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Mecanismo de autointeraccíon en el modelo masivo vectorial de Hagen
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Se muestra que el modelo masivo vectorial no abeliano, propuesto por C.R.Hagen, se obtiene usando el mecanismo de autointeracción.
Se estudia la equivalencia de este modelo con el modelo topológico masivo no abeliano y se obtiene que la equivalencia existente a nivel
abeliano no se mantiene.

Descriptores:Mecanismo de autointeracción; modelo no abelianos.

It is shown that the non-abelian vectorial model, proposed by C.R.Hagen is obtained using the self-interaction mechanism. The equivalence
between this model and the non-abelian topologically massive one is studied showing that the existing equivalence in the abelian models is
not sustained.
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La teoŕıa de campos en 2+1 dimensiones constituye un ex-
celente escenario para el entendimiento y estudio de teorı́as
fı́sicas en dimensión 3+1. Esto por su sencillez y además por
haber provisto nuevas ideas al estudio de la fı́sica en 3+1 di-
mensiones. Es ası́ como los modelos en 2+1 dimensiones han
estado motivados por sus posibles aplicaciones en el efecto
Hall fraccionario, la superconductividad a altas temperaturas
y los procesos en presencia de cuerdas cósmicas.

La estructura de las teorı́as no-abelianas puede obtenerse
fı́sicamente bajo el requerimiento de que se acople consis-
tentemente a fuentes dinámicas siguiendo el mecanismo de
autointeraccíon. Para esto comenzamos con una teorı́a vec-
torial o tensorial, la cual posee alguna invarancia de calibre
que asegure la no propagación de los campos asociados a los
espines menores al que se quiere describir. La identidad de
Bianchi asociada a esta invariancia requiere que las fuentes
del campo sean conservadas. Esta conservación se pierde al
acoplar dińamicamente al campo, a menos que esté autoaco-
plado. El autoacoplamineto requerido es determinado a partir
de la corriente de N̈oether asociada con la invariancia global
interna presente en estos modelos. Aplicando este mecanis-
mo se obtiene de forma natural la acciones de Yang-Mills, de
Einstein y de supergravedad [1,2], ası́ como las acciones de
la teoŕıa topoĺogica masiva no-abeliana [3], la de Chapline-
Manton [4], la de Freedman-Townsend [5] y la del modelo
masivo autodual no-abeliano en 2+1 dimensiones [6], entre
otros.

En este trabajo mostraremos como el modelo de Hagen
para una partı́cula de esṕın 1 masivo en 2+1 dimensiones [7]
est́a conectado con su versión no abeliana [8] usando el meca-
nismo de autointeracción antes expuesto. El modelos a con-
siderar es equivalente a los modelos autodual y topológico
masivo a nivel abeliano [9]. Sin ambargo, resulta ser no equi-

valente a nivel no abeliano dado que los términos de autointe-
raccíon proporcionan correcciones adicionales en el analisis
cuántico perturbativo [8].

En 2+1 dimensiones existen distintas descripciones para
una part́ıcula masiva con espı́n 1. El modelo ḿas sencillo es
el modelo autodual [10] descrito por la acción

SAD = −m

2

∫
d3x

(
εµνλaµ∂νaλ + maµaµ

)
, (1)

dondeε012 = 1 y ηµν = (−++). Este modelo no posee inva-
riancias locales y puede mostrarse que constituye una versión
del modelo topoĺogico masivo luego de fijar convenientemen-
te el calibre [11-13]. El modelo topológico masivo viene des-
crito por la accíon [14]

STM = −1
2

∫
d3x

(
1
2
FµνFµν −mεµνλaµ∂νaλ

)
, (2)

conFµν = ∂µaν−∂νaµ, donde el primer t́ermino correspon-
de al conocido t́ermino de Maxwell y el segundo se conoce
como el t́ermino de Chern-Simons vectorial. Las ecuaciones
de movimiento de este modelo poseen la misma invariancia
que la electrodińamica usual. Este hecho resulta interesante,
pues presenta el ejemplo de una teorı́a masiva que posee in-
variancia de calibre. Tal como apuntamos anteriormente los
modelos autodual y topológico masivo estan conectados por
una fijacíon de calibre. Sin embargo, puede verse que los es-
pacios de soluciones difieren en soluciones de carácter to-
pológico y que est́an conectados por una transformación de
dualidad [15-18].
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Otra descripcíon para una partı́cula masiva con espı́n 1 la
proporciona la acción propuesta por C.R.Hagen [7]:

SH =
1
2

∫
d3x

(
−fµfµ + 2εµνλfµ∂νaλ

+mεµνλaµ∂νaλ +
λ

m
εµνλfµ∂νfλ

)
. (3)

Esta accíon se convierte en la de la topológima masiva, a pri-
mer orden, si tomamosλ = 0. Adeḿas puede mostrarse que
cuandoλ = 1 no tiene dińamica local. La masa de las excita-
ciones es|m/(1−λ)|. Para ver esto y su equivalencia con los
modelos autodual y topológico masivo analicemos las ecua-
ciones de movimiento de (3):

−fµ + εµνλ∂ν

(
aλ +

λ

m
fλ

)
= 0, (4)

εµνλ∂ν

(
fλ + maλ

)
= 0. (5)

En este sistema es claro que siλ = 0 el sistema se transfor-
ma en el de la teorı́a topoĺogica masiva. Por otro lado, en
la segunda de estas ecuaciones observamos que localmen-
te fλ + maλ = ∂λρ, si fijamos calibre de tal forma que
fλ + maλ = 0 y vamos a la primera ecuación el sistema
corresponderı́a al de la teoŕıa autodual con masam/(1− λ).
Siλ = 1 el sistema śolo describe estados globales que corres-
ponden aFµν = 0.

Para completar de analizar la cinemática deSH pasamos
a obtener la acción reducida. Para esto tomamos

Φ0 = Φ , Φi = εij∂jΦT + ∂iΦL, (6)

dondeΦµ ≡ (aµ, fµ), i, j = 1, 2 y ε12 = 1. Al sustituir esta
descomposición enSH observaremos quea y f son multipli-
cadores de Lagrange asociados a los vı́nculosfT = maT y
f = (1− λ)∆aT . Teniendo esto en cuenta llegamos a

SH =
1
2

∫
d3x

(
−(1− λ)2(−∆)aT (−∆)aT

+fL(−∆)fL −m2aT (−∆)aT

+(1− λ)ȧT (−∆)fL
)
, (7)

con ∆ = ∂i∂i. A este nivel notamos que siλ = 1 no hay
propagacíon alguna de los campos, además, si sustituimos
(1−λ)aT → aT y m/(1−λ) → m, la accíon corresponderı́a
a la que hubíesemos obtenido si partiéramos de la acción to-
pológica masiva.

Si sustituimosQ = (1−λ)(−∆)1/2
aT , Π = (−∆)1/2

fL

en (7) llegamos a la acción reducida

Sred
H =

∫
d3x

[
[ΠQ̇− 1

2
ΠΠ

−1
2
Q

(
−∆ +

( m

(1− λ)
)2

)
Q

]
, (8)

donde queda claro que la teorı́a describe una excitación de
masa|m/(1− λ)| con enerǵıa definida positiva.

Pasamos ahora a aplicar el mecanismo de autointeracción
a partir deSH en (3)[1,2]. La conexíon con el modelo to-
pológico masivo se obtiene tomandoλ = 0. Partimos con
un conjunto de camposaa

µ y fa
µ , con a = 1, 2, 3, pensan-

do en una invariancia bajo rotaciones rı́gidas (a la SU(2)).
Este proceder permite adoptar una notación vectorial que re-
sultaŕa mas simple. La generalización a otro tipo de grupos
de invariancia se realizarı́a de manera análoga. La accíon de
partida es

S0 =
1
2

∫
d3x

(
−~fµ · ~fµ + 2εµνλ ~fµ · ∂ν~aλ

+mεµνλ~aµ · ∂ν~aλ +
λ

m
εµνλ ~fµ · ∂ν

~fλ

)
, (9)

la cual es invariante bajo los cambios globales

~Φµ → ~Φµ + ~ω × ~Φµ, (10)

y sus ecuaciones de movimiento poseen la invariancia de ca-
libre

δ~aµ = ∂µ
~Λ(x), δ ~fµ = 0. (11)

La corriente de N̈oether asociada a la inavariancia global
es

~jµ = εµνλ

[
(~fν +

m

2
~aν)× ~aλ +

λ

2m
~fν × ~fλ

]
, (12)

la cual se conserva si usamos las ecuaciones de movimiento
que surgen de (9).

Ahora sumamos aS0 un t́ermino de autointeracción de
forma tal que al hacer variaciones enéste respecto a~aµ se
reobtenga~jµ. Este t́ermino de autointeracción es

Sint = −g

2

∫
d3x

[
εµνλ

(
~aµ ·

(
~fν +

m

3
~aν

)× ~aλ

+
λ

m
~aµ · ~fν × ~fλ

)
+ F [fµ]

]
, (13)

donde g es un paŕametro de acoplamiento con unidades
L−1/2 y adeḿas hemos indicado la posibilidad de adicionar
términos que dependan solamente de lasf ´s, ya que lo que
requerimos es queδSint/δ~aµ = ~jµ. Un término posible, no
cuadŕatico, covariante, invariante de calibre y bajo (10) serı́a
de la forma∼ εµνλ ~fµ · ~fν × ~fλ. Aśı la accíon que resulta de
sumar aS0 el término de autointeracción, con el t́ermino de
lasf ´s propuesto, tendrá la forma

S =
1
2

∫
d3x

×
[
−~fµ · ~fµ + εµνλ ~fµ ·

(
∂ν~aλ − ∂λ~aν − g~aν × ~aλ

)

+mεµνλ
(
~aµ∂ν~aλ − g

3
~aµ · ~aν × ~aλ

)

+
λ

m
εµνλ ~fµ ·

(
∂ν

~fλ − g~aν × ~fλ

)

− gκ

3m2
εµνλ ~fµ · ~fν × ~fλ

]
, (14)
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dondeκ es un constante adimensionada. En (14) los tres pri-
meros t́erminos corresponden a la acción topoĺogica masi-
va no abeliana. Los dośultimos t́erminos corresponderı́an
a la contribucíon adicional en la teorı́a de Hagen no abe-
liana tal como la propuso en la Ref. 8. Para establecer co-
nexión con la formulacíon usual de teorı́as no-abelianas,
pensamos en generadoresT a antiherḿıticos que satisfacen
trT aT b = −(1/2)δab, los cuales actúan en la representación
adjunta del grupo. Para estos[T a, T b] = fabcT c, dondefabc

son las constantes de estructura del grupo (es el caso de SU(2)
éstas sonεabc) y los campos los representamos matricialmen-
te comoΦµ = gT aΦa

µ. Con esta notación (14), se escribe de
forma compacta como

Sna
H =

1
g2

∫
d3x tr

[
fµfµ − εµνλfµFνλ(a)

−mεµνλ
(
aµ∂νaλ − 2

3
aµaνaλ

)− λ

m
εµνλfµDνfλ

+
2κ

3λm2
εµνλfµfνfλ

]
, (15)

donde

Fνλ(a) = ∂νaλ − ∂λaν − [aν , aλ]

y

Dνfλ = ∂νfλ − [aν , fλ]

es la derivada covariante defλ bajo las transformaciones de
calibre

δaµ = Dµω(x), δfµ = [ω(x), fµ], (16)

conω(x) = gT aωa(x), las cuales dejan invariantes las ecua-
ciones de movimiento de (15). Estasúltimas, en caso de exis-
tir algún acoplamiento externo, resultan ser

fµ−?fµ(a)− λ

m
εµνλDνfλ+

κ

2m2
εµνλ[fν , fλ]=0,

m?fµ(a)+εµνλDνfλ− λ

2m
εµνλ[fν , fλ]=Jµ

ext, (17)

donde?fµ(a) = (1/2)εµνλFνλ(a). Las ecuaciones de mo-
vimiento de la teoŕıa topoĺogica masiva corresponden al caso
λ = κ = 0. Es importante resaltar queJµ

ext, sobre las ecua-
ciones de movimiento, satisfaceDµJµ

ext = 0. Veamos

DµJµ
ext = εµνλ

(
DµDνfλ − λ

m
[Dµfν , fλ]

)

=
[
−?fλ(a)− λ

m
εµνλDµfν , fλ

]
,

donde hemos usado la identidad[Dµ,Dν ]fλ=−[Fµν(a), fλ],
la primera de las ecuaciones de (17) y las identidades de Ja-
cobi para los conmutadores. Si pensaramos en algun tipo de

acoplamiento con losf ´s la correspondiente fuente externa
no se conserva. Sin embargo el papel defµ es mas como un
campo auxiliar.

Manipulando convenientemente las ecuaciones de movi-
miento, cuando no hay fuentes externas, se llega al sistema
(λ 6= 1)

εµνλDνfλ+
m

(1−λ)
fµ+

(κ−λ)
2m(1−λ)

εµνλ[fν , fλ]=0,

fµ−(1−λ)?fµ(a)+
(κ−λ2)

2m2
εµνλ[fν , fλ]=0. (18)

En el caso queκ = λ2 tendremos quefµ = (1 − λ)?fµ(a),
lo que nos lleva a la ecuación de segundo orden paraaµ

εµνλDν
?fλ(a)+m?fµ(a)=

λ

2m
εµνλ[?fν(a), ?fλ(a)], (19)

dondem = m/(1− λ).
En (19) se muestra la contribución adicional al caso de

la topoĺogica masiva (que corresponde aλ = 0) y queda ex-
presa la diferencia entre los dos modelos. Una ecuación igual
a ésta se obtiene en el modelo no abeliano autodual el cual
fue formulado indepoendientemente por McKeon [19] y por
Arias,et al. [20].

Para el casoλ = 1, al igual que en el caso abeliano, im-
plica que?fµ(a) = fµ = 0. El caracter masivo de las excita-
ciones se hace explı́cito si tomamos otra derivada covariante
sobre el dual de (19), lo que nos lleva a

(−DνDν + m2
)

?fµ(a) =
(λ− 2)

2
εµνλ[?fν(a), ?fλ(a)]

+
λ

m
[Dν

?fµ(a), ?fν(a)]; (20)

corroborando que la masa de las excitaciones es|m/(1− λ)|
como en el caso abeliano.

Hemos, entonces, mostrado como se conectan los mode-
los vectoriales propuestos por Hagen por la vı́a del mecanis-
mo de autointeracción. Tambien qued́o explicita la no equi-
valencia entre los modelos no abelianos de Hagen y de la
teoŕıa topoĺogica masiva para un caso particular. En el caso
queλ = 1 (κ = 1), la teoŕıa de Hagen śolo describe estados
globales (Fµν(a) = 0), los cuales son sensibles a la topologı́a
del espacio base.
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