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Plaza Misael Bãnuelos s/n, 09001 Burgos, España

Recibido el 7 de agosto de 2004; aceptado el 3 de enero de 2005

El ańalisis cĺasico de series temporales se ha basado principalmente en un enfoque estocástico lineal (se suponı́a que la principal estructura
de una serie era la autocorrelación lineal en diferentes retardos). En losúltimos ãnos han cobrado importancia los sistemas caóticos: una
sẽnal compleja puede explicarse en ocasiones por unas ecuaciones deterministas, generalmente no lineales. Este tipo de sistemas aparece
en muchośambitos de la f́ısica y la ingenieŕıa, tambíen en la contaminación atmosf́erica. En este artı́culo analizamos series de los tres
principales gases implicados en la contaminación fotoqúımica: NO, NO2 y O3. Nuestro objetivo es aclarar si la estructura principal de estas
series es estocástica y lineal o determinista y no lineal. Para ello tratamos de construir un espacio de inserción equivalente al espacio de fases
del supuesto sistema determinista del que proceden los datos. En las tres series detectamos que existe una estructura determinista de baja
dimensíon, pero es ḿas fuerte el componente estocástico.

Descriptores:Series temporales no lineales; caos; series temporales; ozono troposférico.

Classical analysis of time series has been founded mainly on a linear stochastic approach (the main structure of a series was supposed to
be the linear autocorrelation in several lags). In latter years chaotic systems have acquired importance: a complex signal can sometimes be
explained by some deterministic, usually nonlinear, equations. This kind of systems is found in many areas of Physics and Engineering, also
in atmospheric pollution. In this paper we analyze series of the three main gases involved in photochemical pollution: NO, NO2 and O3. Our
aim is to clarify if the main structure of these series is stochastic and linear or deterministic and nonlinear. For this purpose we try to build an
embedding space equivalent to the phase space of the hypothetic deterministic system from which the series are measured. In the three series
we have found that a low-dimensional deterministic structure exists, but the stochastic component is stronger.

Keywords:Nonlinear time series; chaos; time series; tropospheric ozone.
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1. Introducción

Un serio problema ambiental en muchas ciudades industria-
lizadas es la contaminación fotoqúımica, en la quéoxidos de
nitrógeno reaccionan con hidrocarburos volátiles en presen-
cia de luz solar, dando lugar a diversos contaminantes secun-
darios, de los que el ḿas representativo es el ozono. Estos
contaminantes secundarios, conocidos genéricamente como
oxidantes fotoqúımicos, son los causantes cada año de cien-
tos de muertes y muchos más casos de problemas respirato-
rios severos.

Para explicar la estructura de las series temporales de los
contaminantes atmosféricos podemos plantear dos opciones
extremas: suponer que responden a un modelo estocástico li-
neal o que son manifestación de alǵun sistema determinista
no lineal. Trataremos de responder a la pregunta ¿cuál es la
estructura predominante en cada serie?

2. Datos experimentales

Disponemos de valores de las concentraciones de NO, NO2

(en adelante NO2) y O3 (O3), expresadas enµg/m3, medidas

a nivel del suelo en el centro histórico de la ciudad de Bur-
gos, Espãna. Las concentraciones de NO y NO2 se midieron
con un analizador de quimioluminiscencia y las de O3 con un
fotómetro de absorción de luz ultravioleta. Todos los datos

FIGURA 1. Las tres series originales.
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tienen un periodo de muestreo de 15 minutos y corresponden
al mismo intervalo de tiempo: el mes de junio de 1998, por lo
que cada serie contiene 2880 valores.

En la Fig. 1 se representan las tres series frente al tiem-
po, se puede apreciar una cierta estacionalidad de periodo 96
(1 d́ıa), especialmente en O3.

3. Sistemas cáoticos. Espacio de insercíon

Un sistema determinista puro evoluciona en el tiempo de una
forma posiblemente compleja, pero que viene fijada por unas
ecuaciones (en casos sencillos son ecuaciones diferenciales
lineales). Si el sistema es continuo (flujo)ẋ(t) = f(x(t)), y
si es discreto (mapa)xn+1 = F(xn), dondex, denominado
vector de estado, es un vector de dimensiónm. El espacio de
lasx recibe el nombre de espacio de fases o espacio de esta-
dos. El estudio de la evolución de los sistemas en el espacio
de fases ha llevado a importantes avances en el conocimiento
del caos.

Una funcíon de medida,s(·), puede dar una variable
(pongamos escalar y real) a partir de cada valor del vector
de estadox. Si el sistema es un flujo y la función de me-
dida se aplica a intervalos regulares de tiempo hablamos de
muestreo, y la sucesíon obtenida recibe el nombre deserie
temporal, {sn = s(xn)}.

Los teoremas de inserción (embedding theorems) permi-
ten inferir las propiedades del sistema a partir de una serie
temporal medida déel (véanse, por ejemplo, las citas en las
Refs. 1 y 2). En concreto, dichos teoremas garantizan que con
una serie de tamaño infinito y en ausencia de ruido es posible
reconstruir un espacio vectorialequivalenteal espacio de es-
tados original. Una técnica muy utilizada es lareconstruccíon
de retardos, que consiste en construir vectores

sn = (sn−(m−1)τ , sn−(m−2)τ , . . . , sn−τ , sn), (1)

a partir de la serie temporal. El espacio generado por los vec-
toressn se conoce comoespacio de inserción (embedding
space)y los enterosm y τ reciben los nombres dedimensíon
de insercíony retardo, respectivamente.

Para estimar el retardoτ se suele emplear el ḿetodo de
la informacíon mutua, basado en la entropı́a de Shannon.
Se define como la información que se tiene sobres(t + τ)
si se conoces(t). Se puede estimar construyendo un his-
tograma univariante de la serie{s(t)} y otro bivariante de
{s(t), s(t+τ)}. Sipi es la probabilidad de ques(t) est́e en la
cajai y pij(τ) la probabilidad de ques(t) est́e eni y s(t+ τ)
est́e enj, se puede estimar la información mutua aśı:

I(τ) =
∑

i,j

pij(τ)lnpij(τ)− 2
∑

i

pilnpi. (2)

Se aconseja tomar como estimación de τ el valor que da
el primer ḿınimo en la informacíon mutua. En la Fig. 2 se
muestran las gráficas de la información mutua para las tres
series, calculada hasta el retardo 100 y con 50 cajas en los his-
togramas [1]. Los valores propuestos paraτ (sẽnalados con
una flecha) son: 50 para NO y 30 para NO2 y O3.

FIGURA 2. Informacíon mutua para las tres series en función del
retardoτ .

Para estimar la dimensión de insercíon, m, existen nu-
merosos procedimientos, siendo el más empleado el ḿetodo
de losvecinos pŕoximos falsos(en ingĺesfalse nearest neigh-
bors) [1]. Se basa en que dos puntos lejanos del espacio de
estados pueden parecer próximos en alguna proyección deter-
minada, es decir, si la dimensión del espacio es insuficiente
para desdoblar todas las caracterı́sticas geoḿetricas del sis-
tema. Si vamos aumentando la dimensión de la proyección
irán desapareciendo esos falsos vecinos. Se halla el vecino
más pŕoximo a cada puntosi, llamémoslosj , y se calcula la
fracción

Ri =
|si+1 − sj+1|
‖si − sj‖ , (3)

que marca el alejamiento del vecino más pŕoximo al aumen-
tar la dimensíon en la unidad. Si la fracción es superior a un
umbral prefijadorf (del ingĺesratio factor), entonces se to-
ma sj como vecino falso. Finalmente, se calcula la fracción
de los vecinos ḿas pŕoximos falsos (en adelante FFNN, de
fraction of false nearest neighbors) en funcíon de la dimen-
sión. Cuando esa fracción se hace nula a partir de un valor
dem se puede pensar que se ha encontrado la dimensión que
desdobla completamente el atractor.

FIGURA 3. FFNN en funcíon dem, para NO.
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FIGURA 4. FFNN en funcíon dem, para NO2.

FIGURA 5. FFNN en funcíon dem, para O3.

FIGURA 6. E1(m) y E2(m) para NO, NO2 y O3.

Calculamos la FFNN en función de la dimensión de in-
sercíon m, para diferentes valores del umbralrf (Figs. 3, 4
y 5) [3].

Los menores valores derf parecen relacionados con el
ruido (sẽnal estoćastica o determinista de dimensión eleva-

da). A medida que aumentarf se reduce la dimensión de in-
sercíon, siendo 9, 6 y 4 los valores propuestos para NO, NO2
y O3, respectivamente.

Existen otros muchos ḿetodos para la estimación de la
dimensíon de insercíon. El ḿetodo de Cao [4] incluye dos
funciones dem, E1(m) y E2(m). E1(m), similar a FFNN,
sirve para estimar la dimensión de insercíon y tiene la ven-
taja de no necesitar umbrales, como los que necesita FFNN
para el cociente (3). En particular, si la señal es determinis-
ta,E1(m) crece ŕapidamente para las primeras dimensiones
y se estabiliza bruscamente en un valor dem, que es la esti-
macíon de la dimensión de insercíon. Si la sẽnal es estoćasti-
caE1(m) crece mońotonamente, no presenta una saturación
brusca.E2(m) permite distinguir una señal determinista de
una estoćastica, ya que mide la dilatación (al aumentar la di-
mensíon en la unidad) de la distancia media entre los valores
de la serie correspondientes al próximo elemento de los vec-
tores de retardo y sus vecinos más pŕoximos. En particular, si
la sẽnal es determinista (y posee un atractor),E2(m) se ase-
meja mucho aE1(m): comienza muy baja y sube rápidamen-
te hasta que se estanca a partir de la dimensión de insercíon.
Para una sẽnal estoćastica,E2(m) permanece invariable des-
de el comienzo (entorno a 1), independientemente dem.

En la Fig. 6 se representanE1(m) y E2(m) para las tres
series.E1(m) podŕıa reflejar un d́ebil comportamiento de-
terminista, al menos en O3, mientras queE2(m) permanece
prácticamente invariable desde el principio entorno a la uni-
dad, lo que parece indicar que las tres series (menos clara-
mente en O3) son predominantemente estocásticas.

Porúltimo, el test no linealidad de Casdagli [5] (no mos-
trado) sẽnala las tres series como predominantemente lineales
(con el patŕon t́ıpico de una serie estocástica lineal).

4. Conclusiones

Hemos comprobado que las series de NO, NO2 y O3 (al me-
nos en el intervalo temporal del orden de un mes y con perio-
do de muestreo cercano a 15 minutos) presentan simultánea-
mente un caŕacter determinista, con dimensión de insercíon
no muy elevada, y un comportamiento estocástico, al pare-
cer lineal. De los dos componentes parece predominar el es-
tocástico y el caŕacter no lineal parece ser débil.

Es bien sabido que este tipo de series temporales admi-
te generalmente la representación con modelos estocásticos
lineales (como los ARMA [6]) pero, a la vista de los resulta-
dos, parecen también ofrecer —al menos el O3— una posi-
bilidad de ańalisis determinista no lineal. La complejidad (en
el sentido de que tienen mezcladas estructuras muy diversas)
de las series queda patente en los análisis practicados.
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