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The Clifford structure of Nambu mechanics
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The consequences of the Clifford structure of Nambu mechanics with more than one multiplet are presented. The only case consider
that in whichS triplets are present.
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Se presentan las consecuencias de la existencia de una estructura de Clifford eamiaardeNambu con &s de un multiplete. &o se
presenta el caso detripletes.

Descriptores:Mecanica de Nambualgebra de Clifford.

PACS: 02.30.lk; 45.05.+x

The study of the Nambu dynamical system has led to the cor8-form, then it immediately follows that? = 0, so that it is
clusion that the Nambu tensor is decomposable if the Fundampossible to relate a certain powerwto the volume form.
mental Identity is to be satisfied [1-9]. This has the immedi-If the square ofv must be non vanishing, a modification of
ate consequence that there is a single multiplet and thereforthe exterior product is needed. The new exterior product is
if the original dynamical system is described by N variables defined for a couple of 1-eforms (extended form) by

then the manifold is N dimensional and irreducible except

for the singular points where it is zero-dimensional. This is 0°N6° = (—1)°*PgPRpe, (2

expressed by stating that the leaves are either of maximal di—h q livlet indi This implies that th
mensionality or zero-dimensional. A complete classification’/ '€T€ @ an ( are muliplet in Ices. IS Impfies that the
guare of a 3-eform does not vanish. To achieve this relation,

of the Nambu tensor in the neighborhood of a singular pointS

has been achieved [10]. Under the conditions that define H‘e usual 1-forms are modified so as to be the product of an

Nambu manifold, the study of this dynamical system is Com_ordlnary dSionm and_ an objetﬂ’a,-whose role is tq taI§e care
f the necessary signs. The simplest generalization of the

plete and this chapter of mathematical physics can be consir?— X . :
ered closed. ormer real variables is to construct algebra valued objects

Substantial changes must be incorporated if the dynamiygi = Px; the differential of this type of object is defined
cal system is required to admit more than a single multiplet,aS
so that a situation similar to the Hamiltonian scheme is con- dys, = Pdz? )
ceived. It is by now well established [11-16] that if a de- A !

scription admits a group &f mutiplets of dimensiork” each o that if (2) is to be satisfied, tHe* are determined by
so thatV = K S in an N dimensional manifold, a Clifford

structure is necessary so that the powers of the K-eform are P>PP 4 PAP™ =25, 41, 4)
non-vanishing for any od&’. This leadstoasetdf = K.S ) ) .
real variable = (z9),a = 1,...,5,i = 1,..., K andS which shows that th&< are the generators addhe identity

Clifford generatorsP® that span the algebra C(S) over the re-©f & Clifford algebra. In order to incorporate the full alge-
als so that the manifold iB(RXS)  C(S), whereF(RXS)  braic structure, theg ; must be generalized igf; = P45,

is the ring of smooth functions ovet’ <. whereA = (ay,...,a4) is a multi index in strict order and
The necessity of the Clifford structure is made evidentP” = P --- P“4; the number o3, is 352°. The man-
when considerings triplets, so that there ar&S real vari-  ifold considered now is the set of generalized functions -
ables and the evolution equation of a functipix) is given  called efunctions - with these objects & (yj3,;)) as argu-
by ments. An arbitrary efunctiorfi(y) belongs to the Clifford
s algebra
af _ Z o(f, Hi, Ha) 1) -
dt oz, 25, 2g)’ fly) = fz(x)P*, (5)

a=1

whered(...)/d(...) is a Jacobian determinant. If the evolu- where f4(x) is an ordinary smooth function of*°, and
tion equations must be constructed fréfjw, wherew isa  in (5) a sum over all subsets o elements taken from
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1,...,3S and a sum ove is implicit. The differential of different multiplet indices. As is clear from (10)js com-
an efunction is required to satisfy the conditions pletely determined by its action on 0, 1 and 2-eforms. In (10)
) L o(AB)
df(y) = dfz(x)P*, d(df(y)) =0 (6) A B
o(AB) =YY bas, (11)

To be sure that the operatiahis nilpotent of order two, the
partial derivation must be modified slightly. Let us it as the
operator * such that

i=1 j=1

Now we turn our attention to the dynamical system. A min-
imum set of requirements is the following: given a vector
rni B i B o i o field V, the evolution equations are obtained from the con-
0%'ys; = 05" (PPap ;) = PP PY63656(AB) (7)  traction of the vector field” and the canonical 3-efort®

asV]Q? and, to ensure that the structure is stable, the Lie

derivative of the 3-eform must vanish.
¢ B The problem then is the determination of the 3-eform and
cB vector fields so that the following conditions are satisfied:

— = 0 if A

5(A B) = { (_1)A(A—1)/2 if 4

B B V|Q® =dH A dG

The inclusion ofA in B means that?4 is a factor inP5.

3) _
The differential of an efunctiorf(y) = fzP? is defined as Ly =o0. (12)
L B The vector field, the 3-eform and the functiolisandG con-
df(y) =5z dys 05" (PP f5(x) sidered are .
_ . (3) _ OB (3)
:L(PZ)2(_1)A(A71)/2P§dx -ao‘if— Vi=Vol+VsPs; & 2 I+QS Ps
24 B H=Hol + HgPs; G=Gol+GsPs, (13)
B .
=P7df5(x), @) wheren? = Qrsu  dxp A dag A da,

The Lie derivative Ly associated with a vector field

which shows that the first of the requirements in (6) isvapr when acting on a p-eforny — P4 is defined
A VA - YA

satisfied and that the Clifford factor®“ are neutral as
far as computation of the differential. The definition of - -
the partial derivative shows that two of them commute if Lyt = PAPPLy 5+ d(Vg|yg) @5 PP, (14)
PAPB = pBPA and ar anti-commuting otherwise; its per-
mutation properties and the definition of the differential im-
ply thatd(df(y)) = 0, as required.

A vector field is a first order differential operato
U= U(’;‘i(x)é%i. A subalgebra of the algebra of vector fields
is a Lie algebra ifA = 0, which means those vector fields Lv
proportional to the Clifford identity. This is the only Lie sub-
algebra. IfPg = P! ... P9, then the transformation gener- s [35(85—-1)
ated byPs is an endomorphism of the Clifford algebra that e=2 { 2
relatesC' 4 with C's_ 4, so that as vector spaces these are iso-
morphic. As algebra they are homomorphic if bothand

which must satisiyCy (pAo) = (Lyp)Ao + pA(Ly o), and
the functions@%B are still unknown. Ify is the 0-eform

P Y= P@A) | where the parentheses indicate that a single
product of A factors of Clifford generators is present, then

PA — .
The total number of equations and efunctions in the set is
+S53BS-1)(35—-2)+ 1}

f=2%{(S(3S —1)(35 —2) +35 +2*° +2}  (15)

S — Aare even and ifP#)? = (P9~4)2. so that
The generalized bracket naturally arising in this scheme S (o2 98
corresponds to the generalized Lie derivative of a vector field foe=2702"+1-—(5-1}, (16)

which is always positive.
Lx(Y) = [X,Y] (©) . | |
The expansion of the contraction of the vector field
The contraction - denotdad is defined by with the 3-eform, where use has been made of
(Ps)? = (=1)35=1/2] is as follows:
i f(x) =0 10
1y f (%) (10) (UOJQ(()3> + (_1)5(5—1)/2 USJQ(SS))]
c5 A A
pdz, j = 3) @
. S — - Jr(UoJQfg UOJQS)PS
iv(d:véi/\d:vgj) = vfjdxﬁBj + (fl)U(AB)dxﬁivgj
- o _ = (dHy AdGo + (~1)SSTV2 g N dGs ) T
so that it is an anti-derivation when acting on 2-forms with
the same multiplet indices and a derivation on 2-forms with + (dHo NdGs + dHg N dGg) Ps a7)
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from which Then the6.S equations simplify to include only two terms on
pe Qs (L1)S(5-D/20 gisu the left hand side sinc@,r,lu) must be all different. These
¢ 00T 0 i 5% a0t S components of the vector field appear in two of the equations

_ O(Ho,Go) |, .\s(s-1)29(Hs,Gs) and can easily be determined easily with the result
= ooy (1) ———= (18)
(x5, 27,) O(xg, 27,) O(Ho, Go)
and 0K = LK e e 0, O), (22)
v Qisu 4 v 1SU _ 6(H0’ GS) a(HS7 GO)
i S8 aoT 0 i1 S8 oo 0 T o T o T i . i i .
O(xg, x]) O(xg,x7) with (¢, 7, w) in cyclic order and_ i function coefficient. The

To make contact with the Nambu dynamical system, it isNambu form of the vector fields is recovered if at least one
important to recall that the basic input when dealing withof the Lk is not zero so that it can be removed by a time
triplets is a pair of functionally independent functions (the reparametrization.

Nambu functions). These will be taken to bg andG, and Since the vector fields have components along the iden-
Hgs = Hs(Hy,Go), Gs = Gs(Hy, Go). This leads to tity and Ps, the composition of two vector fields with the gen-
b Qs (—1)5(5‘1)/%‘? isu eralized productX, Y] is a vector field along the identity and

1 0% aor 0 i 5% aor S Py, so that this subset is invariant [17]. The samething hap-

s (_1)5(5_1)/2} 9(Hs,Gs) 0(Ho, Go) pens with a similar subset of p-eforms and efunctions, so that

0(Ho,Go) 0(xg,x7) the action of any of these vector fields will leave some sub-

) set invariant. They correspond to the leaves of this dynamical

VI F ot Qi = {8615 4 9Hs } O(Ho, Go (20)  system with the important result that the Clifford structure al-
0Go  0Hy lows more leaves than in the case of a single multiplet, where

with at least one of the Jacobi@nH, Go)/9(x?, x7) differ- it is known that the leaves have either a dimension equal to

ent from zero, and at least one of the factors of these Jacobidhe dimension of the manifold, or zero.

non-vanishing.

The 65 equations withy = 7 make the computation of
the components of the vector field possible, if the determi-
nant of this system is different from zero. Consider the veryACknOWIedgment
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