que describe la posición de las paredes de do-
minio formadas, registrando las intersecciones entre ellas con
los bordes de la simulación. Una vez completada la transición
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de fase (cuando las burbujas llenan la simulación), se cuenta
el número de paredes formadas, que serán de tipo “infinito”
(aquellas que tocan los bordes de la simulación) o cerrado.
El algoritmo se escribió en el lenguaje del programa Maple.
Para cada caso, se promediaron 100 simulaciones.

3.1. Caso siḿetrico

Se consideŕo primero la formacíon de paredes en el caso de
burbujas nucleadas aleatoriamente siguiendo una distribución
normal en torno a los centros de cada una de lasn3 celdas
de dimensíon ξ3 en la red de simulación, para un potencial
con simetŕıa Z2 (η = 0). Los eventos quedan especificados
comoBi ≡ (−→xi , ti, si), donde−→xi , ti y si corresponden a la
posicíon inicial, el tiempo y el signo de la burbujai. Se elimi-
nan los eventos de nucleación que representan burbujas que
nacen en lugares ya ocupados por otras nucleadas anterior-
mente. De esta manera, el número de burbujas formadas es
aproximadamente igual an2, la dimensíon espacial de la red.

Se estudío el efecto de la dispersión en la formacíon de
burbujas y consecuentemente, en la formación de paredes,
encontŕandose que las variaciones no son significativas. Pos-
teriormente se estudió la formacíon de paredes con el cambio
de la cantidad de burbujas colocadas en la red entre un cier-
to rango dado por las limitaciones del programa (Fig. 1), de
modo de estimar el ńumero de burbujas ḿınimo necesario pa-
ra obtener resultados confiables. Se encuentra que el número
de paredes “infinitas” como función del ńumero de burbujas
tiende a una constante.

FIGURA 1. Estabilizacíon en la formacíon de paredes con el núme-
ro de burbujas.

FIGURA 2. Decaimento en el ńumero de paredes con el parámetro
de asimetŕıa.

3.2. Caso asiḿetrico

Para poder estudiar el caso de potenciales asimétricos, se pro-
cedío a colocar dos redes superpuestas con celdas de dis-
tintas dimensiones,ξ3

+ y ξ3
−, respectivamente, especificando

los eventos de nucleación del mismo modo que en el caso
simétrico, independientemente para cada. Es conveniente pa-
rametrizar:

ξ− = (1 + β)ξ+, (16)

de modo que

Γ+

Γ−
= (1 + β)3 ' (1 + 3β). (17)

Comparando con la Ec. (10), puede verse que el parámetro
β seŕa el que regula la asimetrı́a del potencial en la simula-
ción, y se tomaron valores entre0 < β < 0,8. La variacíon
en la distribucíon de paredes con parámetro de asimetrı́aβ es
mostrada en la Fig 2.

4. Conclusiones

El estudio detallado de las probabilidades de túnel en un po-
tencial con simetrı́a aproximadaZ2 permite justificar la apro-
ximacion de radio inicial cero para las burbujas, ası́ como de
velocidad de colisíon c. Se determina también que la proba-
bilidad de nucleación de burbujas del verdadero vacı́o dentro
de burbujas con vacı́o aproximado es despreciable.

Con estas aproximaciones se implementó un algoritmo
que permite estimar el número de paredes formadas como
función del paŕametro de asimetrı́a que cuantifica la no-
degeneración de los vaćıos,β. La distribucíon de paredes se
aproxima a una curva gaussiana centrada enβ = 0 con dis-
persíon σ = (0,266 ± 0,014). Se encontŕo poca variabilidad
con el ńumero inicial de burbujas a partir de∼ 32, por lo que
se espera que estos resultados no varı́en significativamente en
simulaciones mayores.
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