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Se muestra el efecto del fluido sobre el movimiento dd@aets Brownianas supendidas. Con el fin de estudiar la velocidad de fl@cudkeci

una suspenénh, se hace uso del algoritmo de Ermak y McCamndo&hem. Phy$9 (1978) 1352] para simular sistemas a varias fracciones
de volumen con el mismolmero inicial de paftulas. Normalmente, la interaéei hidrodiramica (IH) se introduce en los algoritmos de
dinamica Browniana por medio de tensores de difnsialculados mediante interacciones entre pares dieyad. Estas formulaciones,
aden@s de ser computacionalmente costosas, fallan en sistemas densos debido a la sobrestariaciH. En este trabajo se emplea
una constante de difu@i efectiva Phys. Rev. 68 (2003) 061408] que incorpora una corréccie la constante de difidsi debida a la
fraccion de volumen local de paculas dispersas, conjuntamente con una formafaekacta de dicha constante para distancias cortas de
aproximacbn. A concentraciones suficientemente iis, nuestros resultados reproducen aquellos de la forroalasisorial, corrigiendo

las anomdhs observadas a concentraciones mayores. Este procedimiento permite la@valdecuada de las constantes de flocataen
sistemas densos.

Descriptores: Floculacbn; interacadn hidrodiramica; difamica Browniana; suspensiones; emulsiones.

The effect of the fluid on the movement of suspended Brownian particles is shown. In order to study the flocculation rate of a suspension,
Ermak and McCammon'’s algorithnd.[ Chem. Phys69 (1978) 1352] is used to simulate systems containing a fixed initial number of
particles but different volume fractions. Commonly, Brownian dynamics algorithms introduce hydrodynamic interactions (HI) through two-
body diffusion tensors. These formulations are highly demanding in computer time and fail in dense systems due to an overestimation of
HI. In this work, an effective diffusion constant is used. It is evaluated at each time from the local volume fraction of particles and an
exact formulae valid at short interparticle distandekyfs. Rev. 68 (2003) 061408]. For very dilute concentrations, our results are in good
agreement with those for tensorial formulations, correcting the anomalous coalescence at higher concentrations. This procedure allows an
adecuate evaluation of flocculation rates in dense systems.
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1. Introduccion 2. un €rmino que contiene la fuerza externa total que
acfla sobre la paitula en la direcdn j (F]Q) mode-
En un sistema coloidal, las pantlas interactan a traés del rada por los elementos del tensor de d'fms(D?j) Y,

fluido creando un campo de velocidades que afecta marcada-  finalmente;

mente el movimiento del resto de sus vecinas siendo su efecto o . )

determinante en elaiculo de constantes de floculaniy se 3. un termino aleatorio con variang@Dy; At)'/?.

conoce como interad@n hidrodiramica (IH). En ausencia de IH, se sustituye al tensor por la expmedé
Uno de los algoritmos de damica browniana (DB) &s  Stokes para la difuéh, obtenéndose una ecuai tipo Lan-

utilizados para simular el comportamiento dispersiones cogevin.

loidales es el propuesto por Ermak y McCammon [1], el cual

se rige por la siguiente ecuaoi de movimiento: 2 Interaccion Hidrodin amica

0 0 0
ri =10+ Z oD At + Z Diit; At Existen varios tratamientos exactos paraatelo de la IH
p or; ; kT entre dos paftulas. En general, la forma tensorial de la difu-
0 o sion es [2]:
+Ri(Dij7At)v (1 < (2] < 3N) (1) N
En la Ec. (1) la posiéin de lai-esima paitula, r;, es Dii = Dol + Do A ;75‘ {As(nj)r”r”
J=Li7

producto del efecto de doérminos difusivos y uno aleato-
rio, evalua_dos en el paso de tiempo anterior (Sumgére0). + Bs(rij)[i _ f“ijfij]}, @)
Estos érminos son:

1. el gradiente del tensor de difési (0D;;/0r;); Dij = DO{AC(T”)I‘”I‘” + Belry)IL = rijr”}}’ )
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dondeD, = kT/6mna es la difusbn de Stokes de una sola — . RE -
parfcula de radiaz inmersa en uniguido infinito de visco- A
sidadn y a temperaturd’, siendok la constante de Boltz-
mann,I la matriz unitaria yi-;; es en vector separdci entre w
las partculasi y j normalizado a;; = |r;;|. Los coeficientes
Ag, Bs, Ay B, son las funciones de movilidad. Los tensores
de auto-difusin D;; representan la refledin que hacen las
parfculas vecinas del flujo generado poidasima paitula.
Las difusiones cruzadds;; describen el flujo creado por la .
j-ésima paittula que afecta a Igésima.

Las funciones de movilidad para sistemas polidispersos '

pueden desarrolarse en series de Taylor, siendo sus expresis
nes nasexactasaquellas reportadas por Batchelor [3]:
603 3223 (15 — 4)2)
(14 X)*st (14 X)6s6
19203(5 — 2202 + 3)%)

—» D

Ay=1—

—10
(1+ 2)8s8 +0(s7) 4)
68A° del model
B.,=1- m FIGURA 1. Esquema del modelo propuesto (MP).
3903(10 — 9A2 4 A4 Siguiendo una ha distinta, Dhont encuentra que el coe-
— ((1 PV : ) +0(s71%) (5) ficiente cuadatico es+0.910 en lugar de+0.88 [2]. Existen
5 en la literatura otras expansionesgedel tipo Ec. (10).
go= 22N 100X 0y (g
25 (14 X)2s3 (14 X)9)s7 3. El modelo
3 1+ A2 o . : ,
B, =—+ (s7) (7)  En la Fig.1 se ilustra el modelo propuesto (MP) con el fin

23
ds ~ (1+2)% de incluir la IH mediante una constante de difusiefecti-

donde\ = ay/a; y s = 7i;/ (a1 + a). Si cada una de estas Va- Se'dgfinen dos,distancias, una inteRjay otra externa .
expansiones se corta en primer orden, resulta el conocido teff.z- Si ninguna paftula se encuentra dentro de esas dis-
sor de Oseen [4]. Si por el contrario se conserva la expansi tancias, la difugin de la paitula central es la de Stokes.
a segundo orden, se obtiene el tensor de Rotne-Prager pathUna 0 nas parculas vecinas se encuentran en el ran-
sistemas polidispersos [2,5]. go a; < d < a; + {%1, entonces se modpﬂca la dl,fl('])$l

En un tratamiento alternativo Honég al. [6] propusieron ~ Sedinla Ec. (8), calcindose con la distanciede la partcu-
una correcdn a la constante de difési de una partula de- 1@ Mas cercana. Si una oas parculas se encuentran en

bida a la presencia de otra fjartia a una distancia cercana % + fr < d < a; + (R + Rp), la difusin se corrige
d=ry — (a; + aj): sedin la Ec. (10) dependiente de la fraeide volumen. Es-

ta fraccbn se calcula geogétricamentei.e., sdlo contribuye a

Diw) — Dy 3 la fraccbn de volumen local la parte de la(s) panta(s) que
(u) = 3 (8) entra(n) dentro de la concha de esfera entre la esfera interna
6u? + 13 9 y la externa. Con estas aproximaciones, la ecumagde movi-
= %’ (u=d/a). (9)  miento original para DB [Ec. (1)] logra simplificarse [8]:
u® + 4u
D(¢, d) F?

Sin embargo, estos tratamientos originan problemas alr;(t + At) = r;(t) + LAt + R(DY(¢,d)) (11)
momento de simular sistemas que incluyan la IH entés m
de dos paitulas debido a que no consideran efectos de aparhl Detalles computacionales

tallamiento ni acoplan de manera eficiente el efecto hidro-

dinamico con elérmico. Se realizaron simulaciones con cuatro aproximaciones a
Por otra parte, Beenaker y Mazur [7] encontraron pofla difusion: difusbn de Stokes, corredm de Honig
evaluacdbn nunérica (coeficientes viriales) una exp@spa-  [Ecs. (8)-(9)], difusbn tensorial [Ecs. (2)-(3), usando las ex-
ra la autodifusdn en érminos de la fracén de volumen de  pansjones (4)-(7)] y el MP. Se utilizaron cajasbicas de
parficulasg: simulacbn con un fimero inicial de paftulasN, = 125

. 9 y de aristal. Para las fracciones de volumen de faras
er7(9) = Do(1 = 1.734¢ + 0.88¢°). (10) (4 = 3.9um) calculadasy = 0.05, 0, 10, 0.15, 0.20 y 0.30,

kT
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TABLA |. Valores der (en seg.)

Stokes Honig Tensor MP
@(x100) S A S S A S A
5 91.49 149.07 1622.90 1585.94 221.00 199.36 172.00 210.34
10 18.92 30.13 838.44 865.07 33.97 59.83 38.52 45.22
15 2.40 10.04 119.00 172.75 0.40 1.14 6.39 12.09
20 0.84 1.53 86.41 131.12 4.78 2.78 4.22 7.57
30 0.07 0.07 6.17 0.32 0.29 0.38 0.44 1.04
1TAE¥15 no = n(t = 0). En la ec. 137 representa el tiempo pro-
12E+15 »ut medio entre colisiones. Adicionalmente, se encuentrarque
corresponde al tiempo en el que émmero de paftulas dis-
1,0E+15 - minu ; _ ; ;
| ye ala mitadr = t,/, (tiempo de vida med)alo cual
’E 8,0E+14 - es una medida de la estabilidad del sistema. En la Tabla | se
P comparan log obtenidos para diferentes fracciones de vo-
< 6,0E+14 - ; = nan : :
= lumen. Los tiempos $mlados con "S” se obtuvieron direc-
40E+14 - tamente de la simula@n, mientras que los identificados con
"A’ son los tiempos de vida media estimados a &sde un
HERTA - ajuste lineall /n vs. t. Aln cuando se presentan resultados
0,0E+00 | correspondientes a una sola configubacinicial, se puede

Q

Tiempo (seg)

- Stokes

-+~ Tensor Honig -~ MP

FIGURA 2. Grafico den vs.t (¢ = 0.30).

L correspondd a21.87a, 17.36a, 15.17a, 13.78a y 12.10a,
respectivamente. El potencial iterdauia utilizado fue

A
V=-=

Y

Y

12 x2+xy+x+x2+xy+x+y

2
+21n( ¥ +aytzx

22t+zy+ac+y

)} oo

dondeA es la constante de Hamakerl(24 x 10~1°J [9]),

x = d/(2a;) Y y = a;/a;. La condicbn impuesta para la
coalescencia e3; = a; + a;. El paso de tiempo varientre

1.36 x 107%s< At < 3.40 x 10~°s.

5. Resultados

A concentraciones peqias, la disminudn del rumero de
pariculas con el tiempo estgobernada por la ecuaai de

Smoluchowski:

donden es el imero de paftulas por unidad de volumen,
= 1/kno, t el tiempo, k la constante de floculgm y

T

no

O ry

(13)

observar que los tiempos de desestabilizacialculados, Sy
A, son comparables entreysse encuentran dentro de los va-
lores esperados. Eralculos adicionales no mostrados gqu
se encontr que el valor dek obtenido a muy alta dilubn
coincide con el valor farico de5.49x10~'8m?3 /s calculado
por Smoluchowski [10].

La Fig. 2 muestra la varia@h den cont a¢ = 0.30 para
las distintas aproximaciones. En el caso de Stokes se obtiene
la disminucbn mas épida en el imero de paftulas debido
a la ausencia de IH. Las flechas indicaidea abruptas para
el caso de la difusin tensorial. Esta anomalse adjudica a
la sobreestimabn de la difusbn efectiva. Los &lculos que
usan la aproximadn de Honig evaluand@ mediante contri-
bucibn por pares de todas las pedlas, muestran una velo-
cidad de disminuén mucho menor que el resto. El modelo
propuesto presenta una varitimorbtona que se aproxima
a la de los tensores, y no falla por la ocurrencia de colisiones
maltiples.

6. Conclusiones

Con el procedimiento aplicado se consigue tener en cuenta
la IH en sistemas coloidales en un amplio rango de fraccio-
nes de volumen, sin mostrar las anoraslobservadas en los
calculos con tensores. El uso de una constante de @ifusi
efectiva disminuye, adems, el tiempo dealculo permitien-

do una estimadin razonable de las velocidades de flocula-
cion de paificulas Brownianas en sistemas densos.

Rev. Mex. 5. S52(3) (2006) 72-75



1. D.L. Ermaky J.A. McCammon]. Chem. Phy$9(1978) 1352. 7.

2. J.K.G. Dhont.An Introduction to Dynamics of Colloid&lse- 8.
vier (1996).

3. G.K. Batchelor)J. Fluid Mech.119(1982) 379.

4. J.G. Kirkwood,Recueil68 (1949) 649. 9

5. J. Rotne y S. Praged, Chem. Phy<50 (1969) 4831.

6. E.P. Honig, G.J. Roebersen y P. H. WieserdaColl. Interf. 10

EFECTO DE LA INTERACCON HIDRODINAMICA EN LA VELOCIDAD DE FLOCULACI ON DE PARTICULAS BROWNIANAS 75

Sci.36(1971) 97.

C.W.J. Beenaker y P. MazuPhysical20A (1983) 388.

G. Urbina-Villalba, M. Garcia-Sucre y J. Toro-MendoZ2hys.
Rev. E68 (2003) 061408.

. M. Salou, B. Sifferty A. JadaColl.& Surf. A: Physicochemical

and Engineering Aspecist2(1998) 9.

G. Urbina-Villalba, M. Garcia-Sucre y J. Toro-Mendo24o-
lec. Simul29(2003) 393.

Rev. Mex. 5. S52(3) (2006) 72-75



