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The Clifford structure of Nambu mechanics
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The consequences of the Clifford structure of Nambu mechanics with more than one multiplet are presented. The only case considered is
that in whichS triplets are present.
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Se presentan las consecuencias de la existencia de una estructura de Clifford en la mecánica de Nambu con ḿas de un multiplete. Śolo se
presenta el caso deS tripletes.
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The study of the Nambu dynamical system has led to the con-
clusion that the Nambu tensor is decomposable if the Funda-
mental Identity is to be satisfied [1-9]. This has the immedi-
ate consequence that there is a single multiplet and therefore,
if the original dynamical system is described by N variables,
then the manifold is N dimensional and irreducible except
for the singular points where it is zero-dimensional. This is
expressed by stating that the leaves are either of maximal di-
mensionality or zero-dimensional. A complete classification
of the Nambu tensor in the neighborhood of a singular point
has been achieved [10]. Under the conditions that define a
Nambu manifold, the study of this dynamical system is com-
plete and this chapter of mathematical physics can be consid-
ered closed.

Substantial changes must be incorporated if the dynami-
cal system is required to admit more than a single multiplet,
so that a situation similar to the Hamiltonian scheme is con-
ceived. It is by now well established [11-16] that if a de-
scription admits a group ofS mutiplets of dimensionK each
so thatN = KS in an N dimensional manifold, a Clifford
structure is necessary so that the powers of the K-eform are
non-vanishing for any oddK. This leads to a set ofN = KS
real variablesx = (xα

i ), α = 1, . . . , S, i = 1, . . . ,K andS
Clifford generatorsPα that span the algebra C(S) over the re-
als so that the manifold isF (RKS)⊗C(S), whereF (RKS)
is the ring of smooth functions overRKS .

The necessity of the Clifford structure is made evident
when consideringS triplets, so that there are3S real vari-
ables and the evolution equation of a functionf(x) is given
by

df

dt
=

S∑
α=1

∂(f,H1,H2)
∂(xα

1 , xα
2 , xα

3 )
, (1)

where∂(. . .)/∂(. . .) is a Jacobian determinant. If the evolu-
tion equations must be constructed fromXcω, whereω is a

3-form, then it immediately follows thatω2 = 0, so that it is
impossible to relate a certain power ofω to the volume form.
If the square ofω must be non vanishing, a modification of
the exterior product is needed. The new exterior product is
defined for a couple of 1-eforms (extended form) by

θα∧θβ = (−1)δ(α β)θβ∧θα, (2)

whereα andβ are muliplet indices. This implies that the
square of a 3-eform does not vanish. To achieve this relation,
the usual 1-forms are modified so as to be the product of an
ordinary 1-form and an objectPα, whose role is to take care
of the necessary signs. The simplest generalization of the
former real variables is to construct algebra valued objects
yα

β i = Pαxβ
i ; the differential of this type of object is defined

as

d̂yα
β i = Pαdxβ

i (3)

so that if (2) is to be satisfied, thePα are determined by

PαP β + P βPα = 2δα βI, (4)

which shows that thePα are the generators andI the identity
of a Clifford algebra. In order to incorporate the full alge-
braic structure, theyα

β i must be generalized toyA
β i = PAxβ i

whereA = (a1, . . . , aA) is a multi index in strict order and
PA = P a1 · · ·P aA ; the number ofyA

β i is 3S2S . The man-
ifold considered now is the set of generalized functions -
called efunctions - with these objects (y = (yα

β i)) as argu-
ments. An arbitrary efunctionf(y) belongs to the Clifford
algebra

f(y) = fA(x)PA, (5)

wherefA(x) is an ordinary smooth function onR3S , and
in (5) a sum over all subsets ofA elements taken from
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1, . . . , 3S and a sum overA is implicit. The differential of
an efunction is required to satisfy the conditions

d̂f(y) = dfA(x)PA, d̂(d̂f(y)) = 0 (6)

To be sure that the operation̂d is nilpotent of order two, the
partial derivation must be modified slightly. Let us it as the
operator∂̂β i

A
such that

∂̂α i
A

yB
β j = ∂̂α i

A
(PBxβ j) = PAPBδα

β δi
jδ(A B) (7)

where

δ(A B) =
{

0 if A 6⊂ B
(−1)A(A−1)/2 if A ⊆ B

The inclusion ofA in B means thatPA is a factor inPB .
The differential of an efunctionf(y) = fBPB is defined as

d̂f(y) =
1
2A

d̂yA
α i∂̂

α i
A

(PBfB(x))

=
1
2A

(PA)2(−1)A(A−1)/2PBdxα i∂
α ifB

=PBdfB(x), (8)

which shows that the first of the requirements in (6) is
satisfied and that the Clifford factorsPA are neutral as
far as computation of the differential. The definition of
the partial derivative shows that two of them commute if
PAPB = PBPA, and ar anti-commuting otherwise; its per-
mutation properties and the definition of the differential im-
ply that d̂(d̂f(y)) = 0, as required.

A vector field is a first order differential operator
U = UA

α i(x)∂̂α i
A

. A subalgebra of the algebra of vector fields
is a Lie algebra ifA = 0, which means those vector fields
proportional to the Clifford identity. This is the only Lie sub-
algebra. IfPS ≡ P 1 · · ·PS , then the transformation gener-
ated byPS is an endomorphism of the Clifford algebra that
relatesCA with CS−A, so that as vector spaces these are iso-
morphic. As algebra they are homomorphic if bothA and
S −A are even and if(PA)2 = (PS−A)2.

The generalized bracket naturally arising in this scheme
corresponds to the generalized Lie derivative of a vector field

LX(Y ) = [X,Y ] (9)

The contraction - denoted̂i - is defined by

îvf(x) = 0 (10)

îvd̂xA
α j = vA

α j

îv(d̂xA
α i∧d̂xB

β j) = vA
α j d̂xB

β j + (−1)σ(AB)d̂xA
α iv

B
β j

so that it is an anti-derivation when acting on 2-forms with
the same multiplet indices and a derivation on 2-forms with

different multiplet indices. As is clear from (10),î is com-
pletely determined by its action on 0, 1 and 2-eforms. In (10)
σ(AB)

σ(AB) =
A∑

i=1

B∑

j=1

δai bj
(11)

Now we turn our attention to the dynamical system. A min-
imum set of requirements is the following: given a vector
field V , the evolution equations are obtained from the con-
traction of the vector fieldV and the canonical 3-eformΩ3

asV cΩ3 and, to ensure that the structure is stable, the Lie
derivative of the 3-eform must vanish.

The problem then is the determination of the 3-eform and
vector fields so that the following conditions are satisfied:

VcΩ(3) = d̂H ∧ d̂G

LV Ω(3) = 0. (12)

The vector field, the 3-eform and the functionsH andG con-
sidered are

V = V0I + VSPS ; Ω(3) = Ω(3)
0 I + Ω(3)

S PS

H = H0I + HSPS ; G = G0I + GSPS , (13)

whereΩ(3)
K = Ωrsu

ρστ Kdxρ
r ∧ dxσ

s ∧ dxτ
u.

The Lie derivativeLV associated with a vector field
V =VAPA when acting on a p-eformψ = ψAPA is defined
by

LV ψ = PAPBLVA
ψB + d(VAcψB)ΦA B

C
PC , (14)

which must satisfyLV (ρ∧σ) = (LV ρ)∧σ + ρ∧(LV σ), and
the functionsΦAB

C
are still unknown. Ifψ is the 0-eform

ψ = P (A), where the parentheses indicate that a single
product of A factors of Clifford generators is present, then
LV P (A) = 0.

The total number of equations and efunctions in the set is

e = 2S

{
3S(3S − 1)

2
+ S(3S − 1)(3S − 2) + 1

}

f = 2S{S(3S − 1)(3S − 2) + 3S + 22S + 2} (15)

so that

f − e = 2S{22S + 1− 9S

2
(S − 1)}, (16)

which is always positive.

The expansion of the contraction of the vector field
with the 3-eform, where use has been made of
(PS)2 = (−1)S(S−1)/2I, is as follows:

(
v0cΩ(3)

0 + (−1)S(S−1)/2 vScΩ(3)
S

)
I

+
(
v0cΩ(3)

S v0cΩ(3)
S

)
PS

= (dH0 ∧ dG0 + (−1)S(S−1)/2 dHS ∧ dGS

)
I

+(dH0 ∧ dGS + dHS ∧ dG0)PS (17)
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from which

vα
i 0Ω

isu
αστ 0 + (−1)S(S−1)/2vα

i SΩisu
αστ S

=
∂(H0, G0)
∂(xσ

s , xτ
u)

+ (−1)S(S−1)/2 ∂(HS , GS)
∂(xσ

s , xτ
u)

(18)

and

vα
i SΩisu

αστ 0 + vα
i SΩisu

αστ 0 =
∂(H0, GS)
∂(xσ

s , xτ
u)

+
∂(HS , G0)
∂(xσ

s , xτ
u)

. (19)

To make contact with the Nambu dynamical system, it is
important to recall that the basic input when dealing with
triplets is a pair of functionally independent functions (the
Nambu functions). These will be taken to beH0 andG0 and
HS = HS(H0, G0), GS = GS(H0, G0). This leads to

vα
i 0Ω

isu
αστ 0 + (−1)S(S−1)/2vα

i SΩisu
αστ S

=
[
1 + (−1)S(S−1)/2

] ∂(HS , GS)
∂(H0, G0)

∂(H0, G0)
∂(xσ

s , xτ
u)

vα
i 0Ω

isu
αστ S + vα

i SΩisu
αστ 0 =

[
∂GS

∂G0
+

∂HS

∂H0

]
∂(H0, G0)
∂(xσ

s , xτ
u)

(20)

with at least one of the Jacobian∂(H0, G0)/∂(xσ
s , xτ

u) differ-
ent from zero, and at least one of the factors of these Jacobian
non-vanishing.

The6S equations withσ = τ make the computation of
the components of the vector field possible, if the determi-
nant of this system is different from zero. Consider the very
particular case in which the components of the 3-eform sat-
isfy

Ωiru
ασσ K = δσαΩiru

ααα K , K = 0, S. (21)

Then the6S equations simplify to include only two terms on
the left hand side since(i, r, u) must be all different. These
components of the vector field appear in two of the equations
and can easily be determined easily with the result

vα
i K = LK

∂(H0, G0)
∂(xα

r , xα
u)

, (22)

with (i, r, u) in cyclic order andLK function coefficient. The
Nambu form of the vector fields is recovered if at least one
of the LK is not zero so that it can be removed by a time
reparametrization.

Since the vector fields have components along the iden-
tity andPS , the composition of two vector fields with the gen-
eralized product[X,Y ] is a vector field along the identity and
PS , so that this subset is invariant [17]. The samething hap-
pens with a similar subset of p-eforms and efunctions, so that
the action of any of these vector fields will leave some sub-
set invariant. They correspond to the leaves of this dynamical
system with the important result that the Clifford structure al-
lows more leaves than in the case of a single multiplet, where
it is known that the leaves have either a dimension equal to
the dimension of the manifold, or zero.
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