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El arélisis chsico de series temporales se ha basado principalmente en un enfogastiesttioeal (se supda que la principal estructura

de una serie era la autocorrefatilineal en diferentes retardos). En laitimos d@los han cobrado importancia los sistemasticas: una

sdial compleja puede explicarse en ocasiones por unas ecuaciones deterministas, generalmente no lineales. Este tipo de sistemas
en muchosambitos de laikica y la ingenida, tambén en la contaminagn atmosérica. En este ddulo analizamos series de los tres
principales gases implicados en la contamigadotogtmica: NO, NG y Os. Nuestro objetivo es aclarar si la estructura principal de estas
series es estastica y lineal o determinista y no lineal. Para ello tratamos de construir un espacio démegrgvalente al espacio de fases
del supuesto sistema determinista del que proceden los datos. En las tres series detectamos que existe una estructura determinista
dimenson, pero es 1as fuerte el componente eshstico.

Descriptores: Series temporales no lineales; caos; series temporales; 0zono émgmsf

Classical analysis of time series has been founded mainly on a linear stochastic approach (the main structure of a series was suppo
be the linear autocorrelation in several lags). In latter years chaotic systems have acquired importance: a complex signal can sometim
explained by some deterministic, usually nonlinear, equations. This kind of systems is found in many areas of Physics and Engineering,
in atmospheric pollution. In this paper we analyze series of the three main gases involved in photochemical pollution; Hi@ 8OOur

aim is to clarify if the main structure of these series is stochastic and linear or deterministic and nonlinear. For this purpose we try to builc
embedding space equivalent to the phase space of the hypothetic deterministic system from which the series are measured. In the three
we have found that a low-dimensional deterministic structure exists, but the stochastic component is stronger.

Keywords:Nonlinear time series; chaos; time series; tropospheric ozone.
PACS: 05.45.Tp; 47.52+j; 95.10.Fh; 82.50.Nd

1. Introduccion a nivel del suelo en el centro histico de la ciudad de Bur-
) . ) ) _gos, Espha. Las concentraciones de NO y NO2 se midieron
Un serio problema ambiental en muchas ciudades industrigson un analizador de quimioluminiscencia y las de O3 con un

lizadas es la contaminami fotogumica, en la quéxidos de  fotometro de absoron de Iuz ultravioleta. Todos los datos
nitrbgeno reaccionan con hidrocarburosativés en presen-

cia de luz solar, dando lugar a diversos contaminantes secun
darios, de los que el &s representativo es el ozono. Estos . 2%}
contaminantes secundarios, conocidoségeamente como 10}
oxidantes fotogmicos son los causantes cadidcade cien-
tos de muertes y muchosas casos de problemas respirato-
rios severos.

Para explicar la estructura de las series temporales de oy :Z
contaminantes atmasficos podemos plantear dos opciones
extremas: suponer que responden a un modelo&stoo li- ’
neal o que son manifestaci de algin sistema determinista
no lineal. Trataremos de responder a la preguntalgsila
estructura predominante en cada serie? 100r 1
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Disponemos de valores de las concentraciones de NQ, NO
(en adelante NO2) y £(0O3), expresadas emy/m®, medidas  FIGURA 1. Las tres series originales.
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tienen un periodo de muestreo de 15 minutos y corresponder 1 2 ! At 2
al mismo intervalo de tiempo: el mes de junio de 1998, por lo :
gue cada serie contiene 2880 valores. 08 081 08 .
En la Fig. 1 se representan las tres series frente al tiem- |« 0'6“.“ ool
po, se puede apreciar una cierta estacionalidad de periodo 9_ |* -t I A
(1 dia), especialmente en O3. 04 :l 04 '%,,‘ 04 %:w"\,.,n‘
0.2 1\\\,/\ 0.2 \‘4‘W‘& 0.2
3. Sistemas caticos. Espacio de inserdn - , - N
. .. . . 0 0 0
Un sistema determinista puro evoluciona en el tempo de una ° 50 1000 50 1000 50 100

T T T

forma posiblemente compleja, pero que viene fijada por unas
ecuaciones (en casos sencillos son ecuaciones diferencial@§URA 2. Informacbn mutua para las tres series en famcel
lineales). Si el sistema es continuo (fluja) = f(x(t)),y  retardor.

si es discreto (mapa&),+1 = F(x,), dondex, denominado
vector de estado, es un vector de diménsi. El espacio de

lasx recibe el nombre de espacio de fases o espacio de es ' . ; )
dos. El estudio de la evolum de los sistemas en el espacio 9€ /0Svecinos poximos falsogen ingksfalse nearest neigh-

de fases ha llevado a importantes avances en el conocimierfg"® [1l- Se basa en que dos puntos lejanos del espacio de
del caos. estados pueden parecebpimos en alguna proyedni deter-

Una funcbn de medidas(-), puede dar una variable minada, es decir, si la dimelfm;l: dgl espacig es insuficignte
(pongamos escalar y real) a partir de cada valor del vectdtd@ de_sdoblar todas las cararstm:_as,gepretncas del SIS-
de estadax. Si el sistema es un flujo y la furimi de me- €Ma. Si vamos aumentando la dimeénmsde la proyecén
dida se aplica a intervalos regulares de tiempo hablamos dg#n desapareciendo esos falsos vecinos. Se halla el vecino
muestreoy la sucesin obtenida recibe el nombre derie ~MaS POximo a cada punts;, llamémosios;, y se calcula la
temporal {s, = s(x,)}. fraccion
Los teoremas de insefri (embedding theorehpermi-
ten inferir las propiedades del sistema a partir de una serie
temporal medida dél (véanse, por ejemplo, las citas en las
Refs. 1y 2). En concreto, dichos teoremas garantizan que CQfyie marca el alejamiento del vecindspbximo al aumen-
una serie de tanf infinito y en ausencia de ruido es posible tar |3 dimengin en la unidad. Si la fraceh es superior a un
reconstruir un espacio vectoriafjuivalenteal espacio de es- ympral prefijadaf (del inglesratio factor), entonces se to-
tados original. Unagicnica muy utilizada es keconstrucadn  mas; como vecino falso. Finalmente, se calcula la franci
de retardosque consiste en construir vectores de los vecinos s pbximos falsos (en adelante FFNN, de
fraction of false nearest neighbgren funcbn de la dimen-
sion. Cuando esa fradm se hace nula a partir de un valor

a partir de la serie temporal. El espacio generado por los vegter, se puede pensar que se ha encontrado la dibrensie
toress,, se conoce comespacio de inseron (embedding desdobla completamente el atractor.

space)y los enterosn y 7 reciben los nombres démensbn

Para estimar la dimer&i de inserd@n, m, existen nu-
{perosos procedimientos, siendo élsrempleado el étodo

R, = [sit1 = sisl
.=
lIsi — sl

; ®)

Spn = (Sn—(m—l)Ta Sn—(m—=2)7y 5 Sn—m; Sn)v (1)

de insercbny retardo, respectivamente. NO (1 = 50)

Para estimar el retardo se suele emplear elé&todo de ' ' ' 12
la informacbn mutua basado en la entrggp de Shannon. 05 — f=3
Se define como la informamn que se tiene sobrdt + 7) 0.45R o=
si se conoces(t). Se puede estimar construyendo un his- g4} o =8 1
tograma univariante de la ser{@(t)} y otro bivariante de 035N e ;fff :2 ]
{s(t), s(t+7)}. Sip; es la probabilidad de qu&t) esé en la =
cajai y p;;(7) la probabilidad de que(t) eseeniy s(t+7)  Z ]
esk enj, se puede estimar la informaa mutua as B 0.25F

I(r) = pij(r)npi(r) = 2> pilnp;. (2) 001'2

v, 3 Y

Se aconseja tomar como estin@acide 7 el valor que da 0-1%
el primer ninimo en la informadn mutua. En la Fig. 2 se 0.05}
muestran las @ficas de la informabn mutua para las tres 0
series, calculada hasta el retardo 100 y con 50 cajas en los his 5 10 B 20 2 30
togramas [1]. Los valores propuestos pargseialados con
una flecha) son: 50 para NO y 30 para NO2 y O3. FIGURA 3. FFNN en funcbn dem, para NO.
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FIGURA 4. FFNN en funcbn dem, para NO2.
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FIGURA 5. FFNN en funcbn dem, para O3.
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FIGURA 6. E1(m)y E2(m) para NO, NO2y O3.

Calculamos la FFNN en funan de la dimens$in de in-
sercbn m, para diferentes valores del umbral(Figs. 3, 4

y5) [3].

da). A medida que aumenth se reduce la dimert de in-
sercbn, siendo 9, 6 y 4 los valores propuestos para NO, NO2
y O3, respectivamente.

Existen otros muchos @odos para la estimaxi de la
dimensén de inserdn. El netodo de Cao [4] incluye dos
funciones den, E1(m)y E2(m). E1(m), similar a FFNN,
sirve para estimar la dimersi de inserdn y tiene la ven-
taja de no necesitar umbrales, como los que necesita FFNN
para el cociente (3). En particular, si lahaées determinis-
ta, E1(m) crece apidamente para las primeras dimensiones
y se estabiliza bruscamente en un valomdegue es la esti-
macbn de la dimengin de inserdn. Si la s@al es estazsti-
caF1(m) crece mobtonamente, no presenta una saturaci
brusca.E2(m) permite distinguir una $&l determinista de
una estoastica, ya que mide la dilat@aei (al aumentar la di-
menson en la unidad) de la distancia media entre los valores
de la serie correspondientes abyimo elemento de los vec-
tores de retardo y sus vecinoaspbximos. En particular, si
la séhal es determinista (y posee un atractér}(m) se ase-
meja mucho &1(m): comienza muy baja y subagidamen-
te hasta que se estanca a partir de la dinbendée inserd@n.
Para una d&l estoastica,F2(m) permanece invariable des-
de el comienzo (entorno a 1), independientemente.de

En la Fig. 6 se representdfil(m) y E2(m) para las tres
series.E1(m) podia reflejar un ébil comportamiento de-
terminista, al menos en O3, mientras du#(m) permanece
practicamente invariable desde el principio entorno a la uni-
dad, lo que parece indicar que las tres series (menos clara-
mente en O3) son predominantemente &sticas.

Porltimo, el test no linealidad de Casdagli [5] (no mos-
trado) s@ala las tres series como predominantemente lineales
(con el patén fipico de una serie estastica lineal).

4. Conclusiones

Hemos comprobado que las series de NO, NO2 y O3 (al me-
nos en el intervalo temporal del orden de un mes y con perio-
do de muestreo cercano a 15 minutos) presentan sinedt
mente un cacter determinista, con dimebsi de inserén

no muy elevada, y un comportamiento eststeo, al pare-

cer lineal. De los dos componentes parece predominar el es-
tocastico y el caticter no lineal parece seglil.

Es bien sabido que este tipo de series temporales admi-
te generalmente la representaticon modelos estasticos
lineales (como los ARMA [6]) pero, a la vista de los resulta-
dos, parecen tamém ofrecer —al menos el O3— una posi-
bilidad de aalisis determinista no lineal. La complejidad (en
el sentido de que tienen mezcladas estructuras muy diversas)
de las series queda patente en logliais practicados.
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