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Modeling the dynamics of liquid drops with SPH
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The method of Smoothed Particle Hydrodynamics (SPH) has been applied in the last 20 years to a wide range of problems involving solution
of the continuum fluid-dynamic equations. A variationally consistent SPH formulation has recently been devised which works equally well
for both compressible and incompressible fluids. An extension of this method which addresses the tensile instability for a viscous, heat-
conducting fluid has been applied to the condensation and binary coalescence collision of liquid drops using the van der Waals equation of
state. Here we show and discuss the results obtained for some of these test cases. In particular, the benefits of correcting the tensile instability
are described for both the formation of a stable liquid drop and the off-center coalescence of two liquid drops of equal size via a low-energy
impact.

Keywords:Computational methods in fluid dynamics; applied fluid mechanics; viscous instability; drops and bubbles.

En loslltimos 20 dos, el nétodo de Hidrodiamica de Partulas Suavizadas (SPH) ha sido aplicado a un vasto rango de problemas que
requieren la soludin de las ecuaciones de la dinica de fluidos. Se ha derivado recientemente una forndmlatgl nétodo SPH que es
variacionalmente consistente y que funciona de igual manera para fluidos compresibles e incompresibles. Uamedextkeisa formuladin

que corrije el problema de la inestabilidad tensional para fluidos viscosos y conductivos ha sido aplicada para simular la bandensaci
coalescencia binaria de gotaguidas usando la ecuaci de estado de van der Waals. En este trabajo se muestran y discuten los resultados
obtenidos para algunas de estas simulaciones. En particular, se describe el efecto de l@rcaleelecinestabilidad tensional para la
formacibn de una gotddjuida en equilibrio y la coalescencia de dos goigsitlas de igual tanfe a traes de un impacto no frontal y poco
energtico.

Descriptores: Métodos computacionales en dinica de fluidos; memica de fluidos aplicada; inestabilidad viscosa; gotas y burbujas

PACS: 47.11.+j; 47.85.-9; 47.20.Gv; 47.55.Dz

1. Introduction In this paper, we shall briefly describe a working SPH
formulation for solving the equations of a viscous, heat-

Smoothed Particle Hydrodynamics (SPH) is a fully La- conducting fluid and apply it to both the condensation and the

grangian technique for solving the partial differential equa-binary coalescence collision of van der Waals liquid drops.

tions of fluid mechanics, in which the fluid elements are rep-

resented by particles. In its original form [1,2], the method .

was invented for applications to astrophysical problems in-2' SPH formulation

volving compressible flows. Because of its wide range ofye have devised an SPH formulation which can be used to
applicability, SPH has also been employed in model indusy,gqe| compressible and incompressible fluids alike. Here

trial, biological and environmental processes many of whichye shajl only describe the salient features of the method and
oﬁgn involve mcompressMe fluids apd their |'nterac.t|on Withtor more details we refer to the reader [5,8]. It is common
solid walls. A number of fluid dynamic SPH simulations can y4ctice in SPH to estimate the continuous density field at
be found in the literature, some of which include viscous in-tne |ocation of particle according to
compressible flows at low Reynolds numbers [3,4,5], free-
surface incompressible flows [6], heat-conducting flows [7,8] N
and liquid-gas phase transition flows [9]. pi = ijW(| ri — ;| h), @)

In SPH the physical properties of a particle are deter- s
mined from those of a finite number of neighboring parti- wherem; is the mass of particlg, W (| r; — r; |, h) is the
cles through kernel interpolation. In this way, the value ofkernel interpolation function and the sum is taken oér
any field quantity at a point is represented by a weighted sumeighboring particles. Here,r; —r; | is the distance be-
over the contribution of all neighboring particles. In the SPHtween particles andj, andh is the smoothing length. With
framework, the particles move with the local fluid velocity the smoothed representation of the fluid variables and their
and in addition to their mass, they carry other fluid proper-spatial derivatives, the continuum partial differential equa-
ties specific to a given problem. Compared to conventionations for the momentum and energy are converted into a set
grid-based schemes, SPH presents several advantages. Bbordinary differential equations for each particle. In order
instance, it is much easier to incorporate new physics into théo guarantee variational consistency of the scheme with the
formulation, handle moving or deformable boundaries andise of Eq. (1), the SPH representations of the motion and en-
model the interaction of several fluid phases [10,11]. ergy equations must be written in symmetrized form [5,12].
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In particular, for a viscous, heat-conducting fluid, these readian der Waals fluid occurs fgr.,, = 2/3, p., = 8/27 and

as N T.. = 32/27. The coefficients of thermal conductivity, shear
dv; _ Zm‘ T; + T, vt @) and bulk viscosity in redu<_:ed units are taken torsbe- 5,
dt L\ p? p? e n = 1 and¢ = 0.1, respectively. We choose the,()-plane
=t _ to represent the fluid and start the evolution from a square ar-
for the momentum equation, and ray of 1936 SPH particles, of equal mass;(= m = 1), ar-
N ranged in a regular Cartesian mesh with lenfth = 32.25.
au; _ }ij ’Jl;; + T% (vj — Vi)viWi’; A3) The particles were given a smqothing I_e_n@xh: 3 and an
dt 2 = 2 O initial temperaturel’ = 0.2. At this subcritical value, a con-
N densed, stable circular drop forms as shown in Fig. 1. In
_ Zm' Qi n Q; v.Wwh Fig. la, we show the final configuration obtained without
< T\ p? P? v correcting for the tensile instability. A clustering of particles
=

in concentric rings is evident in the drop structure as a result

for the internal energy equation, where the colon indicates &f the tensile instability. When the artificial stress is added,
double dot producty; andU; are, respectively, the velocity the instability is removed and the drop forms with a more
and specific internal energy of particleV; is the gradient homogeneous structure as displayed in Fig. 1b.
operator at its locatiorf is the stress tenso = —«VT is
the heat flux vector, witk: being the coefficient of thermal 50
conductivity andl" the fluid temperature, anW,-’; = W(| a
r, —ry; |7 h)

This scheme has been found to perform well for plane 4
Poiseuille and Hagen-Poiseuille flows at moderdte £ 5)
and very low Re < 1) Reynolds numbers [5]. Further test-
ing of the method on the formation of a stable van der Waals 3, |
liquid drop has shown that it is highly susceptible to unstable
behavior in the tensile regime [8]. However, the instability
is completely removed when Eqgs. (2) and (3) are modified
by adding to their right-hand sides an artificial viscous force
and an artificial viscous heating term, respectively. A com-
plete account of the form of the artificial stress and corrected
SPH equations can be found in Ref. 8. The method has alsc 10
been succesfully applied to the head-on and off-center binary
coalescence collision of circular liquid drops [13].

0 L L L
0 10 20 30 40 50
3. Formation of a liquid drop 50
In this section, we describe the formation of a stable liquid b
drop at a temperature such that no evaporation of the quuid40 i
will take place during the evolution. For this test model, a
van der Waals fluid is chosen in which the SPH Egs. (1)-(3)
are closed by the constitutive relations o
3 L
P]_fBT _ 2
= _ , 4
PET (4)
and ) 207 |
U=FkgT — ap, (5)
for pressure and specific internal energy, respectively. Hereyg
kg = kg/m, @ = a/m? andb = b/m, wherekg is the
Boltzmann’s constanty is the particle mass, = 7 is the co-
hesive action responsible for the short-range attractive forces ‘ ‘

between neighboring molecules anid a constant parameter 0 10 20 30 40 50

due to the finite size of the molecules. We adopt the same pagure 1. Particle positions in thex( y)-plane showing the stable
rameters as in Ref. 8. Thatis, we take= 1,a = 2,b = 0.5,  van der Waals liquid drop obtained a) when the tensile instability is
andkp = 1. In these reduced units, the critical point of the present and b) when it is removed by adding an artificial stress.
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FIGURE 2. Time resolved shape evolution of the grazing collision of two equal-size drops. The time is given in dimensionless units. The
sides of the boxes are twice as long as those shown in Fig. 1.

4. Off-center binary drop coalescence collision determined using the Laplace equation. With the choice of

) ] ) ~aconstant relative velocity ~ 0.26 and X = D, we get
We now describe the results obtained for the grazing collisiorpe ~ 17, We ~ 0.62 andz = 1, corresponding to a low

~

of two liquid drops of equal size. The colliding drops are gnergy collision with a high impact parameter.

physically identical and in thermo-mechanical equilibrium. At low Weber numbers, we expect the impact to result

The drop model configuration corresponds to that shown in . .
Fig. 1b. The binary drop collision is fully described by the in the permanent coalescence of the drops into a single one

densityp, the shear viscosity, the surface tensiom, the di as shown in Fig. 2 for the temporal evolution of the colli-
p' 1 I - H .

o sion. The early stages$ « 90) are mainly governed by the
ameters P; = Dy = D = 36) of the colliding drops and y stages ¢ 90) y9 y

their relati locitvl7 [141. A further i ant it initial kinetic energies of the colliding drops and the pres-
their refative velocity [14]. A Turther important quantity o, qq o very large surface curvatures at the interface between
is the impact parameteX, defined as the distance from the

tor of drop to the relati locit tor placed at th them. The former results in uniform motion of the drops to-
centerof one drop to the refative velocity vector placed at thg, 4 g4ch other, while the latter causes a fast outward mo-
center of the other drop. These quantities can be combined

: ; . E?on of the surface perpendicular to the line of contact. In
produce the following dimensionless numbers this region, the viscous effects become important because of
pUD pU2D X the _high velocity gra_dients generated_ there. Further ou_twe_lrd
= T, We = Ty =7 (6) motion is, however, impeded by the high surface energies in-
volved which ultimately reverse the flow making the com-
where Re is the Reynolds numbei}) e the Weber number bined drop configuration oscillate. The evolution is followed
andz the dimensionless impact parameter. The drops havap tot = 290 at which time the coalesced drops have already
a central density, ~ 1.8 and surface tensiom ~ 7.1, as  completed a full revolutiont(= 230).

Re
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A more detailed description of the models and physicscolliding head-on{ = 0) and off-center{ = 0.5 and 1.0)

involved in the permanent coalescence of equal-size drop®r varied Re andWe (up toWe = 10) is given in Ref. 13.
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