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Segmentation of brain tumor images using in vivo spectroscopy, relaxometry and
diffusometry by magnetic resonance
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A new methodology is developed for the segmentation of brain tumor images using information obtained by different magnetic resona
technigues such as in vivo spectroscopy, relaxometry and diffusometry. In vivo spectroscopy is used as a sort of virtual biopsy to charact
the different tissue types present in the lesion (active tumor, necrotic tissue or edema and normal or non-affected tissue). Due to the fac
in vivo spectroscopy information lacks the spatial resolution for treatment considerations, this information has to be combined or fused \
images obtained by relaxometry and diffusometry with excellent spatial resolution. Some segmentation schemes are presented and disc
using the high spatial resolution techniques individually or combined. The results show that segmentation done in this way is highly relia
for the application of future therapies such as radiosurgery or radiotherapy.
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Se desarrofl una nueva metodolog para la segmentasi de imagenes de tumores en cerebro utilizando difereiesicas de iragenes

por resonancia mag@tica, como son la espectroséajn vivo, la relaxometa y la difusomefia. La espectrosciin vivo se utiliza como

una especie de “biopsia virtual” para caracterizar cada uno de los tejidos presentes @&m l&uesdr activo, necrosis 0 edema y tejido
no afectado). Esta informdmi, sin embargo, carece de la resoluciespacial suficiente para efectos de la terapia y por lo tanto debe
ser combinada o fusionada condgenes obtenidas por relaxoniety difusometia que presentan excelente resddcespacial. Diversos
enfoques de segmentanison presentados y discutidos, utilizando &icas de alta resolusi espacial por separado o en conjunto. Los
resultados demuestran que este tipo de segméntas de alta confiabilidad para la apliéatide futuras terapias como radiociraig
radioterapia.

Descriptores: Relaxometia; difusomefia; segmentadin; resonancia magtica.

PACS: 87.61.-c; 82.56.Na; 82.56.Lz

1. Introduction 2. Image measurement

. : Sl was performed axially to obtain spatial distributions of
Magnetic Resonance Speciroscopy (MRS) is a method thar%etabolite concentration across the lesion, with TE = 30 ms

assesses metabo_llc tissue m_formatlon by analyzmg_ the COMnd VOI of 96 cnf (80 x 80 x 15 mm). Relaxometry stud-
position and spatial distribution of cellular metabolites [1].

MRS is a non-invasive tool that makes it possible to distin- oo "ere performed using the standard multiecho sequence

: . . . n(CPMG) with 16 echoes, and a base echo time TE = 22 ms
guish malignant brain tumors from non-anaplastic tumors. |

S and 8 axial planes 5 mm thick centered at the tumor. The
recent years there have been numerous publications show:.

ing that MRS can detect significant differences between irplxel intensity is given by
Vivo spectra of tumor, necrosis and normal brain tissue [2-9]. nTE )
Metabolic maps can be obtained by the Chemical Shift Imag- ’

T
ing (CSI) technique, which obtains, in one image, Severa\Ilvheren is the number of the echo affd is the transversal re-

spectra from a series of small voxels (matrix) from a IargeIaxation time. Diffusion-weighted images were obtained for
region of interest, but they lack the spatial resolution nec- ¢ b-parameter values ranging from 0 to 1352 and
%’northogonal magnetic field gradient directions (Phase, Read

long ysed for the assessment.of t“’.“ors’ W'.th Ilagﬁap . and Slice) for the same set of planes used in the relaxometry
of a tissue often used as a basis for interpreting clinical im-

ages [10]. Multiexponential’, decay occurs in NMR stud- studies. In this case, the pixel intensity is given by

ies in both material [11-13] and biological systems [14,15]. I = Iyexp ( _ biDii> @)
Diffusion-weighted MRI has been used successfully in the

central nervous system (CNS), especially in the diagnosis olvhere i = p, r, s depending of the direction of the gradient,
acute stroke, but also in distinguishing different components);; represents the corresponding diagonal component of the
of brain tumors [16-18]. In the present work, it is proposeddiffusion tensor, and; is

the use of MRS, Relaxometry, and Diffusometry is proposed

for the segmentation of brain tumors. b = v°G76° (A - 5/3>7 ()

I:IOexp(— 1)
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0.18

where~ is the gyromagnetic ratia7; is the magnitude of
each of the gradient pulses that codify diffusiéns the gra- 0.16 1
dient pulse width and\ is the time interval between gradi- 0.14
ent pulses. The spectroscopy data analysis was performet
based on relative values. The critical Cho/NAA ratio value
for which a tissue was considered malignant was 1.3 or over.
The spectra were considered atypical if the Cho/NAA ratio §
had a value between 0.9 and 1.29. For the analysis of re-*> ]
laxation and diffusion data, a special image processing algo-
rithm was developed to extract the magnetization decays for %% 1/
different regions of interest or ROI’s. They were processed .2 -
by an Inverse Laplace Transform (ILT) algorithm [19-21] to
obtain the relaxation rates or diffusion tensor components
present in the lesion. For each voxel the set of parameters Transversal Relaxation Rate (s”)

obtained were assigned to a different state of the tissue (nor- _ ) )

mal, pathologic, necrotic or edema) on comparison with thé:'GUBE 1. Comparlgon of relaxat.lon spectrgm obtained by the ILT
CSl data, using it as a sort of virtual biopsy. algorithm and non linear regression analysis.

ZZ73 Mon Linear Regression
—— |nverse Laplace Transform

0.12 A

0.10

obability

0.00

of the tumor,i.e,, its coefficientA r is different from zero, is

3. Segmentation procedure averaged over its neighborhood and accepted as a true “tumor
ositive” if and only if its average is greater than 1/3. This

In order to perform the segmentation, the different types 0ﬁind of filter allows for a more compact segmentation of the

tissues have to be identified on the image. A RGB colokymor and discards scattered “tumor positive” points in the
code is selected to indicate the existence of pathology: Fﬁnage.

(red) corresponds to tumor, G (green) to normal or unaffected
tissue, and B (blue) corresponds to edema or necrosis [22].
The selection of the color code is completely arbitrary andd. Results and discussion
somewhat troublesome for clinical purposes, as will be diss-
cused below. Instead of applying the ILT algorithm pixel by For a total of 10 patients, the relaxation rates were
pixel, which is a time consuming procedure with a low sig-within the following ranges: for edema or necrotic tissue,
nal to noise ratio, the following assumption was made: lef0.65 - 3.43 s, for tumor tissue, 5.05 - 7.47°$, and for nor-
us suppose that the image intensity in each pixel (in a set ghal or non affected tissue (gray/white matter or meningeal
multiecho or multi-b images) is a linear superposition of thetissue), 8.67 - 25.2673. Typical values for the average
different decaying exponential functions, each one charactegovered a range 0.71 - 0.96. Control valueg efere found
ized by a decay parameter (relaxation rate or diffusion tenson the range of 0.44 - 0.69. To validate the ILT algorithm,
component) corresponding to the different tissues non linear regression analyses were performed over relax-
ation data assuming a single exponential decay, a common
I(t) = bl + ApXR(t) + AcXa(t) + ApXp(t)  (4)  situation found in commercial postprocessing software. A
typical result is depicted in Fig. 1. Although the relaxation
spectra are qualitatively similar, the actual values for the re-
X;(t) = exp(—\it) (5) laxation rates differ notic_eably, and the ILT algorithm is pre-
ferred for the segmentation procedure. Fig. 2 shows a result
with i =R, G or B, ); is the decay parameter associated withof the segmentation procedure.
the different tissues and extracted from the average decay pa- Instead of using a color map in Fig. 2, as explained in the
rameter spectrund/ is a parameter introduced to take into ac- preceding section, the RGB code is mapped on a gray scale as
count corrections in the baseline of the image intensity (alsdollows: as a first step is determined the maximum among the
done in the application of the ILT algorithm) and the coef- A; coefficients; depending on the result its value is mapped
ficients A;, which are positive, determine the proportion of in the following ranges:Ag in 206 - 255 (light gray),Ac
each decay in the image. By a linear regression procedur@) 51 - 205 (gray), andig in O - 50 (dark gray). The rea-
the coefficientsA; are determined for each pixel in the image. son for following, this kind of procedure is based on the fact
Particular attention was paid to the correlation coefficient inthat radiologists are mainly trained to analyze gray scale im-
the linear regression analysis, and in the present work, thages and some of the information present in the color RGB
coefficientsA; were only accepted for those fittings with a code has to be expended in favor of a better understanding of
squared correlation coefficient of over 0.99. To further assesthe image by the physician. In particular,the mapping chosen
the segmentation procedure and in order to eliminate spurious this work resembles gadolinium contrasted images, which
“tumor positive” pixels due to the fact that the exponentialare commonly used in tumor detection by MRI. In addition,
functions are correlated, each pixel affected by the presendéepreserves all the anatomical details of the image (as in the

where
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color coded), which are of relevance for image registratiorstructured or organized than normal or unaffected tissues.
or fusion procedures, commonly used in therapy planning. AThe distribution of apparent diffusion coefficients over the le-
different kind of segmentation is shown in Fig. 3, where onlysion is shown in Fig. 6.
the “tumor positive” pixels are depicted or contour intensity
plots for the intensity of the parametdi;.

The segmentation based on diffusion-weighted images is|
a little more troublesome, mainly due to the fact that diffu-
sion is in general anysotropic in tissue and the segmentatio
depends on the actual gradient direction, as shown in Fig. 4
In order to deal with scalar quantities (as is done for relax-
ation), the diffusion- weighted images corresponding to the
three orthogonal directions (P,R,S) are combined into a single
set of diffusion-weighted images corresponding to the trace
of the diffusion tensor, or more precisely to the average value
of the diagonal terms given by

< D;; >= TT(D)/S (6)

and it is now posible to use exactly the same segmentatio
procedure as for relaxation. The comparison of the segmen
tation for relaxometry and diffusometry on the same slice are
shown in Fig. 5.

It is evident that the segmentation is dependent on the se
lection of relaxation or diffusion-weighted data. Tumoral and
necrotic tissue can exhibit very similar apparent diffusion co-
efficients, due to the fact that in general these tissues are les

FIGURE 4. Diffusion-weighted images, left and segmented images,

FIGURE 2. Left, multiecho image for TE=44 ms. Right, segmented right for gradients P,R,S.

image.

FIGURE 3. Left, segmentation showing “tumor positive” pixels FIGURE 5. Left, segmented image using relaxation data. Right,
only. Right, contour plots. segmented image using the trace of the diffusion tensor.
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FIGURE 6. Distributions of diffusion coefficient.
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FIGURE 7. Distribution ofa.

The same happens if other scalar quantities are
considered, such as fractional anisotropy or relative
anisotropy [23,24], that require the full determination of the
diffusion tensor and so are beyond the scope of this work,
i.e., only the diagonal terms of the diffusion tensor are deter-
mined. Nevertheless, diffusion-weighted images can be used
to define clearly what corresponds to unaffected tissue which
exhibits high anisotropy as opposed to tumoral or necrotic tis-
sue with low anisotropy. A possible definition of anisotropy,
not necessarily a scalar quantity, can be written as

2 2 2
o (Azy +Ayz +sz)1/2

(Tr(D))/3 )

whereA;; = D;; — D;;. Figure 7 shows the resultant distri-
bution of anisotropy.

It is suggested that a consensus be taken between relax-
ation and diffusion-weighted data to define the segmentation
of the tumor in the image.

5. Conclusions

The methodology presented in this work clearly segments
brain tumor images with appropriate spatial resolution for
therapeutical needs. Other parameters, such as anisotropy
can be considered to further improve the segmentation qual-
ity, but depends on the software available to the MRI facility.
Finally, image registration for different data such as relax-
ometry or diffusometry seems to be the best way to assess a
reliable segmentation of the tumor image.
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