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Transient phenomena in quantum mechanics imply solving the time dependebdiBgler equation with appropriate initial and boundary
conditions. In this paper we consider the general formulation of the one dimensional problem and apply it to the particular example
transient phenomena for the bound state of a delta potential perturbed by the action of a boundary condition.

Keywords: Transient phenomena.

Ferbmenos transitorios en méica céntica implican resolver la ecuéci de Schidinger dependiente del tiempo con condiciones iniciales
y de frontera. En este trabajo consideramos la formafageneral del problema unidimensional y la aplicamos al ejemplo particular del
fendbmeno transitorio para el estado ligado de un potencial delta, perturbado pola@ecina condiéin a la frontera.

Descriptores: Ferbmenos transitorios.

PACS: 02.30.0k; 0.365.Ge

1. Introduction The potential/ (z,t) changes suddenly at= 0 i.e.
. : . V(a,t) = Vo(z) if t<O0 @
Bound states in quantum mechanics appear in many problems EN Vi) if t>0

and, in particular, in the many electron systems of atoms. If

the latter are suddenly subjected to the action of an electrd¥ith V- (x) being of such type that it allows the possibility of
magnetic or electrostatic field, transient phenomena occuPOUnd states, whil’, (x) has also added the effect of some

The mathematical formulation of the problem implies solv-€Xtérnal potential.

ing the time dependent Sdidinger equation for a given ini- ~ OUr problem then is to find a solution of Eq. (1) for- 0
tial state, when we take into account the action of a suddeniy/ith some initial condition
applied external potential. ¥(z,0) = f(x) (3)

With present day computers these types of problems Ca\?vheref(x) is in turn a bound state satisfying
be analyzed numerically in interesting physical situations )
such as that of an hydrogen atom in a suddenly applied elec- [_165 LV (m)] f(z) = Eof(z) 4)
trostatic field. Yet before facing the just mentioned problem 2 dx? B
it is good to have a clear idea of what is its appropriate mathfor some given eigen energy, < 0.
ematical formulation, as well as discuss examples in which A general procedure for the analysis of these types of
the analysis can be done analytically. problems is to go through a Laplace transform of the wave
Thus in this note Sec. 2 deals with the general formulafunction 1(z,t), which we designate by a bar above it as
tion of the problem in one dimension through the use of the)(z, s), defined by
Laplace transform, while Sec. 3 deals with a specific exam- o0
ple. (x,s) = L(x,t)] = /e_Stz/)(a:,t)dt (5)
In the conclusion we discuss the relevance of the ideas 2
presented here to real physical situations. with s being, in general, a complex number such that the in-

tegral exists. From (3) and (4) we see also that

: : . < < —st _
2. The mathematical formulation of the prob /e_St {8w(m,t)} it — / Jle w(x,t)]dt+ Bz, )
lems ) ot ot

The ordinary time dependent one dimensional Sdmger = —f(x) + si(z, s) (6)
equation can be written as assuming that is in the region wherexp(—st) tends to zero

5 18 whent — co.

—i = s+ V(x,t)| P(z,t) =0 (1) Applying now a Laplace transform to Eq. (1) we see
ot 20z from (6) that it becomes
2

where we use units in whichand the mass: of the particle —is — d + Vi (2)| (x,8) = —if(x) @)

are 1. 2 da?
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whereV (z) is replaced by, (z) as, in (5) ¢ is in the interval From (7) we see thap(z, k) satisfies now the equation
0<t< o0 - d2 -
Assuming that)(z, s) can be derived analytically we can ) + K =2V, (2)| (k) = 2if(x) (13)
X

obtainy(z, t) through the inverse Laplace transform
which, in general, is quite difficult to solve.

1 Y- We shall see though, in the next section, a case in which

5 e*"p(z,s)ds  (8) it can be determined analytically.

wherec is a constant as indicated in Fig. 1 to the right of all 3-  Discussion of an analytic example

possible singularities af(z, s).
Sometimes it is convenient to change our variahland

c+ioco

We shall consider a one dimensional poteniigk:,t) for

its corresponding contour, by introducing a new variable which
through the definition V_(z) = —Ad(z),
s = —ik®/2 (9) Vi(x) = —Ad(z) + Bé(x — b) + Bé(x + b) (14)

where A, B, b are positive real constants. Next we take the
limit B — oo, s0 we can have reflecting walls:at= +b.
For negative times, from Eq. (4), the bound stfte)

so that the contour is modified 1@ as indicated in Fig. 1
and thus we have

b(a,t) = L7 (x, k)] satisfies the equation
1 o 1 d? 22
=5 /e—l’f t/Qw(x,k;)k:dk (10) T 9de? Ad(z) | f(z) = —7f(x) (15)
i
< where the negative energy is replaced by-()\2/2). The
where we use the more compact notation normalized eigen solution of Eq. (15) is a well known result
~ - reported in standard books of Quantum Mechanics [1] and is
Pz, —ik?/2) — ¢ (x, k). (11)  given by
We can complete the contodt with the dotted semicircle flx)=A"exp[-Alzl], A=A (16)

because on itxp(—ik?t/2) — 0 when|k| — co. As the

integral is an analytic function we can deform the contour to For positive times, from Eq. (13) we see that the Laplace
. N . transform)(z, k) of our wave functio ,t) satisfies the
that of C” on the real axis, also indicated in Fig. 1, and we (k) m(@,?)

have the result oh—space equat|02n
d _
i {d:c? + k2 + 246(z) | (. k)
Y(a,t) = —=— [ e F 2, k)k dk
o = 2jA/? exp(—A|z|), (17)

) TR defined in the range b < = < b, with boundary conditions:
+i) Res[e (@, k)k, kn]’ (2) (b, k) = ¥(—b, k) = 0. Notice that since the potential and
" the initial condition are symmetric functions of the time
where the integral is done raising the contour around any poléependent solution must also have even parity at all times
on the real axis, and the residues correspond to the pgles ¥(—x,t) = ¥(,1).

in the upper half plane. Forz # 0, we have the simpler equation
d? - )
. [dm? + kQ]w(x, k) =2iA?exp[-Alz]], (18)
ll\ 7{’ Plane k which has the general symmetric solution,( ¢_) at the
Plane s C / right and left of the delta singularity at= 0,
H . Y (z, k) = Cexp(ikz) + D exp(—ikz)
|t >
Y — k=K - 2i A2 exp(—Ax) (19)
A k2 + A2
Y_(x,k) = Dexp(ikx) + C exp(—ikx)
FIGURE 1. Inverse Laplace transform integration path, in plane 2iA1/2 exp(+Az) (20)
and in planek. k2 + A2
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The constant§’(s) andD(s) are determined by two con- yields an infinite number of poles at= z; given by the roots

ditions: 1) discontinuity at = 0 of the first derivative of the transcendental equation, see Fig. 2
. diy (e, k dp_(—e, k .
611_1% —;l(a: ) _ ((h ) +2A¢9,(0,k) =0 (21) tan z; = z;/Ab. (31)
and 2) the boundary condition at= b However, since the meromorphic functigfz) has poles
- B zj # 0 (the origin is a removable singularity) which can be
Y (b, k) = 0. (22) classified by magnitude
The symmetry of the solution assures that the two additional
conditions: 3) continuity of} atz = 0 and 4) the boundary 0<|a| <feof <o <zl <oy (32)
conditiony_(—b, s) = 0, are automatically satisfied. _ _
Egs. (21) and (22) lead to the relations and each pole has a corresponding residyes: z;/[(1
) ] Ab) cos z; — zj sin z;], then we can write a Mittag-Leffler ex-
A+ik A—ik C pansion [2]
exp(ikb) exp(—ikb)) \ D

0 > (23) f(2)=f(0)+z;rj<z_lzj +21) (33)
iz

- <2imexp(Ab)/(k2 + A?) i

with a solution given by with f(0) = (1 — Ab)~1. Therefore Eq. (29) becomes

e

A2 exp(—Ab)
(A + ik)(k cos kb — Asinkb)’
— A2 exp(—Ab) (25) H ( )} i )]
(A —ik)(kcoskb— Asinkb) )+ Z i T\ | explikz (34)

Therefore we have the complete and exact solution for the kb—2; k(k—i4)
wave function ink-space as

Ck) = (24)

D(k) =

An now the inversion can be easily carried out in terms of the

B (2 k) = —i A2 exp(—Ab) diffraction in time[3] functionM (z, «, t) defined in terms of
(k cos kb — Asin kb) the complementary error function
exp(ikzx) exp(—ikx)} 2iA'/? exp(—Ax) "
. : (26) _ 1| oplikz)
{(/@—ZA) (k+iA) k2 + A2 M(z, k1) = £ ok = 7)
v_(x, k) =y (—z, k) (27) exp(zkl)
2
Consider now the inverse Laplace transform of Eq. (26). =T / exp(—ik“t/2) ———— dk

The inverse transform of the stationary state contribution (the
last term) can be done immediately

2iAY/? exp(—Ax)
k2 + A2

= A2 exp(—Ax) exp(iA®t/2). (28)

%exp(ma: —ir%t/2) erfc{((_)f/i)] . (35)

-

which, as expected, is just the initial bound state with a phase tan(z), z/A

—iet/h — +A%t/2.
As for the inverse of the transient part (the first two terms
in Eqg. (26)) consider for instance

kb ' exp(ikix) (29 5=
(kbcos kb — Absin kb) k(k — i A) ann s 2 312

Notice that we have inserted a facteb in the numerator
(which cancels out with a similar term in
the denominator) in anticipation of things to
come. The main problem now is that foe= kb the function
of a complex variablg (z) defined by

371

fz) = R (30) FIGURE 2. Plot of {tan(z), z/A}, showing the infinite number of
‘ zcosz — Absinz’ roots of the equationan z = z/Ab.

Rev. Mex. 5. S52 (1) (2006) 1—4



4 S. GODOY, T. KRAMER, AND M. MOSHINSKY

Finally, for the exact analytic wave function we have

bz, t) = 2! [C(k)e““ + D(k)e~ike &

2iAY? exp(—Ax)
k2 + A2

AL/2g—Ab Hf(()) +3 (Z - z]ﬁjzAb> }M(% AL+ zjﬁdéAbM(x’ 2/, t)]

Jj=1

AL/2,—Ab i " N\ e —iA LM_ ,
b |ave Hf(0)+;<zj P ) M iA) + Y M s

j=1

+ AY 2 exp(—Azx) exp(iA%t/2). (36)

with f(0) = (1 — Ab)~! as given before Eq. (34). Note that With the help of the Mittag-Leffler development this re-
sult probably would still be valid for more physical cases
Y (z,t) = Yy (—a,t). (37)  in which an electrostatic field is suddenly applied to bound
states of electrons in atoms or nucleons in nuclei.

4. Conclusion
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