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The geometry and phase transition behavior of configuration mixing
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The Interacting Boson Model (IBM) with configuration mixing can be given a geometrical interpretation, when used in conjunction with a
(matrix) coherent-state method. This approach can be used to study the geometric aspects of shape coexistence in nuclei, as well as the phase
space diagrams associated to this phenomenon.
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Se muestra que es posible hacer una interpretacion geometrica del modelo de bosones interactuantes (IBA) al utilizar la mezcla de configu-
raciones junto con el metodo de la matriz de estados coherentes. Esta aproximacion puede utilizarse para estudiar los aspectos geometricos
de la coexistencia de forma en el nucleo, asi como los diagramas de fase asociados a este fenomeno.
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1. Shape coexistence in Nuclei

In the last 20 years there has been much interest in the study
of nuclear coexistence phenomena, understood as the possi-
bility of a simultaneous excitation of nuclear configurations
which may lead to shape phase transitions [1].

The structural changes in the properties of physical sys-
tems are called phase transitions. These changes have long
been studied in systems such as water in its gaseous, liquid
and solid forms, the so-called thermodynamic phase transi-
tions, where the control parameter is the temperatureT .

Phase transitions may occur as some of the control pa-
rameters that constrain the system are varied. In the late 70’s,
Gilmore et al. [2] introduced phase transitions in which the
control parameterg, is a parameter appearing in the quantum
Hamiltonian describing the system. These “ground state en-
ergy phase transitions”, are in some ways similar to thermo-
dynamic phase transitions and are known today as “quantum
phase transitions”.

In the context of the nuclear shell model the origin of
coexistence can be traced back to many-particle many-hole
excitations across shell gaps, which become energetically

favourable as a result of the interplay between shell effects
and the neutron-proton interaction [3]. For example, in the
neutron-deficient lead isotopes, shape coexistence was pre-
dicted by Mayet al. [4] in a Nilsson framework including
shell corrections.

Subsequent deformed mean-field calculations have pre-
dicted the occurrence in the energy surface of close-lying
oblate and prolate minima near the ground-state spherical
configuration, specifically in lead nuclei with neutron number
close toN = 104 (see,e.g., Ref. 5). These predictions have
been confirmed by a series of experiments on the neutron-
deficient lead isotopes, culminating in the recent observation
of three close low-lying0+ levels in 186Pb [6], interpreted
as having spherical, oblate, and prolate shapes. In Fig. 1
is shown the systematics of the0+ states in the lead chain.
Present-day sophisticated mean-field calculations [7] can ac-
count for these three minima in a region of energy that is
consistent with experimental findings. Although these theo-
retical studies are very impressive, they have focussed mainly
on the properties of the potential energy surface of186Pb. A
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FIGURE 1. Systematics of low-lying0+ states in186Pb.

description beyond mean field that includes spectroscopic
properties requires simplifying assumptions such as axial
symmetry and even then it represents a major computational
effort. Shell-model calculations, on the other hand, are very
difficult to carry out in this region due to the rapidly increas-
ing size of the model space, particularly for the case of inter-
est, which involves the opening up of shells through particle-
hole (p-h) configurations.

The Interacting Boson Model (IBM) [8] provides a sim-
ple alternative to describe the phenomenon of nuclear coex-
istence. The model assumes that low-lying collective exci-
tations of the nucleus can be described in terms of the num-
ber N of s andd bosons. The bosons correspond to pairs
of nucleons in the valence shell, coupled to angular momen-
tum 0 or 2;N is constant for a given nucleus and equal to
half its number of valence nucleons. Core (i.e., non-valence
p-h) excitations can be included in a natural way since they
correspond to configurations with higher numbers of active
nucleons and thus with higher boson numbers. Specifically,
0p-0h, 2p-2h, 4p-4h, . . . shell-model configurations corre-
spond to systems ofN , N + 2, N + 4, . . . interacting bosons
which are simultaneously treated and possibly mixed in this
configuration-mixed version of the IBM [9]. This model was
applied recently to describe the evolving properties of the
lead isotopes [10].

While both mean-field theory and IBM give a satisfactory
description of nuclear coexistence, an obvious connection be-
tween them is lacking. In this contribution we argue that the
algebraic description of nuclear coexistence can be given a
geometric interpretation and hence be connected with mean-
field theory [11]. This approach opens the possibility for a
study of the relation between coexistence and criticality.

2. The IBM with configuration mixing

We first explain the essential ingredients of the model with
specific reference to the lead isotopes. The model space for
three configurations is built fromN , N +2, andN +4 bosons
and constitutes a boson representation of the shell-model con-

figurations that are dominant in the low-energy region of the
lead isotopes. TheN -boson states correspond to excitations
of neutrons only, for which the proton shellZ = 82 remains
closed; they can be characterized as the 0p-0h configuration.
The states withN +2 andN +4 bosons correspond to 2p-2h
and 4p-4h excitations of the protons across theZ = 82 shell
gap coupled the valence neutrons in theN = 82-126 shell.
The Hamiltonian is

Ĥ = Ĥ0p−0h + Ĥ2p−2h + Ĥ4p−4h + Ĥ02
mix + Ĥ24

mix, (1)

whereĤip−ih is the Hamiltonian for theith of the three con-
figurations, taken in the simplified form [12]

Ĥip−ih = εin̂d + κiQ̂i · Q̂i. (2)

This Hamiltonian provides a simple parametrization of the
essential features of nuclear structural evolution in terms
of a vibrational termn̂d (the number ofd bosons) and a
quadrupole interaction̂Qi · Q̂i with Q̂i = (s†d̃ + d†s)(2) +
χi(d†d̃)(2). The Hamiltonian (2) conserves the number of
bosons and does not provide any mixing between theN ,
N +2, andN +4 configurations. Configuration mixing arises
through the boson-number non-conserving partsĤii′

mix which
are assumed to have the simple form [9]

Ĥii′
mix = ωii′

0 (s†s† + ss) + ωii′
2 (d† · d† + d̃ · d̃), (3)

with ii′ = 02 or 24. The operator̂H02
mix mixes the states

of the 0p-0h and 2p-2h configurations whilêH24
mix does the

same for the 2p-2h and 4p-4h configurations. This mixing
directly follows from the two-body nature of the shell-model
interaction.

3. Geometry of the IBM with configuration
mixing

The algebraic formalism of the previous section does not
directly provide a geometry for the IBM Hamiltonian. A
way to establish a connection [13] with the geometric Bohr-
Mottelson model [14], is obtained by defining a coherent
state with fixed boson number [2]

|N, βγ〉≡
(

s†+β

[
cos γd†0+

√
1
2 sin γ(d†+2+d†−2)

])N

|o〉,

which endows the algebraic model with an intrinsic geomet-
ric structure in terms of the quadrupole-shape variablesβ
andγ. For each of the separate HamiltoniansĤip−ih in (2)
one obtains from its expectation value in the coherent state
an energy surface

Ei(β, γ) =
Niεiβ

2

1 + β2
+ κi

[
Ni(5 + (1 + χ2

i )β
2)

1 + β2

+
Ni(Ni − 1)
(1+β2)2

(
2
7
χ2

i β
4+4

√
2
7
χiβ

3 cos 3γ+4β2

)]
, (4)
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TABLE I. Parameters in the first [10] and second [15] IBM fits of the three coexisting configurations in the Pb isotope chain.

Ref. fit Configuration ε κ χ ∆ ω0 = ω2

[10] 0p-0h 0.90 0 - - -

2p-2h 0.51 -0.014 0.515 1.880 0.0150

4p-4h 0.55 -0.020 -0.680 4.000 0.0300

[15] 0p-0h 0.92 0 - - -

2p-2h 0.51 -0.014 0.515 1.923 0.0085

4p-4h 0.55 -0.020 -0.680 3.846 0.0234

whereNi = N + i is the boson number associated with that
particular configuration.

For the lead isotopes in particular (186−208Pb), a set of pa-
rameters (ε, κ, χ, ∆ andω) describes a potential energy sur-
face forN ranging from 0 to 11 bosons (for neutron num-
bers from the closed shellN = 126 to mid-shellN = 104).
The 0p-0h configuration corresponds toN bosons whereas
the 2p-2h and 4p-4h excitations require 2 and 4 additional
bosons, respectively. This leads to a3 × 3 potential energy
matrix [11]

EN (β, γ)

=




E0(β, γ) Ω02(β) 0
Ω02(β) E2(β, γ)+∆2 Ω24(β)

0 Ω24(β) E4(β, γ)+∆4


 , (5)

where∆2 (∆4) corresponds to the single-particle energy ex-
pended in raising 2 (4) protons from the lower (50-82) to the
upper (82-126) shell, corrected for the gain in energy due to
pairing, and whereΩii′(β) ≡ 〈N + i, βγ|Ĥii′

mix|N + i′, βγ〉
are the non-diagonal matrix elements

Ω02(β) =

√
(N + 1)(N + 2)

1 + β2

(
ω02

0 + ω02
2 β2

)
,

Ω24(β) =

√
(N + 3)(N + 4)

1 + β2

(
ω24

0 + ω24
2 β2

)
. (6)

The eigenpotentials of the matrix (5) are obtained by di-
agonalization. The eigensolutions depend on the parameters
εi, κi, χi, andωii′

k which are takenwithout any modification
from a comprehensive fit to the energy spectra of several nu-
clei in the lead mass region and shown in Table I.

The first set [10] produces results similar to the ones of
this paper [11], obtained with a second set of parameters [15].
The major difference between these parameters is that the
second has much smaller mixing values (ω), because in the
first fit they were oversetimated. The 0p-0h configuration is
found to be spherical (κ0 = 0) while the 2p-2h and 4p-4h
configurations turn out to be oblate (κ2 6= 0, χ2 > 0) and
prolate (κ4 6= 0, χ4 < 0) in both fits, respectively.

In Fig. 2 the potential energy surfaces inβ andγ resulting
from EN (β, γ) are shown for the nucleus186Pb.

FIGURE 2. Potential energy surfaces inβ andγ for 186Pb. On
the horizontal axes,x ≡ β sin(γ + 30o) runs from−1 to 1, while
y ≡ β cos(γ + 30o) runs from 0 to 1. The vertical axis gives the
energy in MeV. The three plots show (a) the 0p-0h configuration
before mixing, (b) the 2p-2h configuration before mixing, and (c)
the 4p-4h configuration before mixing.
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Inserts 2a-c give the separate 0p-0h, 2p-2h, and 4p-4h
configurations before mixing. The first of these exhibits a
minimum with spherical shape ata ≡ β sin(γ+30◦) = 0 and
b ≡ β cos(γ + 30◦) = 0. The 2p-2h configuration (insert b)
has an oblate minimum ata = −0.21, b = 0.37 (β = 0.43,
γ = ±60◦) with an energy of 820 keV. A prolate minimum
occurs for the 4p-4h configuration ata = 0.36, b = 0.62
(β = 0.72, γ = 0◦) with an energy of 848 keV. These en-
ergies are reasonably close to those of the0+ excited states
observed in186Pb.

The plots in Fig. 3 show two views of the potential en-
ergy surface of the lowest energy eigenvalue ofEN (β, γ) in
Eq. (5) using the second set of parameters in Table I. The po-
tential energy surface of Fig. 3 exhibits a remarkable similar-
ity with that obtained within a mean-field approach [6] (apart
from an overall factor inβ). Nevertheless, with the mixing as
determined in Ref. 10only two (spherical and prolate) of the
three minima remain. There is, however, still considerable
uncertainty in the exact value of the mixing. A reduction of
the mixing leads tothreeminima in the lowest eigenpotential
of (5) which otherwise is very similar in appearance to the
surface shown in Fig. 3.

FIGURE 3. Two views of potential energy surfaces for186Pb after
configuration mixing.

FIGURE 4. Two views of potential energy surfaces for188Pb after
configuration mixing.

FIGURE 5. Two views of potential energy surfaces for190Pb after
configuration mixing.
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FIGURE 6. Phase diagram for U(5)–SU(3) configuration mixing.

FIGURE 7. Phase diagrams for U(5)–SO(6) configuration mixing.
The figures show the physical region of the parameter space with
ε̄/κ̄6 > 0 and, since the problem is invariant underω̄ → −ω̄,
only ω̄/κ̄6 > 0 is shown. The figures correspond to∆ = 0, 1/4,
1/3, and 1/2. Different phases are separated by critical lines (thick
lines) and three phases meet in triple points (dots). The inset plots
illustrate the potential for the different phases.

In Figs. 4 and 5 are shown the potential energy surfaces
in 188Pb and190Pb, respectively. The same point of view
and scale were used to make evident the dissapearance of the
coexisting minima.

4. Coexistence and criticality

The geometric interpretation of the IBM with configuration
mixing may also improve our understanding of the relation
between coexistence and criticality. The different phases of
the IBM-1 have been rigorously determined on the basis of
catastrophe theory [16] and its phase diagram is well estab-
lished [17]. In particular, it is known [18] that there is little
scope for coexistence and only coexistence of spherical and
deformed shapes [U(5)-SU(3)]. The present matrix coherent-
state formalism broadens the scope of this investigation: A
catastrophe analysis, similar to that in Ref. [16], can be un-
dertaken of the IBM with configuration mixing. A first anal-
ysis indicates a wealth of new results such as phase diagrams

with spherical-deformed and prolate-oblate coexistence, tri-
axial instabilities as well as a connection with the critical
symmetries proposed by Iachello [19].

In the case of the mixing of two consistent-q formalism
(CQF) Hamiltonians forN andN + 2 bosons, respectively,
a potential surface in terms of U(5) and SU(3) symmetries, is
obtained from the diagonalization of the potential matrix



ε̄
β2

1 + β2
ω̄

ω̄ −κ̄3
β4 + 4

√
2β3 cos 3γ + 8β2

2(1 + β2)2
+ ∆


 , (7)

whereε̄ = Ñε, κ̄3 = 4κ̄ = 4Ñ(Ñ − 1)κ, Ñ is eitherN or
N + 2 and, furthermore,̄ωi =

√
(N + 1)(N + 2)ωi is in-

troduced for notational convenience. We chooseκ̄3 = 1 and
express̄ε, ω̄, and∆ in unitsκ̄3.

The criticality conditions inβ andγ are given by

∂E−
∂β

=
∂2E−
∂β2

= 0, (8)

which is valid for U(5)–SU(3) mixing but not in general.
If γ = 0, the lowest eigenvalue of (7) can be expanded in

β as

E−(β, γ = 0; ε̄, ω̄, ∆ = 0) ≈− ω̄ +
ε̄− 1

2
β2

− 1√
8
β3 + · · · , (9)

which shows that for̄ε < 1 the minimum is deformed while
for ε̄ > 1 there is a spherical minimum (see Fig. 6).

Furthermore, for a given deformationβ0 6= 0 the condi-
tions for criticality can be solved for̄ε andω̄, which leads to a
parametric representation of the locus of points where the po-
tential changes character from one with a spherical minimum
to one with two coexisting minima. In the U(5)–SU(3) case,
this critical curve does not meet the lineε̄ = 1 but converges
to the value 1.14168. . . for̄ω → ∞. We thus see that the
small region of coexistence in the single-configuration U(5)
to SU(3) transition (1 < ε̄ < 1.14168 . . . ) is considerably
expanded if configuration mixing is allowed.

Increasing∆ shifts the critical line to the left and the re-
gion with a deformed minimum shrinks. In Fig. 7 the two
critical lines remain separated for all values of∆: no triple
point exists for physical values of the parameters. Finally, as
∆ increases, the critical curve withβ0 6= 0 moves down in
the ε̄–ω̄ plane.

Mixing of U(5) and SO(6) leads the potential matrix de-
pending onβ only and is given by




ε̄
β2

1 + β2
ω̄

ω̄ −κ̄6
β2

(1 + β2)2
+ ∆


 , (10)

where κ̄6 = 4κ̄ is introduced for notational convenience.
Since the problem is scale invariant, we may chooseκ̄6 = 1;
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this means that̄ε, ω̄, and∆ are expressed in units̄κ6. For∆ = 0, the lowest eigenvalue of (10) can be expanded inβ as

E−(β; ε̄, ω̄, ∆ = 0) ≈ −ω̄ +
ε̄− 1

2
β2 − (1 + ε̄)2 + 4(ε̄− 2)ω̄

8ω̄
β4 + · · · (11)

while for ∆ 6= 0, the lowest energy eigenvalue is given by

E−(β; ε̄, ω̄, ∆) ≈ ∆
2

(
1−

√
1 + 4ζ

)
+

(1 + ε̄)− (1− ε̄)
√

1 + 4ζ

2
√

1 + 4ζ
β2

−2ζ(1 + ε̄)2 + ∆(1 + 4ζ)[(2 + ε̄)− (2− ε̄)
√

1 + 4ζ]
2∆(1 + 4ζ)3/2

β4 + · · · , (12)

whereζ = ω̄2/∆2.

When∆ = 0, the lineε̄ = 1 is critical in the sense that on
its left (ε̄ < 1) the potential has a deformed minimum while
on its right (̄ε > 1) it has a spherical one (see Fig. 7). This
is similar to what is found for the U(5) to SO(6) transition in
the IBM with a single configuration.

The main result is that, unlike in the single-configuration
U(5) to SO(6) transition, a region of coexistence is present
in the mixing of U(5) and SO(6) configurations. To find the
position of the triple point, we require in addition that the
coefficient ofβ4 vanishes. This leads to the solutions

(ε̄0, ω̄0) = (1−∆,±
√

1−∆) or (ε̄0, ω̄0) = (0, 0), (13)

whereε̄0, ω̄0 are the control parameters when we chooseβ0.

When∆ increases, the triple point migrates downwards
to the left and reaches (0,0) for∆ = 1. Before that, at values
of ∆ > 1/4, a spherical region appears in the physical phase
diagram around(ε̄, ω̄) = (0, 0). The two spherical regions
touch at∆ ≈ 1/3, point at which the region of coexisting
minima splits into two. One of these regions shrinks rapidly
and disappears altogether for∆ = 1; the other region of co-
existing minima never disappears but shifts to higher values
of ε̄ as∆ increases.

A catastrophe analysis is the subject of a separate pa-
per [20].

5. Conclusion

The main aim of this paper is to give a geometric interpre-
tation of the IBM with configuration mixing via a matrix
coherent-state method. The application to the lead isotopes
and the similarities found between the mean-field approach
and the geometric interpretation of the IBM, suggest that this
geometric interpretation is a reliable tool in the description
of shape coexistence phenomena in nuclei. The lowest po-
tential energy surface predicted with matrix coherent states is
in agreement with that found using mean-field theory while
it is at the same time derived from an IBM Hamiltonian that
describes the known spectroscopic properties of the lead iso-
topes.

The proposed matrix coherent-state method opens up the
possibility for a systematic investigation of the relation be-
tween coexistence and criticality. In contrast to IBM-1,
where coexistence plays a marginal role only and where it is
confined to a small U(5)-SU(3) region, coexistence acquires
a prominent status in the IBM with configuration mixing and
can be studied in full detail by applying a catastrophe the-
ory of critical behaviour to the eigenpotentials obtained from
the matrix coherent-state method. The structure of the phase
diagram is rather complex, which can be traced back to the
non-polinomial character of the eigenpotential in terms ofβ.

Acknowledgments

This work was supported in part by CONACyT (Mexico).

1. K. Heyde, P. Van Isacker, M. Waroquier, J.L. Wood, and
R.A. Meyer,Phys. Rep.102(1983) 293; J.L. Wood, K. Heyde,
W. Nazarewicz, M. Huyse, and P. Van Duppen,Phys. Rep.215
(1992) 101.

2. R. Gilmore,J. Math. Phys.20 (1979) 891.

3. P. Federman and S. Pittel,Phys. Lett. B69 (1977) 385.

4. F.R. May, V.V. Pashkevich, and S. Frauendorf,Phys. Lett. B68
(1977) 113.

5. W. Nazarewicz,Phys. Lett. B305(1993) 195.

6. A.N. Andreyevet al., Nature405(2000) 430.

7. T. Duguet, M. Bender, P. Bonche, and P.-H. Heenen,Phys. Lett.
B 559(2003) 201.

8. F. Iachello and A. Arima,The Interacting Boson Model, (Cam-
bridge University Press, Cambridge, 1987).

9. P.D. Duval and B.R. Barrett,Nucl. Phys. A376(1982) 213.

Rev. Mex. F́ıs. S52 (1) (2006) 5–11



THE GEOMETRY AND PHASE TRANSITION BEHAVIOR OF CONFIGURATION MIXING IN THE INTERACTING BOSON MODEL 11

10. R. Fossion, K. Heyde, G. Thiamova, and P. Van Isacker,Phys.
Rev. C67 (2003) 024306.

11. A. Frank, P. Van Isacker, and C.E. Vargas,Phys. Rev. C69
(2004) 034323.

12. D.D. Warner and R.F. Casten,Phys. Rev. C28 (1983) 1798;
P.O. Lipas, P. Toivonen, and D.D. Warner,Phys. Lett. B155
(1985) 295.

13. J.N. Ginocchio and M.W. Kirson,Phys. Rev. Lett.44,(1980)
1744; A.E.L. Dieperink, O. Scholten, and F. Iachello,Phys.
Rev. Lett.44 (1980) 1747; A. Bohr and B.R. Mottelson,Phys.
Scripta22 (1980) 468.

14. A. Bohr and B.R. Mottelson,Nuclear Structure. II Nuclear De-
formations(Benjamin, New York, 1975).

15. R. Fossion and K. Heyde, Private communications.
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