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Universidad de Los Andes, Ḿerida, 5101, Venezuela
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Una ecuacíon de estado no local describe las componentes del tensor de energı́a-impulso no śolo como funcíon de un punto, sino como un
funcional que toma en consideración la contribucíon de toda la configuración de materia encerrada hasta ese punto. En este trabajo se muestra
que es posible obtener distribuciones de materia fı́sicamente aceptables que poseen simultáneamente tanto una métrica conformemente plana
como una ecuación de estado no local. Se presenta la evolución de objetos compactos en distintos escenarios, determinando para el caso
cuasi-est́atico las condiciones para la aparición de exfoliacíon t́ermica.

Descriptores:Ecuacíon de estado no-local; fluidos anisótropos relativistas; ḿetricas conformemente planas; exfoliación t́ermica.

A non-local equation of state describes the components of the energy-momentum tensor not only as a function of a point, but as a functional
throughout the enclosed configuration. In this work, we show that it is possible to obtain physically acceptable conformally flat, anisotropic
matter distributions that satisfy a non-local equation of state. The evolution of such objects is presented, determining for the quasi-static case
the conditions for thermic-peeling effect.

Keywords: Non-local equation of state; relativistic anisotropic matter distributions; conformally flat metrics; thermic peeling.
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1. Introducción

Debido al papel fundamental que juegan las fuerzas gravita-
cionales, la descripción de la estructura y la evolución estelar
est́a basada en el empleo de las ecuaciones de campo de la re-
latividad general y/o en la teorı́a newtoniana de gravitación.
Sin embargo, no es menos cierto que la comprensión última
de su constitución yace firmemente ligada a la fı́sica nuclear
y en gran medida al conocimiento actual de la fı́sica de densi-
dades supranucleares (≈ 1014g cm−3). Las propiedades de la
materia en tales estados son esencialmente desconocidas, en
gran parte debido a la imposibilidad actual de corroborar ex-
perimentalmente las teorı́as que describen la microfı́sica del
sistema [1]. Hoy d́ıa se desconoce aún la ecuacíon de esta-
do real que rige la materia nuclear a tan altas densidades. De
allı́, pues, la importancia de explorar lo que está permitido o
no por las leyes de la fı́sica en este contexto.

En este trabajo se desea estudiar la aceptabilidad fı́sica
y propiedades de esferas relativistas que poseen tanto una
ecuacíon de estado no local como una métrica conformemen-
te plana. Estas condiciones resultan de interés en la medi-
da en que proporcionan ligaduras al sistema auto-gravitante
que permiten describir relaciones entre componentes del ten-
sor de enerǵıa-impulso. La primera toma en consideración el

comportamiento colectivo de las variables fı́sicas de la confi-
guracíon de materia a la hora de relacionar presiones radiales
y densidades. La segunda permite relacionar tres factores de
gran relevancia para el estudio de estos sistemas, a saber, el
tensor de Weyl, la anisotropı́a local de presiones y la inhomo-
geneidad de la distribución de densidad de energı́a.

1.1. Condicíon métrica conformemente plana

Una condicíon necesaria y suficiente para que una métrica
sea conformemente plana es que su tensor de Weyl se anule
en todo punto. Las componentes linealmente independientes
de este tensor pueden escribirse a través de
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Es posible mostrar [2] que para el caso estático la integracíon
de la condicíonW = 0, proporciona la igualdad
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conξ2 una constante de integración que es función del tiem-
po en el caso cuasi-estático.

Por otra parte, de (1) puede obtenerse [3], incluso para el
caso dińamico general, que
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y si la métrica es conformemente plana se tiene la siguiente
expresíon para la anisotropı́a
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1.2. Ecuacíon de estado no local

Una ecuacíon de estado no local describe, para un punto da-
do de la distribucíon de materia, las componentes del tensor
de enerǵıa-impulso como un funcional de la configuración de
materia hasta ese punto. En 1999, Hernández, Ńuñez y Per-
coco [4] sẽnalan que si en el elemento de lı́nea,

ds2 = he4βdt2 − 1
h

dr2 − r2dΩ2, (5)

que corresponde a un espacio-tiempo esféricamente siḿetri-
co, conβ = β(r, t), h = h(r, t), y dΩ2 ≡ dθ2 + sen2dφ2,
se introduce la restricción

h(r, t) ≡ 1− 2m(r, t)
r

= C(t)e−2β(r,t),

con 0 < C(t) < 1, (6)

es posible escribir, entre dos de las correspondientes compo-
nentes del tensor de energı́a impulso, la siguiente relación:

T 0
0 = −T 1

1 −
2
r

r∫

0

T 1
1 dr +

K0

r
, (7)

dondeK0 es una funcíon de integracíon arbitraria dependien-
te del tiempo. Por otra parte, en términos de los parámetros
métricos, esta condición implica, en el caso dinámico,

λ (r, t) = ν (r, t)− 2 ln
(
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)
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siendoM(t) la masa de la configuración, A(t) su radio,
eν = he4β y eλ = 1/h.

2. La métrica

Introduciendo (8) en la Ec. (1), se obtiene, conu ≡ e−ν ,
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Una posible solución, que reproduce exactamente el caso
est́atico (ξ(t) = ctte, Ec. (2) con (8)) y cuasi-estático, es
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con∆ una constante de integración que en virtud de la con-
dición de regularidad de la función masa en el origen debe
ser igual anπconn = 0, 2, 4 . . .(se tomaŕa aqúı n = 0, por
simplicidad); yξ(t) es una funcíon del tiempo cuyo perfil se
obtiene nuḿericamente de (9).

Para esta solución las condiciones de acoplamiento pro-
porcionan, en general, un sistema de dos ecuaciones trascen-
dentales con dos incógnitas, que se debe resolver numérica-
mente. En cuanto a las variables fı́sicas, es posible despejar
algebraicamente de las ecuaciones de campo la densidad pro-
pia de enerǵıa, la presíon radial, la presíon tangencial y el
flujo de calor,ρ, Pr, Pt y Q, respectivamente. Sin embargo,
para su determinación completa hace falta (en todos los ca-
sos excepto paraPt) la velocidad radial del correspondiente
elemento del fluido. Ńotese quéesta puede obtenerse, en ge-
neral, de la ecuación de anisotroṕıa (4).

3. Evolución lenta

Se dice que una estrella evoluciona cuasi-estáticamente,
cuando cambia muy poco en una escala de tiempo muy gran-
de comparada con la escala de tiempo tı́pico en el cual el sis-
tema reacciona a una perturbación del equilibrio hidrost́atico.
En general, para cualquier etapa de la vida de una estrella,
este tiempo es muy pequeño; por ejemplo, para el Sol es de
unos 27 minutos; 4.5 segundos para una enana blanca y del
orden de una parte en diez mil (10−4) segundos para una es-
trella de neutrones de una masa solar y 10 km de radio [5].

FIGURA 1. Colapso hoḿologo de una distribución adiab́atica con
M = 0,396A. (ρ ≡ r/a).
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FIGURA 2. Configuracíon en colapso con ωΣ=−10−3,
M = 0,388A (ρ ≡ r/a) . Exfoliación t́ermica ḿultiple.

FIGURA 3. Configuracíon en expansión con ωΣ=10−3,
M = 0,388A (ρ ≡ r/a). Exfoliación t́ermica simple.

En este caso, es posible obtener para la velocidad radial,

ω = − e(λ−ν)/2
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Si el colapso es adiabático, al introducir las correspondientes
expresiones, la ecuación anterior resulta en
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La esfera colapsa ası́ homólogamente, como se muestra en la
Fig. 1.

En el caso disipativo, en aras de estudiar la aparición de
exfoliación t́ermica en estos modelos se introducirá un perfil
de flujo de calor dado por

Q =
ηe−r/am

4πr2M
e−ν/2, (15)

con η un factor nuḿerico de ordenω. Los correspondien-
tes valores de la velocidad radial se ilustran en las Figs. 2
(colapso) y 3 (expansión). Nótese la aparición de exfoliacíon
térmica: dependiendo del valor de la coordenada radial algu-
nas capas se contraen mientras que otras se expanden dentro
del mismo objeto compacto.

4. Conclusiones

En este trabajo se ha estudiado la estructura y evolución
de esferas relativistas con métricas conformemente planas y
ecuacíon de estado no local. Estas soluciones proporcionan
de manera natural un valor de densidad central tı́pica del or-
den de1015g cm−3, cumplen con las condiciones de energı́a
y son regulares en todo punto, por lo que resulta fı́sicamen-
te factible el modelaje de estrellas de neutrones altamente
compactas con este tipo de condiciones. Para el caso estático
existe unúnico valor posible de la compactibilidad, a saber
M/A = 0,396, que proporciona un corrimiento al rojo gravi-
tacionalz = 1,202. Se ha hecho aquı́ énfasis especialmente
en la evolucíon en ŕegimen cuasi-estático de estas configu-
raciones, tanto el colapso adiabático como el caso con disi-
pacíon t́ermica. El primero presenta contracción en ŕegimen
homólogo, mientras que el segundo caso, dada una función
de prueba para el flujo térmico, presenta una evolución no
lineal. El ańalisis llevado a cabo muestra que es posible ob-
tener exfoliacíon t́ermica simple y ḿultiple (las capas ḿas
internas colapsan, las intermedias se expanden y las super-
ficiales colapsan también), seǵun si la configuracíon est́a en
expansíon o en contracción, respectivamente, y según la in-
tensidad del campo gravitacional superficial y la opacidad de
la materia constituyente. En general se encontró que distribu-
ciones en colapso gravitacional y con flujo de calor presen-
tan exfoliacíon t́ermica para valores extremos de la compac-
tibilidad del objeto estelar; por ejemplo para una configura-
ción conωΣ = −10−3 y la opacidad del medio caracterizada
por η = 8x10−3 sólo ocurre exfoliacíon t́ermica o bien pa-
ra M/a < 0,17 o bien paraM/a > 0,33. Similarmente, el
fenómeno tiende a ocurrir para valores grandes del flujo. En
particular, para una distribución en expansión (ωΣ = 10−3)
conM/a = 0,35, el proceso ocurre paraη ≥ 6× 10−3.
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