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Orientifolios no-supersimétricos con branas y anti-branas
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Se estudian orientifolios de la cuerda I1B @3¢ /Zyx, con supersimeia rota por la compactifican. Se determinan las condiciones de
canceladn de tadpoles incluyendo anti-branas y considerando distintas acciones de la Qatiltidando estas condiciones se obtiene el
espectro de taquiones y estados de masa nula. Varios ejemplds gancorresponden a orientifolios de la cuerda 0OB.

Descriptores:Cuerdas no-superségtricas; orientifolios; D-branas.

We study type IIB orientifolds of'?¢/Zy with supersymmetry broken by compactification. We determine tadpole cancellation conditions
including anti-branes and considering different actions for paeityJsing these conditions we then obtain the spectrum of tachyons and
massless states. Various examples witleven correspond to type 0B orientifolds.
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1. Introduccion Zn sobre losX™ y 4™ en el cono de luzX[ = 2,---,9)
es (til usar bases complejags® = X2°+2 4 jx2o+3 y

Los orientifolios permiten construir compactificaciones de ) ;
P P Ve = ¢p20+2 4 jgh20+3 o = 0,---,3, en las cuale¥ es

cuerdas abiertas comenzando sisigéoamente con un co- diagonalie. 0% — e2imvaya y 9o — o2imape donde
ciente de la cuerda IIB por un grupo de siretjue incluye 9 AN your =c¢ . \D

af), el operador de paridad en la hoja de mundo. La proyec]-VU“ € Z puesy™ = 1. E! e;pamo-ﬂempo e(g\/hnlé)d con
cion por) introduce superficies de Riemman no-orientablesD =10—2d,y ei espacio interno es el orbifolip /.Z]Y’
en la expangin perturbativa. La amplitud vasvado a 1- 2" coordenadas’, ; = 4—d, --- , 3. En los casos de intes
lazo sobre la botella de Kleirk]) tiene generalmente diver- g;aj._l\lgtese (?))ue (linvarlanma de Lorentz requiese€ Z
gencias creadas por tadpoles, cuyo origen es la existencia o |

planos orientifolio de teng8h negativa y cargados bajo po- El pequéio grupaSO(8) se rompe.a.;O(D’—2)><SO(2d)
tenciales RR. Una forma natural de cancelar los tadpoles é’slos estados de la cuerda se clasifican @minos de re-

introducir Dp-branas de tensh positiva y cargas opuestas. presentaciones dgO(D — 2). Por ejemplo, en el sector

Cuerdas abiertas con extremos en branas tienen ampIitung\/(;u'SChwarZI (Nzl)f{\(lje(r)echo (;ie la fcuerda cerrada Iost esta-
a 1-lazo sobre el cilindroc),) y la cinta de Mbius (M,), ~ 00S de masanulasarn, |0) que transforma como un vector

cuyas divergencias cancelan a las@]. de SO(8) con pesos vectoriale®, = (+1,0,0,0) que baj_o
Una motivachn fenomendgica para estudiar modelos ©O(D —2) corresponden a un vectoriescalares complejos
con cuerdas abiertas es la posibilidad de realizaigsan Y- 1|0)- En el sector Ramond (R), el vadiene masa nulay

2

las cuales los campos de calibre y materia cargadaesn- €S espinor d&€O(8) con pesos

finados sobre las Pbranas mientras que el campo gravita- 1111
cional, proveniente de cuerdas cerradas, se propaga en todo el 8 ==+ (_27 29’ 2) ‘
espacio. Una consecuencia muy importante de este escenayio .
de mundo-brana es el desligamiento de la escala de la cu n gene'ral, a cada estado ge le asigna u,mpdeGOﬂ(S). La
da (M,) de la masa de Planck. Por ejemplo, es posible tend}'?Yeccon GSO € 7a = lpat. Aders, la acdn def
M, ~ 1Tev y ad eliminar la necesidad de supersiniapara > simplementéir) = e ), dondew = (vo, vy, vz, v3).

resolver el problema de la jerafiqude masas. Surge entonces Iaos po§|bles ﬁvalor.ei %e IQ?“ ezé;giestr;)nguljos %O(rj Ia|1
el inteés en estudiar cuerdas no-supegtingas. condicon de acan cristabgrafica sobre 1a red de

En este trabajo se discuten orientifolios con grupo de gjloroide interno. Aderas, dadds, = 3, va, invariancia mo-

. . dular imponeN S,, = par. Para mantener supersimates
metia generado pdr y una rotaddbn de ordenV que rompe ; . . :
- - .. hecesario que existan estadosinvariantes, cuando es un
supersimeta. Veremos que las condiciones de cancélaci

o X . - ! eso erB;. Al relajar esta condiéin se rompe supersimgir

de tadpoles permiten incluir anti-branas y distintas accione \ o )
X lgunosv’s paraZ  no-supersiratricos son:

de la paridad? para obtener nuevos modelos.
ZQ (0a07071> Z5 (0707 %7%)
2. Generalidades Zs | (0,0,0,2) | Zg | (0,3,3,3)
Consideramos orientifolios con grupo cociente de estructura En estos ejemplag™ no produce reflexiones en las coor-
G = (1 4+ Q)Zy. Para describir la acon del generadat de  denadag’® y por lo tanto los orientifolios resultanteéle

@)
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contienen D9-branas. En Bl, tenemos un orientifolio de la e Estado$9, 99
cuerda 0B erD=10 puesvs es entero y de heclte=(—1)%s, La funcion de partigdbn en el cilindro se obtiene cambiando
dondeFs es el umero fermbnico espacio-tiempo. EHg, el signo entre las dos contribuciones del sector NS. Es posi-

03 = (—1)%s. ble asignar pesos d¢0(8) a los estados pero la condiai
GSO cambia @, r, = par. El sector NS incluye al tagain
2.1. Estados de cuerda cerrada conr = 0y no tiene estados de masa nula. En el sector R

L . , , hay estados sin masa pero con pesos espinoriates. de
Invariancia modular requiere la existencia de sectores torciitarente quiralidad. Invariancia bajamplica

dos pord™, n = 0,--- , N — 1. En cada sector los estados se
construyen tomando el producto tensoti@} x |L) de mo- Agg = €
dos derechos e izquierdos. A su va2) = |Ng, r,z) donde

Ng es un imero de oscilabn yr, g = rr + nv conrg pe-

so deSO(8) (similar parg L)). Para construir los estados del
orientifolio se comienza tomando combinaciones invariante
bajo la acdbn Z . En el sector no-torcido es suficiente con

tener(rp — 1) - v entero para estados sin osciladores. En 103 g5 amplitudes, C,, y M, tienen divergencias de tipo
sectores torcidos es necesario tomar en cuenta la estructura@e\ISNS _ TRR) fooc d¢. Los tadpoleg NSNS y TRR g son

puntos fijos. Luego se impone invariancia b&jaue inter-  necesariamente iguales en ausencia de supergnpEro
cambia modos derechos con izquierdos. Las combinaciongg|o TRR debe anularse por consistencia [1]. Los tadpoles

en los sectores NSNS y [NSR + RNS] deben sewsiivas,  se calculan como en el caso supefiico estudiado en la
en el sector RR antisi@tricas. En los sectores torcidos se de-Ref. 2 cuya notaéin utilizaremos, limiandonos a describir

2imr-v T

71,9)\997;5- 4)

Bajo 2, 99 — 99, de forma que se retienen en el espectro la
mitad de los estados sin imponeasrestricciones.

2.3. Canceladdn de tadpoles

be considerar qué¢" — 6" ~" bajoQ. los cambios relevantes. Para simplificatosconsideramos
) Zn’s de tipo (1), en particulaf™ no incluye reflexiones.
2.2. Estados de cuerda abierta La Gnica modificadn enk es la presencia de un coefi-
H 4 _ __ ,—imnSy
Incluyendo etiquetash para los extremos emDy Dg-branas ciente de estructura de 8o (n) = —e enlatraza

Zi(0™,0™). Este coeficiente es necesario para garantizar in-
variancia modular de la amplitud en el toroide y luego definir
proyecciones consistentes en los estados de cuerda cerrada.

los estados son de la forma, ab) (A3, )as, donde)?, es la
matriz de Chan-Paton ¢ representa los modos de los cam-
pos en la hoja de mundo. La agnided™ y Q0™ en la Dp-

¢ - - N
brana se realiza por matrices unitarigs, Yy yam p tales que Recordemos quebl n = 0y n = 5 cuando es par
07 X0 s AP ALy QO AP s g, AD Tv_l aparecen e . Para los tadpoles RR se encuentra que
* 'pq m,p*pq Im,q * 'pq M4 pq  IQm,p )
pues() intercambia los extremos. Las matrieeorman una  TRR(n, m)=e'™5v 2P+ 7,1 H |2sin (2mmw;)|, (5)
representadin deg, e.g.(Q20™)? = §*™ implica 2mu; ¢

(2)  dondel (V) es ladimendin (volumen) del sub-espacio com-
pacto invariante bajé™, y Vp es el volumen regularizado del

dondee,,,, = £1. Para determinag, y luego hallar los esta- espacio no-compacto. Es importante resaltar que estos tadpo-

dos invariantes bajg, es necesario especificar las condicio-|es son creados por estados RR en el sector cerrado torcido

nes de frontera,e. el tipo de branas en los extremoI&  porg2™. Cuandal es par los tadpoles RR se cancelan pues
trataremos con branas D9 y anti DBY) que aparecen en

nuestros modelos.
e Estado9)9, 99

Para cuerdas 99, corresponde exactamente a los modos de- )
rechos de la cuerda cerrada. A cada estado se le asigna i €mPargo, hay tadpoles NSNS proporcionalésaque

pesor de SO(8) con proyecdn GSO)__ r, = impar que pueden ser cancelados introduciendo D9-branas. Los tadpo-
elimina al taqubn y deja estados de maga?,ma con 8, en les RR creados por las D9-branas pueden a su vez ser cance-
el sector NSy = 8, en el sector R. La matriz de Chan-Paton [2d0s conD9-branas.
M5, de los estados de masa nula invariantes debe cumplir En el cilindroCyy el tadpole RR es
T3 (m) = (Tr Ym,0)* Vo Vr H |2 sin (mmu;)]| . (6)

mu; ¢7

_ T
Yam,p = €2m V2m,pVYQm, p-

N-1
> TR0, m) + TER(N/2,m) = 0.
m=0

ro __ _2iwrv r —1 ro_ r T _ —1
Agg =€ 71,9)‘9971,9a Agg = —72,9\g9 Ya,9 3

Para cuerdas9 la funcion de partiadn en el cilindro s g4 tadnoles son producidos por estados RR en el sector de
idéntica a la de cuerdas 99, de manera que los estados gg

. . . o erda cerrada torcido péf*. En Mg se encuentra que
masa nula son iguales. Las condiciones de invariancia son
ardlogas a (3) con la diferencia de un signo menos extra en Tot(m) = —2579+1 (e, Tr Yom,0) Vb Vi
la proyecchn 2 para los estados R. Esto se debe al cambio N )
de signo en el sector R de la amplitud en la cinta dibMs, X H e H —2sj [sin (mmoy)|  (7)
reflejo del signo opuesto de la carga RRRdebranas. mu; €7 mv;¢Z
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dondes; = |cos (mmw;)| / cos (mmw;). En MBbius los tad-  se cancelan tamé los tadpoles NSNS. Los estados 99 son

poles provienen del sector cerrado torcido @6? vectores de calibre del grup®O(2n,) x SO(2ns), y fer-
Para evaluar los tadpoles creados POrbranas se pro- miones8, que transforman en una represeriacbifun-

cede similarmente, considerando los cambios de signo delamental. Los estado3) son arlogos. El secto®9 in-

bidos al signo opuesto de la carga RR. El tadpole RR erluye taquiones y fermione8.. La materia cargada bajo

Cgg es adlogo a (6), enMjg difiere de (7) en un signo me- SO(2n;) x SO(2ns) x SO(271) x SO(272) €s:

nos y enCqs junto conCsy Se obtiene a partir de (6) re-

emplazando(Tr y,,,9)° POr —2Tr ¥, 9Tt ,,, 9. EN la can- 17 [(O,10,1) + (1,01,0)]

celacbn de tadpoles la presencia -branas equivale a 48, (0,01, 1) + (1, 1;0,00)] (10)
Trymoe — Tryme — Trv,, s, al igual que erZy super-

simetricos [3]. +8.[(0,1;1,0) + (1,5;0,1)] .

Los terminos (5), (6) y (7) se clasifican degsu depen-
dencia en volumen. En ejemplos tipo (8)" 6 deja inva- Estos resultados coinciden con los obtenidos en la Ref. 4. Con

riante todoT2¢ y V,V; es el volumen total/;, 6 no deja €0 = —1 S€ encuentran nuevos modelos. Ahora tenemos
sub-espacio invariante; = 1 por definicbn. Existen 8lo )
| idap, 0 I — 0 1, (11)
7&2,9 - 0 ZJan 2n — _]ln 0 .

tadpoles proporcionalesia, y Vp. Ademas, para determi-
nar las condiciones de cancelaties fundamental agrupar
los tadpoles de acuerdo al sector torcido cerrado que contrj-gg matricesy,, , son las del caso ortogonal. El grupo resul-
buye. ParaV impar yvm se obtiene tante ed/.Sp(2n1) x USp(2ns) x USp(2n1) x USp(2n9).
d La materia cargada se resumen igual que en (10). El espectro
Tr vom,0 — Trvs,, 5 = 3262, H cos(mmv;). 8) es libre de anom_&is de calibre irreducibles, de hecho la ano-
' malia total factoriza y puede ser cancelada por el mecanismo
Green-Schwarz.
ParaN par, la canceladn de los tadpoles RR é@indicala e Z;, D =8
existencia de dos planos orientifold de cargas opuestas. Ppbs estados pertenecen a representacionesié). En el
consistencia se deben cancelar los tadpoles RR@iud lo  sector no-torcido cerrado en NSNS sobreviten 20 + 1,
cual requiereygm p = €2m-NY2m-NYm,, Param > N/2.  en RR1 + 15y en [NSR + RNSH. En los sectores torcidos
Adicionalmente se debe cumplir resultan tres copias de” +1 en NSNS y1 + 15 en RR. Para
el sector abierto con proyeéei ortogonal tenemos

Jj=1

Tr”Ym,Q_Trﬁ/m’g’):O ,  Vm. (9)
]12n1 0 0
Esta es la condioh de canceladbn de tadpoles RR Voo = 0 0 1., |. (12)
en orientifolios 0B enT??/Zy/,, con N/2 impar y ’ 0 1, O

V= (Uo,vl,vg,’l}g — 1).
47

Ademas, y1.9 = diag(llg,,,e’s 1,,,e5 1,,). ParaD9-

3. Modelos branas las matrices son&agas. Las condiciones (8) im-
plicann; = f; Y no = 16 + 7is. En el sector 99 99
Luego de determinar las matricesjue satisfacen (&) (9), los estados de masa nula son vectores de calibre, escala-

y forman una representdxi deG, se procede a deducir el res1 y fermiones4 cargados. El grupo es el producto de
espectro de estados. En el sector abierto hay dos opcionés = SO(2n1) x U(nz) y G5 = SO(2n1) x U(72). En el
para la acén de(, i.e. dos tipos de proyecon: ortogonal  sector99 hay taquiones y fermionescargados. Por ejemplo,

convyg,p, = %Tz’p (e0 = 1) y simpkctica conyg,, = _yg’p paran; = 0, el espectro cargado ba§&(16 + 7n2) x U(7iz),
(e0 = —1). Analizaremos los casds, y Zs en (1). sin incluir antipariculas, es:

L] ZQ, D =10

Los estados pertenecen a representacionest@). En el 17 [(0;0) + (G;0)] +1 {(H; 1)+ (1; H)} +
sector no-torcido cerrado sobrevivént 35 + 28 (dilaton,

gravitdon y tensor antisifgtrico), mientras que en el sector tor- 4 [(H; 1)+ (1; D])] +4[(0;0)]. (13)

cido hay un taguin, denotadd —, y otro 28. En el sector

abierto con proyecoti ortogonal se tomg, g = 1o, (Matriz  En la proyecdn simpkctica,Gy = USp(2n1) x U(ng) y
de dimensdn 2n x 2n). Sin perder generalidad? , = 12, Gy = USp(2ii1) x U(na), cONfiy = ny y fig = 16 + no.

Y 7.0 = diag(lla,,, —1a,,), cONn = n; 4 ny. Similarmen-  El espectro ferndinico es Asicamente el del caso ortogonal
te,vq5 = llon ¥ 11,5 = diag(llzs,, —1l25,). Las condicio-  intercambiando las representaciones de los grapog Gs.
nes (9) implicann; = n; y ny = no. Paran; + ny = 32 La anomaila total no-abeliana factoriza apropiadamente.
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