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Se estudia la formagh de paredes de dominio en transiciones de fase de primer orden producidas por un campo escalar que rompe
pontaneamente una sim&trZ.. Se implementa un algoritmo que permite simular la nucteagicolisbn de burbujas de la nueva fase, e
identificar el imero de paredes cerradas y abiertas formadas. Se estudia el caso de Binagiroximada, relevante en recientes propuestas
de solucdbn al problema de las paredes de dominio en un contexto cogiool

Descriptores: Relatividad general; defectos topgicos; paredes de dominio.

We study formation of domain wall in first order phase transition triggered by a scalar field that breaks spontanBossinametry. An
algorithm that allows simulation of bubble nucleation and collision, and counting of open and closed walls formed, is implemented. The ¢
of an approximateZ, symetry, relevant to recent proposals of solutions to the domain wall problem in cosmology is considered.
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1. Introduccion han estudiado el efecto de la georieetle la colishn [5] y
de la velocidad de expansion de las burbujas [6]. En el caso

Los defectos topdigicos como las paredes de dominio sur-de las paredes de dominio, es de particular @g@studiar la
gen como consecuencia del rompimiento espoad de un  situacbn en que la simeia discreta no es exacta sino aproxi-
determinado grupo de sim&ir En un contexto cosmiyico  mada, ya que esto pddrproporcionar una solum al llama-
donde las simeias son restauradas por efecto de altas tempedo problema de las paredes de dominio. Zel'dovich, Kobsarev
raturas [1], el rompimiento espdrteo de simetas puede dar y Okun [7], sugirieron gue si la simérdiscreta no es exac-
lugar a transiciones de fase [2] durante las cuales los defeta, la diferencia de eneiaentre los dos vaas podfa causar
tos topobgicos, que son solucionesasicas a las ecuaciones gue las regiones de falso vaalesaparecieran, posiblemente
de movimiento del campo responsable de la ruptura, se creamtes de que las paredes comienzen a dominar la densidad de
efectivamente, debido a la presencia de regiones causalmemteerda del universo.
disconexas en el espacio-tiempo [3]. En este trabajo estudiaremos la probabilidad de forma-

En este tipo de transiciones de fase, ebpastro de or- cion de paredes de dominio en este caso. Para ello, se estudic
den es el valor de expectéai en el vato del campo,¢), en primer lugar la formabn de paredes en una red amor-
gue pasa de tener un valor nulo, en el estad@sioo, ate- fa, formada por burbujas nucleadas en diferentes momentos
ner uno distinto de cero, rompiendo la sin@tiPara ciertos Yy a distancias determinadas por las probabilidades de nuclea-
tipos de potenciales, esta tranéities de primer orden, pro- cion. En segundo lugar se considera el caso de un potencial
cediendo mediante nucleaaide burbujas. Sila simérrota  no degenerado, donde las probabilidades de nudieacin
esponaneamente es discreta, es decir si existe una multiplidistintas. Se estudia la dependencia deharo de paredes
cidad de vams (ipicamente se considera el caso con simeformadas con la asimé#rdel potencial.
tria Z»), el valor de(¢) dentro de cada burbuja $endepen-
diente. Esto trae como consecuencia la foriade paredes 2

de dominio cuando las burbujas logran percolar y cubrir todo™ Nucleacon de burbujas

el espaciotiempo. La dinamica del campo escalar astada por el lagrangiano
En simulaciones eahdar de producén de defectos to-
pologicos, se toman redes bidimensionales donde a cada cel- I = lamaw —V(¢). (1)
2

da que representa las regiones desconectadas causalmente,
se le asignan al azar valores positivos 0 negativos y se €fn probabilidad de que el campo hagael entre el rimimo

tudian la formadn de grupos de celdas de uniadetermi-  |5cg y el global s [5]
nado [4]. Es deseable estudiar un escenaés real, prescin-
diendo del uso de redes preestablecidas y estudiando la pro- = Ae %", 2)

babilidad de formar paredes cuando el sistema efectivamente
consiste de burbujas que crecen y colisionan. En el contextionde Sg es la acdn eucldea. Se puede demostrar que a
similar de ruptura de simé&U (1) para producir @rtices, se  temperatura cero, en un espacio-tiempo plano, las soluciones
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gue minimizan la acén son invariantes bajo el grupo de ro- Puede verse que el campo escalar prefiere decaer al verdade-
taciones eudtleas cuadridimensional es O(4) [6]. De mane-ro vado del potencial. Siguiendo un procedimient@kgo,

ra que se buscan soluciones a las ecuaciones de movimierge puede demostrar qlig. /T, > 1, dondel';,; = I'_T'3
donde¢ es ®lo funcion de la coordenada radial. Haciendo la corresponde a la probabilidad de que el campo escalar decai-
extensbn anaitica al espacio tiempo minkowskiano, puede ga desde, hastag_ y luego hasta, :

verse que esta soluri representa una burbuja que se expan-

_a(R® 3
de, alcanzando asisticamente la velocidad | (11)
Consideramos un potencial de la forma
y por ende ¢
Ao 2 €V 3 3 nv 3 + —a(R?—R® —R})
_ - _ _ 7 . i —T —¢ + -3 12
V(9)= 78161 —0) = Z (6P %)+ T6% (3 I (12)
Los minimos de este potencial son Es claro quef; > Ry por lo tanto el decaimientb;,; es
menos probable que los anteriores.
ds =v[l + 2(?)]7 b0 = 0, (4) _ De esta manera, la propabilidao_l de que se formg una bur-
buja dentro de un volumeg? por unidad de tiemp@ viene
y la diferencia de enefg entre los rmimos enp = 0 (V) y ~ dada por
¢ = o+ (Vi) sed Fi::gz~ (13)
+
+
AVL=Vy—V (+)=0" (6 3 77) ; De modo que: P
3
) & = > Ry, (14)
AV+*AV—:*§UU4- (5  dondea es una constante. La expr@sianterior indica que

las burbujas formadas tienen un radio inicial mucho menor

Con objeto de implementar la simulaoi es necesario qye |as dimensiones del volumen en donde “nace” cada bur-
estimar el radio inicial de las burbujas y determinar si PUeHyja.

de ser comparable a la distancia media entre los puntos de  queremos investigaroeno depende la formam de pa-
nucleaodn. Utilizando la ac@n euclidea en la aproximadti redes de dominio con la diferencia de efiargntre los dos

de pared fina, es posible calcular [6] los radios iniciales de lagagos: para ello, hemos implementado una simdiadie
diferentes burbujas que se nuclean dependiendo de la trangiymacion de paredes de dominio en transiciones de fase de
cion hecha por el campo escalar. Para una trams@ntrepo  primer orden con un algoritmo disado bajo las siguientes

Y ¢+, tendremos suposiciones:
Ry — \/X 1 _ (6) = El decaimientd’s es menos probable que los otros dos
2v(e£n) decaimientoslI{,.) y por tanto despreciable.

Nos” referiremos a estas burbujas como “positivas”y “negati- | 55 burbujas nacen con un radio mucho menor que las
vas”. Por otra parte, el campo escalar puede decaer desde el 4imensiones de la celda luedly. = Ry =0
L + - .

falso vado ¢_ hasta el verdadero vece., en este caso el

radio inicial sea = Debido al punto anterior, se puede asumir témlgjue
Al en el momento en que colisionan las burbujas se ex-
Rs =34/ =—. @) )
2 nu panden con una velocidad~ c.

Las probabilidades de nucleéanivan a depender de la di-
ferencia de enefg entre los véos. Espeificamente, se en- 3 |mplementacion del algoritmo
cuentra que la probabilidad por unidad de volumen por uni-
dad de tiempo de que se forme una burbuja positiva 0 negativ@onsideraremos, por razones de limitaciones @@pto,
es: formacbn de burbujas en un espacio-tiempo (2+1) dimen-
Ty = Aye Bo/(£n/e)® (8)  sional, lo que permite elegir una escala de longitud

DondeB, es la acdin eucldea en el caso degenerado, mien- 1\ /3
§x = ( > (15)

tras que la probabilidad que se forme una burbuja de f&glio T
+
es
T3 = Age™5Ps = Age~ Do/, 9) El programa implementado parte de una distriboci
Es razonable despreciar los coeficientes, ya que la ma- aIeaForia de burbujas y —, separadas por una distancia cuya
yor contribucon a la probabilidad de decaimiento la hace elMedia e€., y cuyas paredes se expanden a velocidaara

termino exponencial. Despreciando lésminos cuaditicos ~ ¢2da par de burbujas, y tomando en cuenta su signo, se calcu-
en(n/e): la la ecuadin que describe la pos@ de las paredes de do-

ry 6Bon minio formadas, registrando las intersecciones entre ellas con
T_ ~1+ c (10) los bordes de la simulami. Una vez completada la trangini
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1.6 o

de fase (cuando las burbujas llenan la simdlakise cuenta
el nimero de paredes formadas, queasaie tipo “infinito”
(aquellas que tocan los bordes de la simdlakio cerrado.
El algoritmo se escrildi en el lenguaje del programa Maple.
Para cada caso, se promediaron 100 simulaciones.

Np

3.1. Caso sinatrico

Se considdy primero la formadn de paredes en el caso de
burbujas nucleadas aleatoriamente siguiendo una distibuci
normal en torno a los centros de cada una de:faseldas
de dimengn &3 en la red de simulaéh, para un potencial
con simetta Z, (n = 0). Los eventos quedan especificados B
comoB; = (z;,t;,5;), dondex; , t; y s; corresponden a la
posicbn inicial, el tiempo y el signo de la burbujaSe elimi-
nan los eventos de nucleénique representan burbujas que
nacen en lugares ya ocupados por otras nucleadas anterior-

mente. De esta manera, dimero de burbujas formadas es 3.2. Caso asirgtrico

aproximadamente iguak#, la dimensbn espacial de la red.

Se estud el efecto de la dispeiai en la formadin de  Parapoder estudiar el caso de potencialesétsicos, se pro-
burbujas y consecuentemente, en la foraaie paredes, Ccedb a colocar dos redes superpuestas con celdas de dis-
encontandose que las variaciones no son significativas. Podintas dimensioneg? y ¢2, respectivamente, especificando
teriormente se estutlia formacén de paredes con el cambio 10s eventos de nucledri del mismo modo que en el caso
de la cantidad de burbujas colocadas en la red entre un ciefimetrico, independientemente para cada. Es conveniente pa-
to rango dado por las limitaciones del programa (Fig. 1), déametrizar:
modo de estimar ellimero de burbujas mimo necesario pa- E-=(1+4+08)¢, (16)
ra obtener resultados confiables. Se encuentra quere o
de paredes “infinitas” como furtan del rimero de burbujas € modo que
tiende a una constante.

FIGURA 2. Decaimento en elimero de paredes con el paretro
de asimefia.

N . S =8P = (1439) @)

Ir ] Comparando con la Ec. (10), puede verse que ématro
(3 sei@ el que regula la asimé&rdel potencial en la simula-
cion, y se tomaron valores entbe< 3 < 0,8. La variacon
en la distribuddn de paredes con ganetro de asimét 3 es
mostrada en la Fig 2.

tn

4. Conclusiones

El estudio detallado de las probabilidades @®el en un po-
tencial con simeta aproximad&, permite justificar la apro-
ximacion de radio inicial cero para las burbujas,a@sno de
velocidad de coligin c. Se determina tamén que la proba-
bilidad de nucleaéin de burbujas del verdadero ¥adentro
de burbujas con vag aproximado es despreciable.

Con estas aproximaciones se implendenh algoritmo
que permite estimar elimero de paredes formadas como
funcibn del paametro de asimda que cuantifica la no-
degeneradin de los vaios, 3. La distribucbn de paredes se
p—_l L 1 | — ‘ aproxima a una curva gaussiana centradg@ en 0 con dis-

y . i 4 il persbno = (0,266 + 0,014). Se enconfr poca variabilidad
mimero de burbujas con el rimero inicial de burbujas a partir de32, por lo que
FIGURA 1. Estabilizachn en la formadn de paredes con elime- ~ S€ €spera que estos resultados neevesignificativamente en
ro de burbujas. simulaciones mayores.

ro de paredes
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