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The Interacting Boson Model (IBM) with configuration mixing can be given a geometrical interpretation, when used in conjunction with
(matrix) coherent-state method. This approach can be used to study the geometric aspects of shape coexistence in nuclei, as well as the
space diagrams associated to this phenomenon.
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Se muestra que es posible hacer una interpretacion geometrica del modelo de bosones interactuantes (IBA) al utilizar la mezcla de co
raciones junto con el metodo de la matriz de estados coherentes. Esta aproximacion puede utilizarse para estudiar los aspectos geon
de la coexistencia de forma en el nucleo, asi como los diagramas de fase asociados a este fenomeno.

Descriptores: Modelos algebraicos; coexistencia de forma, tradside fase; Mezcla de configuraciones.

PACS: 21.10.Re; 21.60.Ev; 21.60.Fw; 27.70.+q

1. Shape coexistence in Nuclei favourable as a result of the interplay between shell effects
and the neutron-proton interaction [3]. For example, in the
In the last 20 years there has been much interest in the studyeutron-deficient lead isotopes, shape coexistence was pre-
of nuclear coexistence phenomena, understood as the poséieted by Mayet al. [4] in a Nilsson framework including
bility of a simultaneous excitation of nuclear configurationsshell corrections.
which may lead to shape phase transitions [1].
The structural changes in the properties of physical sys-

tems are called phase transitions. These Changes have |Ong Subsequent deformed mean-field calculations have pre-
been studied in systems such as water in its gaseous, liquiflcted the occurrence in the energy surface of close-lying
and solid forms, the so-called thermodynamic phase transpplate and prolate minima near the ground-state spherical
tions, where the control parameter is the temperaifure configuration, specifically in lead nuclei with neutron number
Phase transitions may occur as some of the control pazlose toN = 104 (see.e.g, Ref. 5). These predictions have
rameters that constrain the system are varied. In the late 70'seen confirmed by a series of experiments on the neutron-
Gilmore et al. [2] introduced phase transitions in which thedeficient lead isotopes, culminating in the recent observation
control parametey, is a parameter appearing in the quantumof three close low-lying)* levels in '%6Pb [6], interpreted
Hamiltonian describing the system. These “ground state eras having spherical, oblate, and prolate shapes. In Fig. 1
ergy phase transitions”, are in some ways similar to thermois shown the systematics of tid¢ states in the lead chain.
dynamic phase transitions and are known today as “quantumRresent-day sophisticated mean-field calculations [7] can ac-
phase transitions”. count for these three minima in a region of energy that is
In the context of the nuclear shell model the origin of consistent with experimental findings. Although these theo-
coexistence can be traced back to many-particle many-holestical studies are very impressive, they have focussed mainly
excitations across shell gaps, which become energeticallgn the properties of the potential energy surfacés6Pb. A
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800000 figurations that are dominant in the low-energy region of the
00000 N lead isotopes. Thé/-boson states correspond to excitations
ok 0+: 0+ - of neutrons only, for which the proton shéll = 82 remains
st closed; they can be characterized as the Op-Oh configuration.
0k i The states withV + 2 and N + 4 bosons correspond to 2p-2h
and 4p-4h excitations of the protons acrossthe 82 shell
oL : | gap coupled the valence neutrons in fe= 82-126 shell.
g+ o+ - The Hamiltonian is
oF s "= oo _0 T - g 2 2 02, 24
gi— 0t —tm :():Jr:= H = Hop—on + Hap—on + Hap—an + Hyyiy + Hii, (1)
i | £ e
0 —%: — ..é'..'= -=8;L_ i N whereH;,_,, is the Hamiltonian for théth of the three con-
0T = + figurations, taken in the simplified form [12]
O—Oii'———'—'—'—'—'—'—'— _Oi_ A ) A
080 080 080 088 000 000 Hip—in = €ifig + £ Q; - Qi 2

i ind+ (186
FIGURE 1. Systematics of low-lying™ states in"**Pb. This Hamiltonian provides a simple parametrization of the

description beyond mean field that includes spectroscopigssential features of nuclear structural evolution in terms
f a vibrational termn, (the number ofd bosons) and a

r rties r ir implifyin mption h Xi . N ~
2 ?r?nemtfs arelg L;zvii ts;wenpitfsr/e greizilis : n?a'f)rscuocm ifaﬁon%uadry pole interactio); - Q; with Q; = (s'd + d's)®) +
y Y P ) P i(d*d)®. The Hamiltonian (2) conserves the number of

effort. Shell-model calculations, on the other hand, are ver osons and does not provide any mixing between Xhe
difficult to carry out in this region due to the rapidly increas- Ot Pro v 9 . )
. . . . N +2, andN +4 configurations. Configuration mixing arises
ing size of the model space, particularly for the case of inter- _ o ;
L . . through the boson-number non-conserving paf}s, which

est, which involves the opening up of shells through particle- . 1x
hole (p-h) configurations. are assumed to have the simple form [9]

The Interacting Boson Model (IBM) [8] provides a sim- it — it (gt gt Wat . dt L d.d 3
ple alternative to describe the phenomenon of nuclear coex- mix = wo (578" 4 55) + wy' ( + ) @

istence. The model assumes that low-lying collective exCiyjth i = 02 or 24. The operatof/%2, mixes the states

tations of the nucleus can be described in terms of the numss e Op-Oh and 2p-2h configurations whif?4does the
ber N of s andd bosons. The bosons correspond to pairssame for the 2p-2h and 4p-4h configurations. This mixing

of nucleons in the valence shell, coupled to angular momenyjirectly follows from the two-body nature of the shell-model
tum O or 2; N is constant for a given nucleus and equal t0jteraction.

half its number of valence nucleons. Core.( non-valence
p-h) excitations can be included in a natural way since they . ) .
correspond to configurations with higher numbers of active3. Geometry of the IBM with configuration
nucleons and thus with higher boson numbers. Specifically, — mixing
Op-0Oh, 2p-2h, 4p-4h, ...shell-model configurations corre-
spond to systems df, N + 2, N + 4, ...interacting bosons The algebraic formalism of the previous section does not
which are simultaneously treated and possibly mixed in thiglirectly provide a geometry for the IBM Hamiltonian. A
configuration-mixed version of the IBM [9]. This model was Way to establish a connection [13] with the geometric Bohr-
applied recently to describe the evolving properties of theéVlottelson model [14], is obtained by defining a coherent
lead isotopes [10]. state with fixed boson number [2]

While both mean-field theory and IBM give a satisfactory

N
description of nuclear coexistence, an obvious connection beyy, Br)= (sM—ﬂ [COS de—i—\/gsinv(dj_g—!—dT_Q)} ) o),
tween them is lacking. In this contribution we argue that the

algebraic description of nuclear coexistence can be given &hich endows the algebraic model with an intrinsic geomet-

geometric interpreta’;ion and hence be connecteq V.V?th MeaRe structure in terms of the quadrupole-shape variables
field theory [11]. This approach opens the possibility for aandy. For each of the separate Hamiltoniaﬁg)_ih in (2)

study of the relation between coexistence and criticality. one obtains from its expectation value in the coherent state
an energy surface
_ Niei3 N5+ (1 +x7)8%)
1 +52 g 1_|_ﬂ2

2. The IBM with configuration mixing

We first explain the essential ingredients of the model with
specific reference to the lead isotopes. The model space for
three configurations is built from¥, N +2, andN -+4 bosons Ni(Ni —1) (2 5 4 \/5 3 2
. L ———= | =XiB +44/ =xu° cos 3y+4
and constitutes a boson representation of the shell-model con-  (1+52)2 7X p 7X b 7+40

, (4)
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TABLE |. Parameters in the first [10] and second [15] IBM fits of the three coexisting configurations in the Pb isotope chain.

Ref. fit Configuration € K X A Wo = Wa
[10] Op-Oh 0.90 0 - - -
2p-2h 0.51 -0.014 0.515 1.880 0.0150
4p-4h 0.55 -0.020 -0.680 4.000 0.0300
[15] Op-0Oh 0.92 0 - - -
2p-2h 0.51 -0.014 0.515 1.923 0.0085
4p-4h 0.55 -0.020 -0.680 3.846 0.0234

whereN; = N + i is the boson number associated with that
particular configuration.

For the lead isotopes in particuld?§{—2°®Pb), a set of pa- a)
rameters d, x, x, A andw) describes a potential energy sur-

face for N ranging from 0 to 11 bosons (for neutron num-

bers from the closed sheN = 126 to mid-shellN = 104).

The 0p-Oh configuration corresponds &b bosons whereas

the 2p-2h and 4p-4h excitations require 2 and 4 additional
bosons, respectively. This leads t@ & 3 potential energy

matrix [11]

Eo(B,7)  £02(B) 0 T
= | W) BGa)rr 00 |6 A7
0 224(0) Eq(B,7)+A4 b ) “““‘“ﬁ%!!g!“;;;;;{;‘ "7

whereA, (A,4) corresponds to the single-particle energy ex-

pended in raising 2 (4) protons from the lower (50-82) to the

upper (82-126) shell, corrected for the gain in energy due to
pairing, and wher&,;/ (8) = (N + i, By|HI [N + i, 37)

are the non-diagonal matrix elements

(N+1)(N+2)

Qog(ﬂ) = 1 T 52 (w82 + w8262) ,
020(0) = VO (). @

The eigenpotentials of the matrix (5) are obtained by di- C)
agonalization. The eigensolutions depend on the parameter:
€i, ki, X4, andwi?” which are takemithout any modification
from a comprehensive fit to the energy spectra of several nu-
clei in the lead mass region and shown in Table I.

The first set [10] produces results similar to the ones of
this paper [11], obtained with a second set of parameters [15]. L1 - :
The major difference between these parameters is that the 0 16 0.5 1
second has much smaller mixing valueg,(because in the X Y
first fit they were oversetimated. The Op-Oh configuration is
found to be sphericalsy = 0) while the 2p-2h and 4p-4h

configurations turn out to be oblatey( # 0, x» > 0) and y = Bcos(y + 30°) runs from 0 to 1. The vertical axis gives the

prolate .64 #0,xa < 0_) in both fits, respectively. . energy in MeV. The three plots show (a) the Op-Oh configuration
In Fig. 2 the potential energy surfacesimndy resulting  before mixing, (b) the 2p-2h configuration before mixing, and (c)
from Ex (3, v) are shown for the nucleu$®Pb. the 4p-4h configuration before mixing.

FIGURE 2. Potential energy surfaces jf and~ for '¥Pb. On
the horizontal axess = Bsin(y + 30°) runs from—1 to 1, while
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Inserts 2a-c give the separate Op-Oh, 2p-2h, and 4p-4h
configurations before mixing. The first of these exhibits a
minimum with spherical shape at= (3 sin(y+30°) = 0 and a
b = Bcos(y + 30°) = 0. The 2p-2h configuration (insert b)
has an oblate minimum at= —0.21, b = 0.37 (8 = 0.43,
~v = £60°) with an energy of 820 keV. A prolate minimum
occurs for the 4p-4h configuration at= 0.36, b = 0.62
(6 = 0.72, v = 0°) with an energy of 848 keV. These en-
ergies are reasonably close to those of(teexcited states
observed in®Pb.

The plots in Fig. 3 show two views of the potential en-
ergy surface of the lowest energy eigenvalu&gf(3,~) in
Eq. (5) using the second set of parameters in Table I. The po-
tential energy surface of Fig. 3 exhibits a remarkable similar-
ity with that obtained within a mean-field approach [6] (apart
from an overall factor irf). Nevertheless, with the mixingas |
determined in Ref. 10only two (spherical and prolate) of the
three minima remain. There is, however, still considerable
uncertainty in the exact value of the mixing. A reduction of
the mixing leads toehreeminima in the lowest eigenpotential
of (5) which otherwise is very similar in appearance to the
surface shown in Fig. 3.

FIGURE 4. Two views of potential energy surfaces f6f Pb after
configuration mixing.

b)

FIGURE 3. Two views of potential energy surfaces f6f Pb after FIGURE 5. Two views of potential energy surfaces fof Pb after
configuration mixing. configuration mixing.
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with spherical-deformed and prolate-oblate coexistence, tri-
axial instabilities as well as a connection with the critical

symmetries proposed by lachello [19].
i In the case of the mixing of two consistent-g formalism

w
K3
2

(CQF) Hamiltonians fotNV and N + 2 bosons, respectively,
. a potential surface in terms of U(5) and SU(3) symmetries, is
obtained from the diagonalization of the potential matrix

1_
\ o ]
€ w
\ 1+5 NG

. _ B+ 4233 cos 3y + 832
. | w —FR3 3 + A
I . 2(1+p?)
I — ~ ~ ~ ~
1.142 2 3 4 K3 whereeé = Ne, k3 = 4k = 4N(N — 1)k, N is eitherN or
FIGURE 6. Phase diagram for U(5)-SU(3) configuration mixing. IV + 2 and, furthermorew; = /(N + 1)(N + 2)w; is in-
troduced for notational convenience. We chogse= 1 and
o o 14 express, w, andA in unitsks.
' A0 ] At/ The criticality conditions ins and~ are given by
1 L 0B _ OB _ .
V4 0B 0B
N which is valid for U(5)-SU(3) mixing but not in general.
: > B If v =0, the lowest eigenvalue of (7) can be expanded in
* A=1/3 w A=1/2 pas
e—1
I N L |4 L E_ (8,7 =060 A=0)~ - &+ ——f
_ ig?) + 9)
o V8 ’
' pre T ' ' pe which shows that foe < 1 the minimum is deformed while

FIGURE 7. Phase diagrams for U(5)-SO(6) configuration mixing. fq ¢ > 1 there is a spherical minimum (see Fig. 6).
The figures show the physical region of the parameter space with Furthermore, for a given deformatiafy # 0 the condi-
¢/Fo > 0 and, since the problem is invariant under— —a, 0o g0 criticality can be solved farandw, which leads to a

only w/ke > 0 is shown. The figures corresponddo= 0, 1/4, tri tati fthe | f oints wh th
1/3, and 1/2. Different phases are separated by critical lines (thickpar"’1me ricrepresentation ofthe locus ot points where the po-

lines) and three phases meet in triple points (dots). The inset plotd€ntial changes character from one with a spherical minimum
illustrate the potential for the different phases. to one with two coexisting minima. In the U(5)-SU(3) case,
this critical curve does not meet the line= 1 but converges

In Figs. 4 and 5 are shown the potential energy surfacet the value 1.14168...fab — oco. We thus see that the
in 188Ph and!'%°Pb, respectively. The same point of view small region of coexistence in the single-configuration U(5)
and scale were used to make evident the dissapearance of tleeSU(3) transition { < € < 1.14168...) is considerably
coexisting minima. expanded if configuration mixing is allowed.

IncreasingA shifts the critical line to the left and the re-
gion with a deformed minimum shrinks. In Fig. 7 the two
critical lines remain separated for all values&f no triple
The geometric interpretation of the IBM with configuration Point exists for physical values of the parameters. Finally, as
mixing may also improve our understanding of the relation2 increases, the critical curve wit # 0 moves down in

between coexistence and criticality. The different phases dheé—= plane. . .
the IBM-1 have been rigorously determined on the basis of ~Mixing of U(5) and SO(6) leads the potential matrix de-
catastrophe theory [16] and its phase diagram is well estatending ons only and is given by

4. Coexistence and criticality

lished [17]. In particular, it is known [18] that there is little 32

scope for coexistence and only coexistence of spherical and € I+ 52 w

deformed shapes [U(5)-SU(3)]. The present matrix coherent- 32 ) (10)
state formalism broadens the scope of this investigation: A w —Rem +A

catastrophe analysis, similar to that in Ref. [16], can be un-
dertaken of the IBM with configuration mixing. A first anal- whereks = 4k is introduced for notational convenience.
ysis indicates a wealth of new results such as phase diagranénce the problem is scale invariant, we may choase- 1;

Rev. Mex. . S52 (1) (2006) 5-11



10 P. VAN ISACKER, I. MORALES, C.E. VARGAS, AND A. FRANK

this means that, w, andA are expressed in units;. For A = 0, the lowest eigenvalue of (10) can be expanded &s

e—1
2
while for A # 0, the lowest energy eigenvalue is given by

(1+€)? +4(e-2)w

5 B4 (11)

E—(B7Ea@aA:0)%_w+ 62_

B = 3 (12 VIFR) + (O
20(1+ 82 + Al +40)[(2+6) — (2 — VI T+ 4q|

B 2A(1 + 40372 gra, (2

where¢ = w2 /A2 |

WhenA = 0, the linee = 1 is critical in the sense that on .
its left (¢ < 1) the potential has a deformed minimum while 2. Conclusion
on its right € > 1) it has a spherical one (see Fig. 7). This
is similar to what is found for the U(5) to SO(6) transition in
the IBM with a single configuration.

The main aim of this paper is to give a geometric interpre-
tation of the IBM with configuration mixing via a matrix
coherent-state method. The application to the lead isotopes
The main result is that, unlike in the single-configurationand the similarities found between the mean-field approach

U(5) to SO(6) transition, a region of coexistence is presennd the geometric interpretation of the IBM, suggest that this
in the mixing of U(5) and SO(6) configurations. To find the 9eometric interpretation is a reliable tool in the description
position of the triple point, we require in addition that the Of shape coexistence phenomena in nuclei. The lowest po-
coefficient of 34 vanishes. This leads to the solutions tential energy surface predicted with matrix coherent states is
in agreement with that found using mean-field theory while
it is at the same time derived from an IBM Hamiltonian that
describes the known spectroscopic properties of the lead iso-
topes.

The proposed matrix coherent-state method opens up the
possibility for a systematic investigation of the relation be-
wheregy, wo are the control parameters when we chodise  tween coexistence and criticality. In contrast to IBM-1,

. . . : where coexistence plays a marginal role only and where it is
WhenA increases, the triple point migrates dOVVm’\/""rdsconfined to a small U(5)-SU(3) region, coexistence acquires

to the left and reaches (0,0) far = 1. Before that, at values . . . . : g

. ! : . a prominent status in the IBM with configuration mixing and
of A > 1/4, a spherical region appears in the physical phas%an be studied in full detail by applying a catastrophe the-
diagram aroundé, @) = (0,0). The two spherical regions y appying P

. . ; - ory of critical behaviour to the eigenpotentials obtained from
touch atA =~ 1/3, point at which the region of coexisting A
o o ; ; = the matrix coherent-state method. The structure of the phase
minima splits into two. One of these regions shrinks rapidl

and disappears altogether fAr— 1; the other region of co- diagram is rather complex, which can be traced back to the

- L . . ) non-polinomial char r of the eigen ntial in termg.of
existing minima never disappears but shifts to higher valuesO polinomial character of the eigenpotential in terms.o
of € asA increases.

(EO,(DQ) = (1 — A, +v1— A) or (Eo,(j)o) = (0,0), (13)
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