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Se muestra el efecto del fluido sobre el movimiento de partı́culas Brownianas supendidas. Con el fin de estudiar la velocidad de floculación de
una suspensión, se hace uso del algoritmo de Ermak y McCammon [J. Chem. Phys.69 (1978) 1352] para simular sistemas a varias fracciones
de volumen con el mismo número inicial de partı́culas. Normalmente, la interacción hidrodińamica (IH) se introduce en los algoritmos de
dinámica Browniana por medio de tensores de difusión calculados mediante interacciones entre pares de partı́culas. Estas formulaciones,
adeḿas de ser computacionalmente costosas, fallan en sistemas densos debido a la sobrestimación de la IH. En este trabajo se emplea
una constante de difusión efectiva [Phys. Rev. E68 (2003) 061408] que incorpora una corrección de la constante de difusión debida a la
fracción de volumen local de partı́culas dispersas, conjuntamente con una formulación exacta de dicha constante para distancias cortas de
aproximacíon. A concentraciones suficientemente diluı́das, nuestros resultados reproducen aquellos de la formulación tensorial, corrigiendo
las anomalı́as observadas a concentraciones mayores. Este procedimiento permite la evaluación adecuada de las constantes de floculación en
sistemas densos.

Descriptores:Floculacíon; interaccíon hidrodińamica; dińamica Browniana; suspensiones; emulsiones.

The effect of the fluid on the movement of suspended Brownian particles is shown. In order to study the flocculation rate of a suspension,
Ermak and McCammon’s algorithm [J. Chem. Phys.69 (1978) 1352] is used to simulate systems containing a fixed initial number of
particles but different volume fractions. Commonly, Brownian dynamics algorithms introduce hydrodynamic interactions (HI) through two-
body diffusion tensors. These formulations are highly demanding in computer time and fail in dense systems due to an overestimation of
HI. In this work, an effective diffusion constant is used. It is evaluated at each time from the local volume fraction of particles and an
exact formulae valid at short interparticle distances [Phys. Rev. E68 (2003) 061408]. For very dilute concentrations, our results are in good
agreement with those for tensorial formulations, correcting the anomalous coalescence at higher concentrations. This procedure allows an
adecuate evaluation of flocculation rates in dense systems.
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1. Introducción

En un sistema coloidal, las partı́culas interact́uan a trav́es del
fluido creando un campo de velocidades que afecta marcada-
mente el movimiento del resto de sus vecinas siendo su efecto
determinante en el cálculo de constantes de floculación y se
conoce como interacción hidrodińamica (IH).

Uno de los algoritmos de dinámica browniana (DB) ḿas
utilizados para simular el comportamiento dispersiones co-
loidales es el propuesto por Ermak y McCammon [1], el cual
se rige por la siguiente ecuación de movimiento:
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En la Ec. (1) la posicíon de lai-ésima part́ıcula, ri, es
producto del efecto de dos términos difusivos y uno aleato-
rio, evaluados en el paso de tiempo anterior (superı́ndice0).
Estos t́erminos son:

1. el gradiente del tensor de difusión (∂Dij/∂rj);

2. un t́ermino que contiene la fuerza externa total que
act́ua sobre la partı́cula en la direccíon j (F 0

j ) mode-
rada por los elementos del tensor de difusión (D0

ij) y,
finalmente;

3. un t́ermino aleatorio con varianza(2D0
ij∆t)1/2.

En ausencia de IH, se sustituye al tensor por la expresión de
Stokes para la difusión, obteníendose una ecuación tipo Lan-
gevin.

2. Interacción Hidrodin ámica

Existen varios tratamientos exactos para el cálculo de la IH
entre dos partı́culas. En general, la forma tensorial de la difu-
sión es [2]:

Dii = D0Î + D0

N∑

j=1,j 6=i

{
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+ Bs(rij)[Î− r̂ij r̂ij ]
}

, (2)

Dij = D0

{
Ac(rij)r̂ij r̂ij + Bc(rij)[Î− r̂ij r̂ij ]

}
, (3)
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dondeD0 = kT/6πηa es la difusíon de Stokes de una sola
part́ıcula de radioa inmersa en un lı́quido infinito de visco-
sidadη y a temperaturaT , siendok la constante de Boltz-
mann,̂I la matriz unitaria ŷrij es en vector separación entre
las part́ıculasi y j normalizado arij = |rij |. Los coeficientes
As, Bs, Ac y Bc son las funciones de movilidad. Los tensores
de auto-difusíon Dii representan la reflexión que hacen las
part́ıculas vecinas del flujo generado por lai-ésima part́ıcula.
Las difusiones cruzadasDij describen el flujo creado por la
j-ésima part́ıcula que afecta a laj-ésima.

Las funciones de movilidad para sistemas polidispersos
pueden desarrolarse en series de Taylor, siendo sus expresio-
nes ḿasexactasaquellas reportadas por Batchelor [3]:
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3
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dondeλ = a2/a1 y s = rij/(a1 + a2). Si cada una de estas
expansiones se corta en primer orden, resulta el conocido ten-
sor de Oseen [4]. Si por el contrario se conserva la expansión
a segundo orden, se obtiene el tensor de Rotne-Prager para
sistemas polidispersos [2,5].

En un tratamiento alternativo Honiget al.[6] propusieron
una correccíon a la constante de difusión de una partı́cula de-
bida a la presencia de otra partı́cula a una distancia cercana
d = rij − (ai + aj):

D(u) =
D0

β
(8)

β =
6u2 + 13u + 2

6u2 + 4u
, (u = d/ai). (9)

Sin embargo, estos tratamientos originan problemas al
momento de simular sistemas que incluyan la IH entre más
de dos partı́culas debido a que no consideran efectos de apan-
tallamiento ni acoplan de manera eficiente el efecto hidro-
dinámico con el t́ermico.

Por otra parte, Beenaker y Mazur [7] encontraron por
evaluacíon nuḿerica (coeficientes viriales) una expresión pa-
ra la autodifusíon en t́erminos de la fracción de volumen de
part́ıculasφ:

Ds
eff (φ) = D0(1− 1.734φ + 0.88φ2). (10)

FIGURA 1. Esquema del modelo propuesto (MP).

Siguiendo una v́ıa distinta, Dhont encuentra que el coe-
ficiente cuadŕatico es+0.910 en lugar de+0.88 [2]. Existen
en la literatura otras expansiones enφ del tipo Ec. (10).

3. El modelo

En la Fig.1 se ilustra el modelo propuesto (MP) con el fin
de incluir la IH mediante una constante de difusión efecti-
va. Se definen dos distancias, una internaRI y otra externa
RE . Si ninguna partı́cula se encuentra dentro de esas dis-
tancias, la difusíon de la part́ıcula central es la de Stokes.
Si una o ḿas part́ıculas vecinas se encuentran en el ran-
go ai < d < ai + RI , entonces se modifica la difusión
seǵun la Ec. (8), calcuĺandose con la distanciad de la part́ıcu-
la más cercana. Si una o más part́ıculas se encuentran en
ai + RI < d < ai + (RI + RE), la difusíon se corrige
seǵun la Ec. (10) dependiente de la fracción de volumen. Es-
ta fraccíon se calcula geoḿetricamente,i.e., sólo contribuye a
la fraccíon de volumen local la parte de la(s) partı́cula(s) que
entra(n) dentro de la concha de esfera entre la esfera interna
y la externa. Con estas aproximaciones, la ecuación de movi-
miento original para DB [Ec. (1)] logra simplificarse [8]:

ri(t + ∆t) = ri(t) +
D0

i (φ, d)F 0
i

kT
∆t + R(D0

i (φ, d)) (11)

4. Detalles computacionales

Se realizaron simulaciones con cuatro aproximaciones a
la difusión: difusíon de Stokes, corrección de Honig
[Ecs. (8)-(9)], difusíon tensorial [Ecs. (2)-(3), usando las ex-
pansiones (4)-(7)] y el MP. Se utilizaron cajas cúbicas de
simulacíon con un ńumero inicial de partı́culasN0 = 125
y de aristaL. Para las fracciones de volumen de partı́culas
(a = 3.9µm) calculadas:φ = 0.05, 0, 10, 0.15, 0.20 y 0.30,
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TABLA I. Valores deτ (en seg.)

Stokes Honig Tensor MP
φ(×100) S A S A S A S A

5 91.49 149.07 1622.90 1585.94 221.00 199.36 172.00 210.34

10 18.92 30.13 838.44 865.07 33.97 59.83 38.52 45.22

15 2.40 10.04 119.00 172.75 0.40 1.14 6.39 12.09

20 0.84 1.53 86.41 131.12 4.78 2.78 4.22 7.57

30 0.07 0.07 6.17 0.32 0.29 0.38 0.44 1.04

FIGURA 2. Gráfico den vs. t (φ = 0.30).

L correspondío a21.87a, 17.36a, 15.17a, 13.78a y 12.10a,
respectivamente. El potencial iterpartı́cula utilizado fue

V = − A

12

[
y

x2 + xy + x
+

y

x2 + xy + x + y

+2 ln
(

x2 + xy + x

x2 + xy + x + y

)]
, (12)

dondeA es la constante de Hamaker (=1.24 × 10−19J [9]),
x = d/(2ai) y y = aj/ai. La condicíon impuesta para la
coalescencia esrij = ai + aj . El paso de tiempo varió entre
1.36× 10−6s≤ ∆t ≤ 3.40× 10−5s.

5. Resultados

A concentraciones pequeñas, la disminucíon del ńumero de
part́ıculas con el tiempo está gobernada por la ecuación de
Smoluchowski:

n =
n0

1 + t/τ
, (13)

donden es el ńumero de partı́culas por unidad de volumen,
τ = 1/kn0, t el tiempo,k la constante de floculación y

n0 = n(t = 0). En la ec. 13,τ representa el tiempo pro-
medio entre colisiones. Adicionalmente, se encuentra queτ
corresponde al tiempo en el que el número de partı́culas dis-
minuye a la mitad,τ = t1/2 (tiempo de vida media), lo cual
es una medida de la estabilidad del sistema. En la Tabla I se
comparan losτ obtenidos para diferentes fracciones de vo-
lumen. Los tiempos señalados con ”S” se obtuvieron direc-
tamente de la simulación, mientras que los identificados con
”A” son los tiempos de vida media estimados a través de un
ajuste lineal1/n vs. t. Aún cuando se presentan resultados
correspondientes a una sola configuración inicial, se puede
observar que los tiempos de desestabilización calculados, S y
A, son comparables entre sı́ y se encuentran dentro de los va-
lores esperados. En cálculos adicionales no mostrados aquı́,
se encontŕo que el valor dek obtenido a muy alta dilución
coincide con el valor téorico de5.49x10−18m3/s calculado
por Smoluchowski [10].

La Fig. 2 muestra la variación den cont aφ = 0.30 para
las distintas aproximaciones. En el caso de Stokes se obtiene
la disminucíon más ŕapida en el ńumero de partı́culas debido
a la ausencia de IH. Las flechas indican caı́das abruptas para
el caso de la difusión tensorial. Esta anomalı́a se adjudica a
la sobreestimación de la difusíon efectiva. Los ćalculos que
usan la aproximación de Honig evaluandoβ mediante contri-
bución por pares de todas las partı́culas, muestran una velo-
cidad de disminución mucho menor que el resto. El modelo
propuesto presenta una variación mońotona que se aproxima
a la de los tensores, y no falla por la ocurrencia de colisiones
múltiples.

6. Conclusiones

Con el procedimiento aplicado se consigue tener en cuenta
la IH en sistemas coloidales en un amplio rango de fraccio-
nes de volumen, sin mostrar las anomalı́as observadas en los
cálculos con tensores. El uso de una constante de difusión
efectiva disminuye, adeḿas, el tiempo de ćalculo permitien-
do una estimación razonable de las velocidades de flocula-
ción de part́ıculas Brownianas en sistemas densos.
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