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Se muestra que el modelo masivo vectorial no abeliano, propuesto por C.R.Hagen, se obtiene usando el mecanismo de antointera
Se estudia la equivalencia de este modelo con el modelodmigol masivo no abeliano y se obtiene que la equivalencia existente a nivel
abeliano no se mantiene.

DescriptoresMecanismo de autointeraéei; modelo no abelianos.

It is shown that the non-abelian vectorial model, proposed by C.R.Hagen is obtained using the self-interaction mechanism. The equival
between this model and the non-abelian topologically massive one is studied showing that the existing equivalence in the abelian modt
not sustained.
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La teoia de campos en 2+1 dimensiones constituye un exvalente a nivel no abeliano dado que lesninos de autointe-

celente escenario para el entendimiento y estudio déagor raccibn proporcionan correcciones adicionales en el analisis

fisicas en dimenén 3+1. Esto por su sencillez y adaspor  cuantico perturbativo [8].

e e e e menaones nan, EV 271 dmensiones xstendisinas desrpiones para
" . L una paricula masiva con e&p 1. El modelo ras sencillo es

estado mpt|va<_jos por sus p05|blgs. aplicaciones en el efecéq modelo autodual [10] descrito por la a@i

Hall fraccionario, la superconductividad a altas temperaturas

y los procesos en presencia de cuerdesricas.

La estructura de las tdas no-abelianas puede obtenerse Sup = _m / Bz (e"*a,0pax +mayat), (1)
fisicamente bajo el requerimiento de que se acople consis- 2

tentemente a fuentes dimicas siguiendo el mecanismo de

autointerac@n. Para esto comenzamos con unaitevec-  donde=°12 = 1 Y7 = (—++). Este modelo no posee inva-
torial o tensorial, la cual posee alguna invarancia de calibrgiancias locales y puede mostrarse que constituye unawersi
que asegure la no propagaeide los campos asociados a l0s de|l modelo topagico masivo luego de fijar convenientemen-

espines menores al que se quiere describir. La identidad dg e| calibre [11-13]. El modelo topagjico masivo viene des-
Bianchi asociada a esta invariancia requiere que las fuentesito por la acobn [14]

del campo sean conservadas. Esta consémag pierde al

acoplar dilimicamente al campo, a menos qué esttoaco-

plado. El autoacoplamineto requerido es determinado a partir g, - — 1 / B <1FWFW _ ms””auayaA> . @

de la corriente de Bether asociada con la invariancia global 2 2

interna presente en estos modelos. Aplicando este mecanis-

mp se .obtiene de forma natural la qcciones de Yang-MiIIs, d%onF,w = 0,,a, —d,a,,, donde el primerdrmino correspon-

Einstein y de supergravedad [1,2]j @smo las acciones de g 4| conocidoérmino de Maxwell y el segundo se conoce

la teoiia topobgica masiva no-abeliana [3], la de Chapline- comq ef grmino de Chern-Simons vectorial. Las ecuaciones

Manton [4], la de Freedman-Townsend [5] y la del modeloge movimiento de este modelo poseen la misma invariancia

masivo autodual no-abeliano en 2+1 dimensiones [6], entrg e |5 electrodiamica usual. Este hecho resulta interesante,

otros. pues presenta el ejemplo de una teanasiva que posee in-
En este trabajo mostraremos como el modelo de Hagevariancia de calibre. Tal como apuntamos anteriormente los

para una partula de esim 1 masivo en 2+1 dimensiones [7] modelos autodual y topdgico masivo estan conectados por

esf conectado con su vedsi no abeliana [8] usando el meca- una fijacbn de calibre. Sin embargo, puede verse que los es-

nismo de autointeraamn antes expuesto. EI modelos a con-pacios de soluciones difieren en soluciones déatar to-

siderar es equivalente a los modelos autodual y tapob  polbgico y que estn conectados por una transforntacde

masivo a nivel abeliano [9]. Sin ambargo, resulta ser no equidualidad [15-18].
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Otra descripdn para una paxula masiva con edp 1 la
proporciona la acéin propuesta por C.R.Hagen [7]:

1

SH

B /dSI (_f'ufu + 25#V/\fuaua/\
vA A vA
+mea,d,ax + = f,0, fA). ©)

Esta acdn se convierte en la de la topgima masiva, a pri-
mer orden, si tomamas = 0. Ademas puede mostrarse qu

. ARIAS

Pasamos ahora a aplicar el mecanismo de autointéracci
a partir deSy en (3)[1,2]. La conexin con el modelo to-
polégico masivo se obtiene tomando= 0. Partimos con
un conjunto de campos;, y f, cona = 1,2,3, pensan-
do en una invariancia bajo rotacionédgidas (a la SU(2)).
Este proceder permite adoptar una ndiaciectorial que re-
sulta@ mas simple. La generalizaai a otro tipo de grupos
de invariancia se realiZa de manera a@oga. La acén de
e partida es

cuando) = 1 no tiene diamica local. La masa de las excita-
ciones e$m/(1— \)|. Para ver esto y su equivalencia con los
modelos autodual y topdgjico masivo analicemos las ecua-

1 - g —
Sy = 3 /d%(—f” < fu A 28" - 0,

ciones de movimiento de (3): +met A, - 9,dx + %s’“’Aﬁ : 3ufx), ()]
—fH e, (aA + if/\) =0, (4) la cual es invariante bajo los cambios globales
m
ehAQ, (fx +may) = 0. (5) Py — P +dx Py, (10)

En este sistema es claro que\si= 0 el sistema se transfor- Y SUS ecuaciones de movimiento poseen la invariancia de ca-
ma en el de la teda topobgica masiva. Por otro lado, en libre
la segunda de estas ecuaciones observamos que localmen-
te fx + may = 0Jxp, si fjamos calibre de tal forma que

fr + mayx = 0y vamos a la primera ecudci el sistema gg
correspondéa al de la teda autodual con masa/(1 — \).

Si\ = 1 el sistemaélo describe estados globales que corres-

8, = 0, A (), 5f* = 0. (11)
La corriente de Mether asociada a la inavariancia global

ponden &}, = 0.

Para completar de analizar la cingtica deSy pasamos
a obtener la acon reducida. Para esto tomamos

(1)0 = (I)z' = eijﬁjbe + 81-<I>L, (6)

donde®, = (a,, fu), 4,5 = 1,2y 12 = 1. Al sustituir esta
descomposiéin enSy observaremos quey f son multipli-
cadores de Lagrange asociados a logwlos f7 = ma’' y
f = (1 - X)AdT. Teniendo esto en cuenta llegamos a

3

Sy = %/d%(fu N2 (=A)aT (~A)aT

— m2a

+fE(=A)f*
+(1 - NaT (=)f"),

T(—A)GT
()

con A = 0;0;. A este nivel notamos que & = 1 no hay
propagadn alguna de los campos, adesn si sustituimos
(1=Xa” — a”ym/(1-\) — m, laaccbn correspondéa
a la que hulisemos obtenido si pagtamos de la acon to-
polégica masiva.

Si sustituimog = (1—\)(—=A)"%aT, 11 =
en (7) llegamos a la admi reducida

(=a)

.1
Sred — /d%{[HQ — I

S p)el @

donde queda claro que la témescribe una excitam de
masalm /(1 — \)| con enerén definida positiva.
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2 v r m" " >\ £ £
ju:é#)\ (fu_|_5al,)><a>\+%fu><f>\ , (12)

la cual se conserva si usamos las ecuaciones de movimiento
que surgen de (9).

Ahora sumamos &, un ttrmino de autointeracon de
forma tal que al hacer variaciones éste respecto &, se
reobtengg*. Este &rmino de autointeradmn es

gint _ _g /dfﬁx[auuA(d‘u (fo + %ay) X @y

-l-%c_i# : fr: X ﬁ) "‘F[fu]}’ (13)

donde g es un paametro de acoplamiento con unidades
L~1/2 y aden@s hemos indicado la posibilidad de adicionar
términos que dependan solamente deflas ya que lo que
requerimos es qu&s™/éa,, = j*. Un termino posible, no
cuadatico, covariante, invariante de calibre y bajo (10jaser
de la forma~ s“”*ﬁ - f,, x fx. Asi la accbn gue resulta de
sumar aS; el termino de autointerad@n, con el &rmino de
las f”s propuesto, tendrla forma

1
S=={d
2 / *
x {—f“ o N (B — OrGy — gdy X iy
et (@,0,00 = 5a, - @, x )
A maNrs = — Y
+E€ fu'(auf)\_gal/xf)\)

gK
-7 ¢
3m?

AL T x B a8)
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dondex es un constante adimensionada. En (14) los tres priacoplamiento con log”s la correspondiente fuente externa
meros érminos corresponden a la ameitopobgica masi- no se conserva. Sin embargo el papelflees mas como un

va no abeliana. Los dosltimos &rminos correspondemn  campo auxiliar.

a la contribucdn adicional en la teta de Hagen no abe- Manipulando convenientemente las ecuaciones de movi-
liana tal como la propuso en la Ref. 8. Para establecer caniento, cuando no hay fuentes externas, se llega al sistema
nexion con la formuladn usual de tedas no-abelianas, () # 1)

pensamos en generadorE$ antiherniticos que satisfacen
trToT? = —(1/2)6%, los cuales aéian en la representai WAD
adjunta del grupo. Para estd¥, %] = f*<T¢, dondef % c vIxt m(1—N\)
son las constantes de estructura del grupo (es el caso de SU(2) 32
éstas son®®) y los campos los representamos matricialmen- fﬂ_(1_A)*fﬂ(a)+Lz)gﬂvA [f,, fA]=0. (18)
te como®,, = ¢g7“®g. Con esta notadh (14), se escribe de 2m

forma compacta como

1
S = / datr [ Ffu = A fuFya(a)

(F=A)

(1711)\) flb+2 EMV)\[fV7f)\]:O7

En el caso quea = \? tendremos qug* = (1 — \)* f#(a),
lo que nos lleva a la ecudni de segundo orden pata

A
UV * =% £l _ N puAx *
7m€,u1/)\ (auaya)\ o %aully(l)\) o %i?HV)‘quyf,\ € Dl/ f)\ (a)+m f (a’)_ 2m5 [ fl/(a/)’ f)\ (a)]a (19)

25 dondem = m/(1 — ).
e 5l In]s (19) En (19) se muestra la contrib@ei adicional al caso de
donde la topobgica masiva (que corresponde a 0) y queda ex-
presa la diferencia entre los dos modelos. Una ebnagual
Fya(a) = dyax — Oray — [av, ay] a ésta se obtiene en el modelo no abeliano autodual el cual

fue formulado indepoendientemente por McKeon [19] y por
Arias, et al.[20].
Dy fx = Oufx — [aw, fr] Para el casa = 1, al igual que en el caso abeliano, im-
plica que* f#(a) = f* = 0. El caracter masivo de las excita-

es la derivada covariante ¢f bajo las transformaciones de ciones se hace explto si tomamos otra derivada covariante

calibre sobre el dual de (19), lo que nos lleva a
(sa,u = D#w(x), oft = lw(x), f1], (16) (A—2)

14 —2\ * £ o B LV % *
conw(z) = gT*w"(x), las cuales dejan invariantes las ecua- (=D"D, +m°%) * f*(a) =75 ¢ [* fu(a),* fa(a)]
ciones de movimiento de (15). Esfdimas, en caso de exis- A
tir algin acoplamiento externo, resultan ser + D" f*(a)," f*(a)); (20)

* )\ v K v . .
fr=rta) = et AD»fA+W€” Mfvs F2]=0, corroborando que la masa de las excitacionésggl — \)|
N como en el caso abeliano.
m*f”(a)—l—s“”)‘l)uf,\—Q—e“”)‘ [fo, =L, (A7) Hemos, entonces, mostrado como se conectan los mode-
m

los vectoriales propuestos por Hagen poridel mecanis-
donde* f#(a) = (1/2)e""*F,(a). Las ecuaciones de mo- mo de autointeracoh. Tambien quell explicita la no equi-
vimiento de la teda topobgica masiva corresponden al casovalencia entre los modelos no abelianos de Hagen y de la
A = k = 0. Es importante resaltar qu&’,,, sobre las ecua- teofia topobgica masiva para un caso particular. En el caso

ciones de movimiento, satisfagg, J.,,, = 0. Veamos queX = 1 (k = 1), la teofa de Hagen@o describe estados
N A globales Em,(a) = 0), los cuales son sensibles a la topdtog
DyJly =" (DuDqu - E[Dufua f/\]) del espacio base.
A
= |:_*f)\(a’) - ESH )\Dufllaf/\:|7
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