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Modeling the dynamics of liquid drops with SPH
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The method of Smoothed Particle Hydrodynamics (SPH) has been applied in the last 20 years to a wide range of problems involving solution
of the continuum fluid-dynamic equations. A variationally consistent SPH formulation has recently been devised which works equally well
for both compressible and incompressible fluids. An extension of this method which addresses the tensile instability for a viscous, heat-
conducting fluid has been applied to the condensation and binary coalescence collision of liquid drops using the van der Waals equation of
state. Here we show and discuss the results obtained for some of these test cases. In particular, the benefits of correcting the tensile instability
are described for both the formation of a stable liquid drop and the off-center coalescence of two liquid drops of equal size via a low-energy
impact.
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En losúltimos 20 ãnos, el ḿetodo de Hidrodińamica de Partı́culas Suavizadas (SPH) ha sido aplicado a un vasto rango de problemas que
requieren la solución de las ecuaciones de la dinámica de fluidos. Se ha derivado recientemente una formulación del ḿetodo SPH que es
variacionalmente consistente y que funciona de igual manera para fluidos compresibles e incompresibles. Una extensión de dicha formulación
que corrije el problema de la inestabilidad tensional para fluidos viscosos y conductivos ha sido aplicada para simular la condensación y la
coalescencia binaria de gotas lı́quidas usando la ecuación de estado de van der Waals. En este trabajo se muestran y discuten los resultados
obtenidos para algunas de estas simulaciones. En particular, se describe el efecto de la corrección de la inestabilidad tensional para la
formacíon de una gota lı́quida en equilibrio y la coalescencia de dos gotas lı́quidas de igual tamaño a trav́es de un impacto no frontal y poco
enerǵetico.

Descriptores: Métodos computacionales en dinámica de fluidos; mecánica de fluidos aplicada; inestabilidad viscosa; gotas y burbujas

PACS: 47.11.+j; 47.85.-g; 47.20.Gv; 47.55.Dz

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a fully La-
grangian technique for solving the partial differential equa-
tions of fluid mechanics, in which the fluid elements are rep-
resented by particles. In its original form [1,2], the method
was invented for applications to astrophysical problems in-
volving compressible flows. Because of its wide range of
applicability, SPH has also been employed in model indus-
trial, biological and environmental processes many of which
often involve incompressible fluids and their interaction with
solid walls. A number of fluid dynamic SPH simulations can
be found in the literature, some of which include viscous in-
compressible flows at low Reynolds numbers [3,4,5], free-
surface incompressible flows [6], heat-conducting flows [7,8]
and liquid-gas phase transition flows [9].

In SPH the physical properties of a particle are deter-
mined from those of a finite number of neighboring parti-
cles through kernel interpolation. In this way, the value of
any field quantity at a point is represented by a weighted sum
over the contribution of all neighboring particles. In the SPH
framework, the particles move with the local fluid velocity
and in addition to their mass, they carry other fluid proper-
ties specific to a given problem. Compared to conventional
grid-based schemes, SPH presents several advantages. For
instance, it is much easier to incorporate new physics into the
formulation, handle moving or deformable boundaries and
model the interaction of several fluid phases [10,11].

In this paper, we shall briefly describe a working SPH
formulation for solving the equations of a viscous, heat-
conducting fluid and apply it to both the condensation and the
binary coalescence collision of van der Waals liquid drops.

2. SPH formulation

We have devised an SPH formulation which can be used to
model compressible and incompressible fluids alike. Here
we shall only describe the salient features of the method and
for more details we refer to the reader [5,8]. It is common
practice in SPH to estimate the continuous density field at
the location of particlei according to

ρi =
N∑

j=1

mjW (| ri − rj |, h), (1)

wheremj is the mass of particlej, W (| ri − rj |, h) is the
kernel interpolation function and the sum is taken overN
neighboring particles. Here,| ri − rj | is the distance be-
tween particlesi andj, andh is the smoothing length. With
the smoothed representation of the fluid variables and their
spatial derivatives, the continuum partial differential equa-
tions for the momentum and energy are converted into a set
of ordinary differential equations for each particle. In order
to guarantee variational consistency of the scheme with the
use of Eq. (1), the SPH representations of the motion and en-
ergy equations must be written in symmetrized form [5,12].
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In particular, for a viscous, heat-conducting fluid, these read
as

dvi

dt
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for the momentum equation, and
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for the internal energy equation, where the colon indicates a
double dot product,vi andUi are, respectively, the velocity
and specific internal energy of particlei, ∇i is the gradient
operator at its location,T is the stress tensor,Q = −κ∇T is
the heat flux vector, withκ being the coefficient of thermal
conductivity andT the fluid temperature, andWh

ij = W (|
ri − rj |, h).

This scheme has been found to perform well for plane
Poiseuille and Hagen-Poiseuille flows at moderate (Re = 5)
and very low (Re ¿ 1) Reynolds numbers [5]. Further test-
ing of the method on the formation of a stable van der Waals
liquid drop has shown that it is highly susceptible to unstable
behavior in the tensile regime [8]. However, the instability
is completely removed when Eqs. (2) and (3) are modified
by adding to their right-hand sides an artificial viscous force
and an artificial viscous heating term, respectively. A com-
plete account of the form of the artificial stress and corrected
SPH equations can be found in Ref. 8. The method has also
been succesfully applied to the head-on and off-center binary
coalescence collision of circular liquid drops [13].

3. Formation of a liquid drop

In this section, we describe the formation of a stable liquid
drop at a temperature such that no evaporation of the liquid
will take place during the evolution. For this test model, a
van der Waals fluid is chosen in which the SPH Eqs. (1)-(3)
are closed by the constitutive relations

p =
ρk̄BT

1− ρb̄
− āρ2 , (4)

and
U = k̄BT − āρ , (5)

for pressure and specific internal energy, respectively. Here
k̄B = kB/m, ā = a/m2 and b̄ = b/m, wherekB is the
Boltzmann’s constant,m is the particle mass,a = γ̄ is the co-
hesive action responsible for the short-range attractive forces
between neighboring molecules andb is a constant parameter
due to the finite size of the molecules. We adopt the same pa-
rameters as in Ref. 8. That is, we takem = 1, ā = 2, b̄ = 0.5,
andk̄B = 1. In these reduced units, the critical point of the

van der Waals fluid occurs forρcr = 2/3, pcr = 8/27 and
Tcr = 32/27. The coefficients of thermal conductivity, shear
and bulk viscosity in reduced units are taken to beκ = 5,
η = 1 andζ = 0.1, respectively. We choose the (x,y)-plane
to represent the fluid and start the evolution from a square ar-
ray of 1936 SPH particles, of equal mass (mi = m = 1), ar-
ranged in a regular Cartesian mesh with lengthLm = 32.25.
The particles were given a smoothing lengthh = 3 and an
initial temperatureT = 0.2. At this subcritical value, a con-
densed, stable circular drop forms as shown in Fig. 1. In
Fig. 1a, we show the final configuration obtained without
correcting for the tensile instability. A clustering of particles
in concentric rings is evident in the drop structure as a result
of the tensile instability. When the artificial stress is added,
the instability is removed and the drop forms with a more
homogeneous structure as displayed in Fig. 1b.

FIGURE 1. Particle positions in the (x, y)-plane showing the stable
van der Waals liquid drop obtained a) when the tensile instability is
present and b) when it is removed by adding an artificial stress.
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FIGURE 2. Time resolved shape evolution of the grazing collision of two equal-size drops. The time is given in dimensionless units. The
sides of the boxes are twice as long as those shown in Fig. 1.

4. Off-center binary drop coalescence collision

We now describe the results obtained for the grazing collision
of two liquid drops of equal size. The colliding drops are
physically identical and in thermo-mechanical equilibrium.
The drop model configuration corresponds to that shown in
Fig. 1b. The binary drop collision is fully described by the
densityρ, the shear viscosityη, the surface tensionσ, the di-
ameters (D1 = D2 = D ≈ 36) of the colliding drops and
their relative velocityU [14]. A further important quantity
is the impact parameterX, defined as the distance from the
center of one drop to the relative velocity vector placed at the
center of the other drop. These quantities can be combined to
produce the following dimensionless numbers

Re =
ρUD

η
, We =

ρU2D

σ
, x =

X

D
, (6)

whereRe is the Reynolds number,We the Weber number
andx the dimensionless impact parameter. The drops have
a central densityρc ≈ 1.8 and surface tensionσ ≈ 7.1, as

determined using the Laplace equation. With the choice of
a constant relative velocityU ≈ 0.26 andX = D, we get
Re ≈ 17, We ≈ 0.62 andx = 1, corresponding to a low
energy collision with a high impact parameter.

At low Weber numbers, we expect the impact to result
in the permanent coalescence of the drops into a single one
as shown in Fig. 2 for the temporal evolution of the colli-
sion. The early stages (t < 90) are mainly governed by the
initial kinetic energies of the colliding drops and the pres-
ence of very large surface curvatures at the interface between
them. The former results in uniform motion of the drops to-
ward each other, while the latter causes a fast outward mo-
tion of the surface perpendicular to the line of contact. In
this region, the viscous effects become important because of
the high velocity gradients generated there. Further outward
motion is, however, impeded by the high surface energies in-
volved which ultimately reverse the flow making the com-
bined drop configuration oscillate. The evolution is followed
up tot = 290 at which time the coalesced drops have already
completed a full revolution (t ≈ 230).
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A more detailed description of the models and physics
involved in the permanent coalescence of equal-size drops

colliding head-on (x = 0) and off-center (x = 0.5 and 1.0)
for variedRe andWe (up toWe = 10) is given in Ref. 13.
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