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Se obtienen nuevas soluciones pared de dominio gravitantes del tipo BPS que poseen lı́mite de pared delgada bien definido, empleando el
formalismo de primer orden propuesto por K. Skenderis y P.K. Townsend y O. DeWolfe, D.Z. Freedman, S.S. Gubser y A.Karch, y que
pueden ser relevantes en los denominados escenarios Randall-Sundrum.
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Smooth solutions of gravity-scalar models which represents BPS domain wall spacetimes with a well defined thin wall limit are obtained
employing the first-orden formalisn of Skenderis & Towsend and DeWolfe, Freedman, Gubser & Karch. These, solutions provide explicit
examples of Randall-Sundrum thick domain wall
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1. Introducción

Recientemente la posibilidad de que nuestro universo pue-
da ser representado por una pared infinitamente delgada o
3-brana embebida en un espacio de dimensionalidad alta, ha
sido ampliamente investigada. Ası́, es posible reproducir gra-
vedad newtoniana sobre la brana y proveer una explicación
de las jerarqúıas entre las fuerzas débiles y gravitacionales en
los denominados escenarios Randall-Sundrum [1,2].

Para generar soluciones pared de dominio gruesa en
espacio-tiempos estáticos Townsend y Skenderis [3], y De-
Wolfe, Freedman, Gubser y Karch [4] han presentado una
manera de simplificar el sistema de ecuaciones Einstein-
Campo escalar, logrando generar soluciones que son pare-
des de dominio del tipo denominado Bogomol’nyi-Prasad-
Sommerfield (BPS) que dependen de una sola función arbi-
traria, o superpotencial. Estas paredes de dominio BPS son
soluciones al sistema de ecuaciones Einstein-campo escalar
que interpolan entre ḿınimos degenerados de un potencial
con rompimiento espontáneo de simetrı́a discreta, que extre-
mizan el funcional de Bogomol’nyi y se encuentran en un es-
pacio AdS. Las paredes BPS proveen versiones suaves de los
escenarios Randall-Sundrum. En dichas paredes, el potencial
no es definido positivo. Sin embargo, extrayendo del tensor
enerǵıa impulso la contribución que puede ser interpretada
como proveniente de la constante cosmológica [5], el tensor
enerǵıa impulso restante satisface las condiciones de energı́a
débil, dominante y viola la condición de enerǵıa fuerte [6].

En el presente trabajo se generan nuevas soluciones pare-
des de dominio gruesas mediante el método del superpoten-
cial propuesto por Townsend y Skenderis y DeWolfe, Freed-
man, Gubser y Karch, parametrizadas de manera tal que los
espaciotiempos resultantes poseen lı́mite de pared delgada
bien definido en el sentido de las distribuciones [5].

Consideraremos nuevas soluciones pared de dominio
gruesa BPS que posean lı́mite de pared delgada.

2. Paredes de dominio BPS

Consideremos la acción de gravedad D-dimensional acoplada
a un campo escalarφ

S =
∫

dxD√−g

[
1
2
R− 1

2
(∂φ)2 − V (φ)

]
, (1)

donde la ḿetrica tiene la forma genérica

ds2 = e2A(ξ)ηµνdxµdxν + dξ2, (2)

y dondeV (φ) es un potencial de autointeracción.
El sistema de ecuaciones Einstein-campo escalar D-

dimensional se resuelve en términos de una sola función o
superpotencialω (φ)

A′ ≡ −2ω (φ) , (3)

φ′ = 2 (D − 2)
dω

dφ
, (4)

y

V (φ)=2 (D−2)

[
(D − 2)

(
dω

dφ

)2

−(D − 1) ω2 (φ)

]
. (5)

3. Nuevas soluciones pared de dominio BPS

En la Ref. 4 se asegura que se puede obtener una solución
pared de dominio gruesa con un lı́mite pared delgada bien
definida, si la funcíon φ (ξ) es esencialmente la misma que
describe a una pared de dominio okinken ausencia de grave-
dad. Espećıficamente:

i) Que en el ĺımite de pared delgada, se reduzca a un arre-
glo de funciones escalón
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ii) Que sus primeras derivadas sean negativas y alcancen
una coleccíon de funciones delta.

iii) Además se requiere queφ (ξ) sea positiva, lo que ase-
gura que sea invertible.

4. Pared de dominio gruesa BPS con
Λ = −4

3
β2Λ = −4

3
β2Λ = −4

3
β2

Consid́erese el campo escalarφ (ξ) sugerido en la Ref. 4, pe-
ro paraḿetrizado de manera tal queδ > 0 juega el papel del
ancho de la pared

φ (ξ) =
√

2δ tanh
(

β

δ
ξ

)
(6)

y supongamos queD = 4. Es f́acil verificar que(φ′)2 provee
una familiaδ.

El sistema de ecuaciones de primer orden (3), (4) y (5)
queda resuelto por

ω (φ) =
β

2
√

2δ
φ (ξ)

[
1− φ2 (ξ)

6δ

]
, (7)

de donde obtenemos

A (ξ) = −δ

3

[
2 ln

(
cosh

(
β

δ
ξ

))
+

1
2

tanh2

(
β

δ
ξ

)]
(8)

y

V (φ) =
β2

δ

[
1− (2+3δ)

2δ
φ2 (ξ) +

(1 + 2δ)
4δ2

φ4 (ξ)

− 1
24δ2

φ6 (ξ)
]

. (9)

Nótese queV (φ) no est́a acotado por debajo y que sus puntos
cŕıticos son:

i) φ = 0, máximo secundario,

ii) φ = ±√6δ + 4, máximos principales ,

iii) φ = ±
√

2δ, mı́nimos,

donde el paŕametro δ representa el espesor de la pared.
Además,

ĺım
δ→0

(Gµ
ν + Λgµ

ν ) = −4
3
β δ (ξ)

(
∂µ

t dtν + ∂µ
y dyν + ∂µ

z dzν

)
,

dondeΛ = (−4/3)β2 es la constante cosmológica.Por lo que
tenemos una solución donde:

i) φ (ξ) es una funcíon que toma valores distintos para
±∞.

ii) (φ′)2 es una familia delta.

iii) Los ḿınimos del potencial coinciden con los puntos
cŕıticos del superpotencial, lo cual garantiza que estos
mı́nimos son vaćıos estables [3].

iv) El campo escalar interpola entre los mı́nimos del po-
tencial.

v) Posee ĺımite de pared delgada.

vi) Asintóticamente, tenemos un espacio-tiempo
4-dimensional AdS conΛ = (−4/3)β2.

5. Pared de dominio en un espacio-tiempo4-D
asintóticamente plano por un lado y por el
otro AdS

Se propone como nueva solución el siguiente campo escalar,
en un espacio-tiempoD = 4:

φ (ξ) =
√

δe−e−
β
δ

ξ

, (10)

donde (φ′)2 es una familia delta, como puede verificarse
fácilmente, conδ > 0.

Entonces como solución al sistema de Ecs. (3), (4) y (5)
se tiene

ω (φ) =
β

4δ
φ2


1

4
−

ln
(

φ√
δ

)

2


 , (11)

de donde obtenemos

A (ξ) = −δ

8

(
e−2e−

β
δ

ξ

+ Ei
(
1, 2e−

β
δ ξ

))
, (12)

dondeEi es la integral exponencial definida como

Ei (n, x) =

∞∫

t=1

e−xt

tn
dt, n = 0, 1, 2, . . . ;<x > 0.

El potencial de autointeracción viene dado por

V (φ) =
β2

2δ2
φ2

[(
1− 3

8
φ2

)
ln2

(
φ√
δ

)

+
3
8
φ2 ln

(
φ√
δ

)
− 3

32
φ2

]
. (13)

Con respecto a sus puntos crı́ticos, es f́acil verificar que
ω′ (φ) = 0 paraφ = 0 o φ =

√
δ, éstos son los puntos

cŕıticos del superpotencial y coinciden con algunos del po-
tencial.

Las componentes del tensor de Einstein vienen dadas en
este caso por

Gt
t = −β2

2δ
e−2e−

β
δ

ξ

[
2e−2 β

δ ξ − 3
8
δe−2e−

β
δ

ξ

e−2 β
δ ξ

− 3
8
δe−2e−

β
δ

ξ

e−
β
δ ξ +

3
32

δe−2e−
β
δ

ξ

]
, (14)
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dondeGt
t = Gx

x = Gy
y.

Gξ
ξ =

β2

2
e−2e−

β
δ

ξ

[
−3

8
e−2e−

β
δ

ξ

e−2 β
δ ξ − 3

8
e−2e−

β
δ

ξ

e−
β
δ ξ

]

+
3β2

64
e−4e−

β
δ

ξ

. (15)

Consid́erese a continuación el ĺımite de pared delgada

ĺım
δ→0

Gt
t = −β

4
δ (ξ) + Θ(ξ)

3β2

64
,

dondeΘ(ξ) es la distribucíon de Heaviside.
De la misma manera, paraGξ

ξ se obtiene

ĺım
δ→0

Gξ
ξ = Θ(ξ)

3β2

64
.

Por lo tanto,

ĺım
δ→0

(Gµ
ν ) =−β

4
δ (ξ)

(
∂µ

t dtν+∂µ
y dyν+∂µ

z dzν

)−Θ(ξ)Λgµ
ν ,

conΛ = (−3β29)/64.
Entonces tenemos una solución pared de dominio con

i) Un campo escalarφ (ξ) que toma distintos valores en
±∞,

ii) (φ′)2 es una familia delta,

iii) Los ḿınimos del potencial coinciden con los puntos
cŕıticos del superpotencial, que como ya sabemos ga-
rantiza que esta configuración estable.

iv) El campo escalar interpola entre los mı́nimos del po-
tencial.

v) El lı́mite de pared delgada es un espacio-tiempo4-
dimensional, donde no existe constante cosmológica
paraξ < 0, mientras que paraξ > 0, se tiene una
constante cosmológicaΛ = (−3β2)/64.

6. Conclusiones

Hemos revisado la estrategia del superpotencial propuesta
por Townsend & Skenderis y DeWolfeet al. [3,4], para ob-
tener soluciones paredes de dominio gruesas BPS. Utilizan-
do esta estrategia obtuvimos nuevas soluciones con campos
escalaresφ (ξ) tales que(φ′)2 son familias delta. Estas so-
luciones las propusimos en4 − D, pero tambíen pueden ser
estudiadas en5 − D, como en el caso del escenario RS, o
en dimensionalidades mas altas. Los espacio-tiempos obteni-
dos son soluciones pared de dominio gruesa BPS que poseen
lı́mite de pared delgada y que están embebidas en espacio-
tiempo AdS. Sin embargo, una de estas soluciones es parti-
cularmente interesante, está embebida en un espacio-tiempo
con constante cosmológica igual a cero por un lado (ξ < 0),
y por el otro (ξ > 0) con constante cosmológica distinta de
cero.
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