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Orientifolios no-supersimétricos con branas y anti-branas
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Centro de F́ısica Téorica y Computacional, Fac. de Ciencias, Univ. Central de Venezuela,

Apartado Postal 47270, Caracas 1041-A, Venezuela

Recibido el 10 de diciembre de 2003; aceptado el 11 de mayo de 2004

Se estudian orientifolios de la cuerda IIB enT2d/ZN , con supersimetrı́a rota por la compactificación. Se determinan las condiciones de
cancelacíon de tadpoles incluyendo anti-branas y considerando distintas acciones de la paridadΩ. Utilizando estas condiciones se obtiene el
espectro de taquiones y estados de masa nula. Varios ejemplos conN par corresponden a orientifolios de la cuerda 0B.
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We study type IIB orientifolds onT2d/ZN with supersymmetry broken by compactification. We determine tadpole cancellation conditions
including anti-branes and considering different actions for parityΩ. Using these conditions we then obtain the spectrum of tachyons and
massless states. Various examples withN even correspond to type 0B orientifolds.
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1. Introducción

Los orientifolios permiten construir compactificaciones de
cuerdas abiertas comenzando sistemáticamente con un co-
ciente de la cuerda IIB por un grupo de simetrı́a que incluye
a Ω, el operador de paridad en la hoja de mundo. La proyec-
ción porΩ introduce superficies de Riemman no-orientables
en la expansión perturbativa. La amplitud vacı́o-vaćıo a 1-
lazo sobre la botella de Klein (K) tiene generalmente diver-
gencias creadas por tadpoles, cuyo origen es la existencia de
planos orientifolio de tensión negativa y cargados bajo po-
tenciales RR. Una forma natural de cancelar los tadpoles es
introducir Dp-branas de tensión positiva y cargas opuestas.
Cuerdas abiertas con extremos en branas tienen amplitudes
a 1-lazo sobre el cilindro (Cpq) y la cinta de M̈obius (Mp),
cuyas divergencias cancelan a las deK [1].

Una motivacíon fenomenoĺogica para estudiar modelos
con cuerdas abiertas es la posibilidad de realizar teorı́as en
las cuales los campos de calibre y materia cargada están con-
finados sobre las Dp-branas mientras que el campo gravita-
cional, proveniente de cuerdas cerradas, se propaga en todo el
espacio. Una consecuencia muy importante de este escenario
de mundo-brana es el desligamiento de la escala de la cuer-
da (Ms) de la masa de Planck. Por ejemplo, es posible tener
Ms ∼ 1Tev y aśı eliminar la necesidad de supersimetrı́a para
resolver el problema de la jerarquı́a de masas. Surge entonces
el inteŕes en estudiar cuerdas no-supersimétricas.

En este trabajo se discuten orientifolios con grupo de si-
metŕıa generado porΩ y una rotacíon de ordenN que rompe
supersimetŕıa. Veremos que las condiciones de cancelación
de tadpoles permiten incluir anti-branas y distintas acciones
de la paridadΩ para obtener nuevos modelos.

2. Generalidades

Consideramos orientifolios con grupo cociente de estructura
G = (11 + Ω)ZN . Para describir la acción del generadorθ de

ZN sobre losXM y ψM en el cono de luz (M = 2, · · · , 9)
es útil usar bases complejasY α = X2α+2 + iX2α+3 y
Ψα = ψ2α+2 + iψ2α+3, α = 0, · · · , 3, en las cualesθ es
diagonal,i.e. θY α = e2iπvαY α y θΨα = e2iπvαΨα, donde
Nvα ∈ Z puesθN = 11. El espacio-tiempo es(Mink)D con
D = 10 − 2d, y el espacio interno es el orbifolioT2d/ZN ,
con coordenadasY i, i = 4−d, · · · , 3. En los casos de interés
d ≤ 3. Nótese que invariancia de Lorentz requierevα ∈ Z
paraα = 0, · · · , 3− d.

El pequẽno grupoSO(8) se rompe aSO(D−2)×SO(2d)
y los estados de la cuerda se clasifican en términos de re-
presentaciones deSO(D − 2). Por ejemplo, en el sector
Neveu-Schwarz (NS) derecho de la cuerda cerrada los esta-
dos de masa nula sonψM

− 1
2
|0〉 que transforma como un vector

deSO(8) con pesos vectoriales8v = (±1, 0, 0, 0) que bajo
SO(D−2) corresponden a un vector yd escalares complejos
Ψi
− 1

2
|0〉. En el sector Ramond (R), el vacı́o tiene masa nula y

es espinor deSO(8) con pesos

8s = ±
(
−1

2
,
1
2
,
1
2
,
1
2

)
.

En general, a cada estado se le asigna un pesor deSO(8). La
proyeccíon GSO es

∑
a ra = impar. Adeḿas, la accíon deθ

es simplementeθ|r〉 = e2iπr·v|r〉, dondev = (v0, v1, v2, v3).
Los posibles valores de losvα est́an restringidos por la

condicíon de accíon cristaĺografica deθm sobre la red del
toroide interno. Adeḿas, dadoSv =

∑
α vα, invariancia mo-

dular imponeNSv = par. Para mantener supersimetrı́a es
necesario que existan estados|r〉 invariantes, cuandor es un
peso en8s. Al relajar esta condición se rompe supersimetrı́a.
Algunosv’s paraZN no-supersiḿetricos son:

Z2 (0, 0, 0, 1) Z5 (0, 0, 1
5 , 3

5 )

Z3 (0, 0, 0, 2
3 ) Z6 (0, 1

3 , 1
3 , 1

3 )
(1)

En estos ejemplosθm no produce reflexiones en las coor-
denadasY α y por lo tanto los orientifolios resultantes sólo
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contienen D9-branas. En elZ2 tenemos un orientifolio de la
cuerda 0B enD=10 puesv3 es entero y de hechoθ=(−1)FS ,
dondeFS es el ńumero fermíonico espacio-tiempo. EnZ6,
θ3 = (−1)FS .

2.1. Estados de cuerda cerrada

Invariancia modular requiere la existencia de sectores torci-
dos porθn, n = 0, · · · , N − 1. En cada sector los estados se
construyen tomando el producto tensorial|R〉 × |L〉 de mo-
dos derechos e izquierdos. A su vez,|R〉 = |NR, rnR〉 donde
NR es un ńumero de oscilación yrnR = rR + nv conrR pe-
so deSO(8) (similar para|L〉). Para construir los estados del
orientifolio se comienza tomando combinaciones invariantes
bajo la accíonZN . En el sector no-torcido es suficiente con
tener(rR− rL) · v entero para estados sin osciladores. En los
sectores torcidos es necesario tomar en cuenta la estructura de
puntos fijos. Luego se impone invariancia bajoΩ que inter-
cambia modos derechos con izquierdos. Las combinaciones
en los sectores NSNS y [NSR + RNS] deben ser simétricas,
en el sector RR antisiḿetricas. En los sectores torcidos se de-
be considerar queθn → θN−n bajoΩ.

2.2. Estados de cuerda abierta

Incluyendo etiquetasab para los extremos en Dp y Dq-branas
los estados son de la forma|φ, ab〉(λφ

pq)ab, dondeλφ
pq es la

matriz de Chan-Paton yφ representa los modos de los cam-
pos en la hoja de mundo. La acción deθm y Ωθm en la Dp-
brana se realiza por matrices unitariasγm,p y γΩm,p tales que
θm : λφ

pq → γm,pλ
φ
pqγ

−1
m,q y Ωθm : λφ

pq → γΩm,qλ
φ
pq

T
γ−1
Ωm,p

puesΩ intercambia los extremos. Las matricesγ forman una
representación deG, e.g.(Ωθm)2 = θ2m implica

γΩm,p = ε2m γ2m,pγ
T
Ωm,p. (2)

dondeε2m = ±1. Para determinarφ, y luego hallar los esta-
dos invariantes bajoG, es necesario especificar las condicio-
nes de frontera,i.e. el tipo de branas en los extremos. Sólo
trataremos con branas D9 y anti D9 (D9) que aparecen en
nuestros modelos.
• Estados99, 9̄9̄
Para cuerdas 99,φ corresponde exactamente a los modos de-
rechos de la cuerda cerrada. A cada estado se le asigna un
pesor deSO(8) con proyeccíon GSO

∑
a ra = impar que

elimina al taquíon y deja estados de masa nula conr = 8v en
el sector NS yr = 8s en el sector R. La matriz de Chan-Paton
λr

99 de los estados de masa nula invariantes debe cumplir

λr
99 = e2iπr·vγ1,9λ

r
99γ

−1
1,9 , λr

99 = −γΩ,9λ
r
99

T γ−1
Ω,9. (3)

Para cuerdas̄99̄ la función de particíon en el cilindro es
idéntica a la de cuerdas 99, de manera que los estados de
masa nula son iguales. Las condiciones de invariancia son
ańalogas a (3) con la diferencia de un signo menos extra en
la proyeccíon Ω para los estados R. Esto se debe al cambio
de signo en el sector R de la amplitud en la cinta de Möbius,
reflejo del signo opuesto de la carga RR deD9-branas.

• Estados99̄, 9̄9
La función de particíon en el cilindro se obtiene cambiando
el signo entre las dos contribuciones del sector NS. Es posi-
ble asignar pesos deSO(8) a los estados pero la condición
GSO cambia a

∑
a ra = par. El sector NS incluye al taquión

con r = 0 y no tiene estados de masa nula. En el sector R
hay estados sin masa pero con pesos espinorialesr = 8c de
diferente quiralidad. Invariancia bajoθ implica

λr
99̄ = e2iπr·vγ1,9λ

r
99̄γ

−1
1,9̄

. (4)

Bajo Ω, 99̄ → 9̄9, de forma que se retienen en el espectro la
mitad de los estados sin imponer más restricciones.

2.3. Cancelacíon de tadpoles

Las amplitudesK, Cpq y Mp tienen divergencias de tipo
(TNSNS − TRR)

∫∞
0

d`. Los tadpolesTNSNS y TRR no son
necesariamente iguales en ausencia de supersimetrı́a pero
sólo TRR debe anularse por consistencia [1]. Los tadpoles
se calculan como en el caso supersimétrico estudiado en la
Ref. 2 cuya notación utilizaremos, limit́andonos a describir
los cambios relevantes. Para simplificar sólo consideramos
ZN ’s de tipo (1), en particular,θm no incluye reflexiones.

La única modificacíon enK es la presencia de un coefi-
ciente de estructura de espı́n η0 1

2
(n) = −e−iπnSv en la traza

ZK(θn, θm). Este coeficiente es necesario para garantizar in-
variancia modular de la amplitud en el toroide y luego definir
proyecciones consistentes en los estados de cuerda cerrada.
Recordemos que sólo n = 0 y n = N

2 cuandoN es par
aparecen enZK. Para los tadpoles RR se encuentra que

TRR
K (n,m)=eiπnSv2D+IVDVI

∏

2mvj /∈Z
|2 sin (2πmvj)| , (5)

dondeI (VI ) es la dimensíon (volumen) del sub-espacio com-
pacto invariante bajoθm, y VD es el volumen regularizado del
espacio no-compacto. Es importante resaltar que estos tadpo-
les son creados por estados RR en el sector cerrado torcido
porθ2m. CuandoN es par los tadpoles RR se cancelan pues

N−1∑
m=0

TRR
K (0,m) + TRR

K (N/2,m) = 0.

Sin embargo, hay tadpoles NSNS proporcionales aV10 que
pueden ser cancelados introduciendo D9-branas. Los tadpo-
les RR creados por las D9-branas pueden a su vez ser cance-
lados conD9-branas.

En el cilindroC99 el tadpole RR es

TRR
99 (m) = (Tr γm,9)

2
VDVI

∏

mvj /∈Z
|2 sin (πmvj)| . (6)

Estos tadpoles son producidos por estados RR en el sector de
cuerda cerrada torcido porθm. EnM9 se encuentra que

TRR
9 (m) = −26−d+I (ε2m Tr γ2m,9)VDVI

×
∏

mvj∈Z
eiπmvj

∏

mvj /∈Z
−2sj |sin (πmvj)| (7)
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dondesj = |cos (πmvj)| / cos (πmvj). En Möbius los tad-
poles provienen del sector cerrado torcido porθ2m

Para evaluar los tadpoles creados porD9-branas se pro-
cede similarmente, considerando los cambios de signo de-
bidos al signo opuesto de la carga RR. El tadpole RR en
C9̄9̄ es ańalogo a (6), enM9̄ difiere de (7) en un signo me-
nos y enC99̄ junto conC9̄9 se obtiene a partir de (6) re-
emplazando(Tr γm,9)

2 por −2Tr γm,9Tr γm,9̄. En la can-
celacíon de tadpoles la presencia deD9-branas equivale a
Tr γm,9 → Tr γm,9 − Tr γm,9̄, al igual que enZN super-
simétricos [3].

Los t́erminos (5), (6) y (7) se clasifican según su depen-
dencia en volumen. En ejemplos tipo (1),θm ó deja inva-
riante todoT2d y VDVI es el volumen totalV10, ó no deja
sub-espacio invariante yVI = 1 por definicíon. Existen śolo
tadpoles proporcionales aV10 y VD. Adeḿas, para determi-
nar las condiciones de cancelación es fundamental agrupar
los tadpoles de acuerdo al sector torcido cerrado que contri-
buye. ParaN impar y∀m se obtiene

Tr γ2m,9 − Tr γ2m,9̄ = 32ε2m

d∏

j=1

cos(mπvj). (8)

ParaN par, la cancelación de los tadpoles RR enK indica la
existencia de dos planos orientifold de cargas opuestas. Por
consistencia se deben cancelar los tadpoles RR en Möbius lo
cual requiereγΩm,p = ε2m−Nγ2m−NγT

Ωm,p param ≥ N/2.
Adicionalmente se debe cumplir

Tr γm,9 − Tr γm,9̄ = 0 , ∀m. (9)

Esta es la condición de cancelación de tadpoles RR
en orientifolios 0B en T2d/Z̃N/2, con N/2 impar y
ṽ = (v0, v1, v2, v3 − 1).

3. Modelos

Luego de determinar las matricesγ que satisfacen (8)́o (9),
y forman una representación deG, se procede a deducir el
espectro de estados. En el sector abierto hay dos opciones
para la accíon deΩ, i.e. dos tipos de proyección: ortogonal
conγΩ,p = γT

Ω,p (ε0 = 1) y simpĺectica conγΩ,p = −γT
Ω,p

(ε0 = −1). Analizaremos los casosZ2 y Z3 en (1).
• Z2, D = 10
Los estados pertenecen a representaciones deSO(8). En el
sector no-torcido cerrado sobreviven1 + 35 + 28 (dilatón,
gravitón y tensor antisiḿetrico), mientras que en el sector tor-
cido hay un taquíon, denotado1−, y otro 28. En el sector
abierto con proyección ortogonal se tomaγΩ,9 = 112n (matriz
de dimensíon 2n × 2n). Sin perder generalidad,γ2

1,9 = 112n

y γ1,9 = diag(112n1 ,−112n2), conn = n1 +n2. Similarmen-
te, γΩ,9̄ = 112n̄ y γ1,9̄ = diag(112n̄1 ,−112n̄2). Las condicio-
nes (9) implicann1 = n̄1 y n2 = n̄2. Paran1 + n2 = 32

se cancelan también los tadpoles NSNS. Los estados 99 son
vectores de calibre del grupoSO(2n1) × SO(2n2), y fer-
miones8s que transforman en una representación bifun-
damental. Los estados̄99̄ son ańalogos. El sector99̄ in-
cluye taquiones y fermiones8c. La materia cargada bajo
SO(2n1)× SO(2n2)× SO(2n̄1)× SO(2n̄2) es:

1− [(¤, 1; ¤, 1) + (1, ¤; 1, ¤)]

+8s [(¤, ¤; 1, 1) + (1, 1; ¤,¤)] (10)

+8c [(¤, 1; 1,¤) + (1, ¤; ¤, 1)] .

Estos resultados coinciden con los obtenidos en la Ref. 4. Con
ε0 = −1 se encuentran nuevos modelos. Ahora tenemos

γΩ,9 =
(

iJ2n1 0
0 iJ2n2

)
J2n =

(
0 11n

−11n 0

)
. (11)

Las matricesγm,p son las del caso ortogonal. El grupo resul-
tante esUSp(2n1)× USp(2n2)× USp(2n̄1)× USp(2n̄2).
La materia cargada se resumen igual que en (10). El espectro
es libre de anomalı́as de calibre irreducibles, de hecho la ano-
maĺıa total factoriza y puede ser cancelada por el mecanismo
Green-Schwarz.
• Z3, D = 8
Los estados pertenecen a representaciones deSO(6). En el
sector no-torcido cerrado en NSNS sobreviven1 + 20 + 1,
en RR1 + 15 y en [NSR + RNS]4. En los sectores torcidos
resultan tres copias de1−+1 en NSNS y1+15 en RR. Para
el sector abierto con proyección ortogonal tenemos

γΩ,9 =




112n1 0 0
0 0 11n2

0 11n2 0


 . (12)

Además, γ1,9 = diag(112n1 , e
2πi
3 11n2 , e

4πi
3 11n2). ParaD9-

branas las matrices son análogas. Las condiciones (8) im-
plican n1 = n̄1 y n2 = 16 + n̄2. En el sector 99 ȳ99̄
los estados de masa nula son vectores de calibre, escala-
res 1 y fermiones4 cargados. El grupo es el producto de
G9 = SO(2n1) × U(n2) y G9̄ = SO(2n̄1) × U(n̄2). En el
sector99̄ hay taquiones y fermiones̄4 cargados. Por ejemplo,
paran1 = 0, el espectro cargado bajoU(16 + n̄2)× U(n̄2),
sin incluir antipart́ıculas, es:

1−
[
(¤; ¤) + (¤;¤)

]
+ 1

[
(¤¤; 1) + (1;¤¤)

]
+

4
[
(¤¤; 1) + (1; ¤¤)

]
+ 4̄ [(¤; ¤)] . (13)

En la proyeccíon simpĺectica,G9 = USp(2n1) × U(n2) y
G9̄ = USp(2n̄1) × U(n̄2), con n̄1 = n1 y n̄2 = 16 + n2.
El espectro fermíonico es b́asicamente el del caso ortogonal
intercambiando las representaciones de los gruposG9 y G9̄.
La anomaĺıa total no-abeliana factoriza apropiadamente.
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