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Se obtienen nuevas soluciones pared de dominio gravitantes del tipo BPS que puieaielpared delgada bien definido, empleando el
formalismo de primer orden propuesto por K. Skenderis y P.K. Townsend y O. DeWolfe, D.Z. Freedman, S.S. Gubser y A.Karch, y
pueden ser relevantes en los denominados escenarios Randall-Sundrum.

Descriptores:Paredes de dominio BPSiyite de pared delgada.

Smooth solutions of gravity-scalar models which represents BPS domain wall spacetimes with a well defined thin wall limit are obtair
employing the first-orden formalisn of Skenderis & Towsend and DeWolfe, Freedman, Gubser & Karch. These, solutions provide expl
examples of Randall-Sundrum thick domain wall

Keywords:Domain walls BPS; thin wall limit.
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1. Introduccion 2. Paredes de dominio BPS

Recientemente la posibilidad de que nuestro universo pué-onsideremos la adan de gravedad D-dimensional acoplada

da ser representado por una pared infinitamente delgadagun campo escalar

3-brana embebida en un espacio de dimensionalidad alta, ha

sido ampliamente investigada.iAss posible reproducir gra- S = /de\/fg {13 _1 (3@2 ~ V)|, (1)

vedad newtoniana sobre la brana y proveer una expiinaci 2 2

de las jerargias entre las fuerzagHiles y gravitacionales en

los denominados escenarios Randall-Sundrum [1,2].
Para generar soluciones pared de dominio gruesa en ds? = 2A©)p dride” + de? )

espacio-tiempos esticos Townsend y Skenderis [3], y De- m ’

Wolfe, Freedman, Gubser y Karch [4] han presentado Ung dondev’ (¢) es un potencial de autointeraiai

manera de simplificar el sistema de ecuaciones Einstein- El sistema de ecuaciones Einstein-campo escalar D-

Campo escalar, logrando generar soluciones que son Pargensional se resuelve eariinos de una sola furém o

des de dominio del tipo denominado Bogomol’nyi-Prasad-Superpotenciab (%)

Sommerfield (BPS) que dependen de una sola fumaibi-

donde la ngtrica tiene la forma gedmica

traria, o superpotencial. Estas paredes de dominio BPS son A= —20(9), 3)
soluciones al sistema de ecuaciones Einstein-campo escalar

gue interpolan entre mimos degenerados de un potencial ¢ =2(D—2) dw )
con rompimiento espoaheo de simeia discreta, que extre- do’

mizan el funcional de Bogomol'nyi y se encuentran en un es;
pacio AdS. Las paredes BPS proveen versiones suaves de fos

escenarios Randall-Sundrum. En dichas paredes, el potencial l di
-2 (

) -1 <¢>]. ®

no es definido positivo. Sin embargo, extrayendo del tensor V (¢)=2 (D —2)
enerda impulso la contribuéin que puede ser interpretada
como proveniente de la constante cosbgata [5], el tensor

enerda impulso restante satisface las condiciones de &nerg3  Nyevas soluciones pared de dominio BPS
débil, dominante y viola la condién de ener fuerte [6].

En el presente trabajo se generan nuevas soluciones pafn la Ref. 4 se asegura que se puede obtener una @oluci
des de dominio gruesas mediante @&tato del superpoten- pared de dominio gruesa con uimlte pared delgada bien
cial propuesto por Townsend y Skenderis y DeWolfe, Freedeefinida, si la fundn ¢ () es esencialmente la misma que
man, Gubser y Karch, parametrizadas de manera tal que lofescribe a una pared de domini&iok en ausencia de grave-
espaciotiempos resultantes poseknite de pared delgada dad. Espeificamente:
bien definido en el sentido de las distribuciones [5].

Consideraremos nuevas soluciones pared de dominio i) Que en elimite de pared delgada, se reduzca a un arre-
gruesa BPS que posedmite de pared delgada. glo de funciones esdanh
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i) Que sus primeras derivadas sean negativas y alcanceniv) El campo escalar interpola entre losnimos del po-

una colecdn de funciones delta.

iii) Ademés se requiere que(¢) sea positiva, lo que ase-
gura que sea invertible.

4. Pared de dominio gruesa BPS con
A= 412

3

Consicerese el campo escalaf) sugerido en la Ref. 4, pe-
ro paranétrizado de manera tal que> 0 juega el papel del
ancho de la pared

() = Vs ann ( 5 ©

y supongamos quB = 4. Es facil verificar que(¢’)? provee
una familiad.

tencial.
v) Poseeimite de pared delgada.

vi) Asintbticamente, tenemos un
4-dimensional AdS col = (—4/3)3.

espacio-tiempo

5. Pared de dominio en un espacio-tiemp¢-D
asintdticamente plano por un lado y por el
otro AdS

Se propone como nueva solagiel siguiente campo escalar,
en un espacio-tiempb = 4:

6(6) = Vo ", (10)

El sistema de ecuaciones de primer orden (3), (4) y (5)

gueda resuelto por

_ B %)
s ==so)-52 o
de donde obtenemos
A = —g 21n (cosh (?5)) + %tanhQ <§5)] (8)
y
_ 32T (2+39) (1+ 20)
V(p) = 5 _1 - T¢2 &)+ 152 (3]
1
S Tt

Notese qué’” (¢) no esh acotado por debajo y que sus puntos

criticos son:
i) ¢ =0, maximo secundario,
i) ¢ = +/65 + 4, maximos principales ,
iii) ¢ = £+v/26, minimos,

donde el paametrod representa el espesor de la pared
Ademas,

4
lim (G + Agt) = —2 58 (€) (D' dt, + Ofdy, + 9dz,)

dondeA = (—4/3)3? es la constante cosntglica.Por lo que
tenemos una soluin donde:

i) ¢(&) es una fundn que toma valores distintos para
+o00.

i) (¢/)* es una familia delta.

iii) Los minimos del potencial coinciden con los puntos

criticos del superpotencial, lo cual garantiza que estos

minimos son vaios estables [3].

donde (¢')? es una familia delta, como puede verificarse
facilmente, co > 0.
Entonces como solun al sistema de Ecs. (3), (4) y (5)

se tiene
[
_ B ool In (W)
w (¢) = ZJQS (4 - B ) (11)
de donde obtenemos
A6 = —g (e—%?& + FEi (1,26—25)) , (12)

dondeF: es la integral exponencial definida como

Ei(n,x) = 7

El potencial de autointeradm viene dado por
2 3 d)

M2 1- =2 2 1 2 ¥

27" K 7)™\
3 2 ¢ 3 2
—¢p°In| —= | — —=¢~|.
() 5]
Con respecto a sus puntositicos, es &cil verificar que
W' (¢) = 0 parag = 0 0 ¢ = /4, éstos son los puntos
criticos del superpotencial y coinciden con algunos del po-
tencial.

Las componentes del tensor de Einstein vienen dadas en
este caso por

P
26

3 8 3 8
gée_% A 1 3356_26 61 ,

e

—xt
o dt, n=0,1,2,...;R%x > 0.

V(¢)

+ (13)

3 _B

(14)
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dondeG} = G = GY.

/62 _9 *%5 3 2 5 < 2[7 3 _ ,Eg _B
G§:76 e e 557*6 26(565£
£ 2 8 8
13 maen s (15)
—€ .
64

Consicerese a continuain el limite de pared delgada

s ree):

’ t_
lim & = 64

dondeO(¢) es la distribudn de Heaviside.
De la misma manera, pa@é se obtiene

332
, € _
(%H%GE =0(¢) oL

Por lo tanto,

tim (G) =25 (6) (08 dt, + 0y, +02d,) ~O(O)Agt.

conA = (—3329)/64.
Entonces tenemos una solocipared de dominio con

i) Un campo escalap (¢) que toma distintos valores en
+o0,

i)y (¢/)° es una familia delta,
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iii) Los minimos del potencial coinciden con los puntos
criticos del superpotencial, que como ya sabemos ga-
rantiza que esta configuraci estable.

iv) El campo escalar interpola entre lognimos del po-
tencial.

v) El limite de pared delgada es un espacio-tiempo
dimensional, donde no existe constante cosigich
paraé¢ < 0, mientras que parg > 0, se tiene una
constante cosmogicaA = (—33?)/64.

6. Conclusiones

Hemos revisado la estrategia del superpotencial propuesta
por Townsend & Skenderis y DeWolt al. [3,4], para ob-
tener soluciones paredes de dominio gruesas BPS. Utilizan-
do esta estrategia obtuvimos nuevas soluciones con campos
escalares (¢) tales que(¢’)® son familias delta. Estas so-
luciones las propusimos én— D, pero tambin pueden ser
estudiadas eh — D, como en el caso del escenario RS, o
en dimensionalidades mas altas. Los espacio-tiempos obteni-
dos son soluciones pared de dominio gruesa BPS que poseer
limite de pared delgada y que @stembebidas en espacio-
tiempo AdS. Sin embargo, una de estas soluciones es parti-
cularmente interesante, astmbebida en un espacio-tiempo
con constante cosmimica igual a cero por un ladg & 0),

y por el otro € > 0) con constante cosntgica distinta de
cero.
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