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Transient phenomena in quantum mechanics
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Transient phenomena in quantum mechanics imply solving the time dependent Schrödinger equation with appropriate initial and boundary
conditions. In this paper we consider the general formulation of the one dimensional problem and apply it to the particular example of
transient phenomena for the bound state of a delta potential perturbed by the action of a boundary condition.
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Feńomenos transitorios en mecánica cúantica implican resolver la ecuación de Schr̈odinger dependiente del tiempo con condiciones iniciales
y de frontera. En este trabajo consideramos la formulación general del problema unidimensional y la aplicamos al ejemplo particular del
fenómeno transitorio para el estado ligado de un potencial delta, perturbado por la acción de una condición a la frontera.

Descriptores: Feńomenos transitorios.
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1. Introduction

Bound states in quantum mechanics appear in many problems
and, in particular, in the many electron systems of atoms. If
the latter are suddenly subjected to the action of an electro-
magnetic or electrostatic field, transient phenomena occur.
The mathematical formulation of the problem implies solv-
ing the time dependent Schrödinger equation for a given ini-
tial state, when we take into account the action of a suddenly
applied external potential.

With present day computers these types of problems can
be analyzed numerically in interesting physical situations
such as that of an hydrogen atom in a suddenly applied elec-
trostatic field. Yet before facing the just mentioned problem
it is good to have a clear idea of what is its appropriate math-
ematical formulation, as well as discuss examples in which
the analysis can be done analytically.

Thus in this note Sec. 2 deals with the general formula-
tion of the problem in one dimension through the use of the
Laplace transform, while Sec. 3 deals with a specific exam-
ple.

In the conclusion we discuss the relevance of the ideas
presented here to real physical situations.

2. The mathematical formulation of the prob-
lems

The ordinary time dependent one dimensional Schrödinger
equation can be written as

[
−i

∂

∂t
− 1

2
∂2

∂x2
+ V (x, t)

]
ψ(x, t) = 0 (1)

where we use units in which~ and the massm of the particle
are 1.

The potentialV (x, t) changes suddenly att = 0 i.e.

V (x, t) =
{

V−(x) if t < 0
V+(x) if t > 0 (2)

with V−(x) being of such type that it allows the possibility of
bound states, whileV+(x) has also added the effect of some
external potential.

Our problem then is to find a solution of Eq. (1) fort > 0
with some initial condition

ψ(x, 0) = f(x) (3)

wheref(x) is in turn a bound state satisfying[
−1

2
d2

dx2
+ V−(x)

]
f(x) = E0f(x) (4)

for some given eigen energyE0 < 0.
A general procedure for the analysis of these types of

problems is to go through a Laplace transform of the wave
function ψ(x, t), which we designate by a bar above it as
ψ̄(x, s), defined by

ψ̄(x, s) = L [ψ(x, t)] ≡
∞∫

0

e−stψ(x, t)dt (5)

with s being, in general, a complex number such that the in-
tegral exists. From (3) and (4) we see also that
∞∫

0

e−st

[
∂ψ(x, t)

∂t

]
dt =

∞∫

0

∂[e−stψ(x, t)]
∂t

dt + sψ̄(x, s)

= −f(x) + sψ̄(x, s) (6)

assuming thats is in the region whereexp(−st) tends to zero
whent →∞.

Applying now a Laplace transform to Eq. (1) we see
from (6) that it becomes[

−is− 1
2

d2

dx2
+ V+(x)

]
ψ̄(x, s) = −if(x) (7)
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whereV (x) is replaced byV+(x) as, in (5),t is in the interval
0 ≤ t ≤ ∞.

Assuming that̄ψ(x, s) can be derived analytically we can
obtainψ(x, t) through the inverse Laplace transform

ψ(x, t) = L −1[ψ̄(x, s)] ≡ 1
2πi

c+i∞∫

c−i∞

estψ̄(x, s)ds (8)

wherec is a constant as indicated in Fig. 1 to the right of all
possible singularities of̄ψ(x, s).

Sometimes it is convenient to change our variables, and
its corresponding contour, by introducing a new variablek
through the definition

s = −ik2/2 (9)

so that the contour is modified toC ′ as indicated in Fig. 1
and thus we have

ψ(x, t) = L −1[ψ̄(x, k)]

= − 1
2π

∫

C′

e−ik2t/2ψ̄(x, k)kdk (10)

where we use the more compact notation

ψ̄(x,−ik2/2) → ψ̄(x, k). (11)

We can complete the contourC ′ with the dotted semicircle
because on itexp(−ik2t/2) → 0 when |k| → ∞. As the
integral is an analytic function we can deform the contour to
that ofC ′′ on the real axis, also indicated in Fig. 1, and we
have the result onk−space

ψ(x, t) = − 1
2π

∞∫

−∞
e−ik2t/2ψ̄(x, k)k dk

+i
∑

n

Res

[
e−ik2t/2ψ̄(x, k)k, kn

]
, (12)

where the integral is done raising the contour around any pole
on the real axis, and the residues correspond to the poleskn

in the upper half plane.

FIGURE 1. Inverse Laplace transform integration path, in planes

and in planek.

From (7) we see that̄ψ(x, k) satisfies now the equation
[

d2

dx2
+ k2 − 2V+(x)

]
ψ̄(x, k) = 2if(x) (13)

which, in general, is quite difficult to solve.
We shall see though, in the next section, a case in which

it can be determined analytically.

3. Discussion of an analytic example

We shall consider a one dimensional potentialV (x, t) for
which

V−(x) = −Aδ(x),

V+(x) = −Aδ(x) + Bδ(x− b) + Bδ(x + b) (14)

whereA, B, b are positive real constants. Next we take the
limit B →∞, so we can have reflecting walls atx = ±b.

For negative times, from Eq. (4), the bound statef(x)
satisfies the equation

[
− 1

2
d2

dx2
−Aδ(x)

]
f(x) = −λ2

2
f(x) (15)

where the negative energyE0 is replaced by−(λ2/2). The
normalized eigen solution of Eq. (15) is a well known result
reported in standard books of Quantum Mechanics [1] and is
given by

f(x) = A1/2 exp[−A |x|], λ = A. (16)

For positive times, from Eq. (13) we see that the Laplace
transformψ̄(x, k) of our wave functionψ(x, t) satisfies the
equation

[
d2

dx2
+ k2 + 2Aδ(x)

]
ψ̄(x, k)

= 2iA1/2 exp(−A |x|), (17)

defined in the range−b ≤ x ≤ b, with boundary conditions:
ψ̄(b, k) = ψ̄(−b, k) = 0. Notice that since the potential and
the initial condition are symmetric functions ofx, the time
dependent solution must also have even parity at all times
ψ(−x, t) = ψ(x, t).

Forx 6= 0, we have the simpler equation
[

d2

dx2
+ k2

]
ψ̄(x, k) = 2iA1/2 exp[−A |x|], (18)

which has the general symmetric solution (ψ̄+, ψ̄−) at the
right and left of the delta singularity atx = 0,

ψ̄+(x, k) = C exp(ikx) + D exp(−ikx)

+
2iA1/2 exp(−Ax)

k2 + A2
(19)

ψ̄−(x, k) = D exp(ikx) + C exp(−ikx)

+
2iA1/2 exp(+Ax)

k2 + A2
(20)
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The constantsC(s) andD(s) are determined by two con-
ditions: 1) discontinuity atx = 0 of the first derivative

lim
ε→0

[
dψ̄+(ε, k)

dx
− dψ̄−(−ε, k)

dx

]
+ 2Aψ̄+(0, k) = 0 (21)

and 2) the boundary condition atx = b

ψ̄+(b, k) = 0. (22)

The symmetry of the solution assures that the two additional
conditions: 3) continuity of̄ψ at x = 0 and 4) the boundary
conditionψ̄−(−b, s) = 0, are automatically satisfied.

Eqs. (21) and (22) lead to the relations
(

A + ik A− ik
exp(ikb) exp(−ikb)

)(
C
D

)

=
(

0
−2i

√
A exp(−Ab)/(k2 + A2)

)
(23)

with a solution given by

C(k) =
A1/2 exp(−Ab)

(A + ik)(k cos kb−A sin kb)
, (24)

D(k) =
−A1/2 exp(−Ab)

(A− ik)(k cos kb−A sin kb)
. (25)

Therefore we have the complete and exact solution for the
wave function ink-space as

ψ̄+(x, k) =
−iA1/2 exp(−Ab)

(k cos kb−A sin kb)

×
[
exp(ikx)
(k − iA)

+
exp(−ikx)
(k + iA)

]
+

2iA1/2 exp(−Ax)
k2 + A2

(26)

ψ̄−(x, k) = ψ̄+(−x, k) (27)

Consider now the inverse Laplace transform of Eq. (26).
The inverse transform of the stationary state contribution (the
last term) can be done immediately

L −1

[
2iA1/2 exp(−Ax)

k2 + A2

]

= A1/2 exp(−Ax) exp(iA2t/2). (28)

which, as expected, is just the initial bound state with a phase
−iεt/~→ +A2t/2.

As for the inverse of the transient part (the first two terms
in Eq. (26)) consider for instance

L −1

[
kb

(kb cos kb−Ab sin kb)
exp(ikx)
k(k − iA)

]
. (29)

Notice that we have inserted a factorkb in the numerator
(which cancels out with a similar term in
the denominator) in anticipation of things to
come. The main problem now is that forz ≡ kb the function
of a complex variablef(z) defined by

f(z) ≡ z

z cos z −Ab sin z
, (30)

yields an infinite number of poles atz = zj given by the roots
of the transcendental equation, see Fig. 2

tan zj = zj/Ab. (31)

However, since the meromorphic functionf(z) has poles
zj 6= 0 (the origin is a removable singularity) which can be
classified by magnitude

0 < |z1| ≤ |z2| ≤ · · · ≤ |zj | ≤ · · · , (32)

and each pole has a corresponding residuesrj = zj/[(1 −
Ab) cos zj−zj sin zj ], then we can write a Mittag-Leffler ex-
pansion [2]

f(z) = f(0) +
∞∑

j=1

rj

(
1

z − zj
+

1
zj

)
, (33)

with f(0) = (1−Ab)−1. Therefore Eq. (29) becomes

L −1

[
f(kb)

exp(ikx)
k(k − iA)

]

= L −1

[{
f(0)+

∞∑

j=1

(
rj

kb−zj
+

rj

zj

)}
exp(ikx)
k(k−iA)

]
(34)

An now the inversion can be easily carried out in terms of the
diffraction in time[3] functionM(x, κ, t) defined in terms of
the complementary error function

M(x, κ, t) ≡ L −1

[
exp(ikx)
ik(k − κ)

]

= − 1
2πi

∞∫

−∞
exp(−ik2t/2)

exp(ikx)
k − κ

dk

=
1
2

exp(iκx− iκ2t/2)erfc

[
(x− κt)
(2it)1/2

]
. (35)

FIGURE 2. Plot of {tan(z), z/Ab}, showing the infinite number of
roots of the equationtan z = z/Ab.
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Finally, for the exact analytic wave function we have

ψ+(x, t) = L −1

[
C(k)eikx + D(k)e−ikx +

2iA1/2 exp(−Ax)
k2 + A2

]

=


A1/2e−Ab

[{
f(0) +

∞∑

j=1

(
rj

zj
− rj

zj − iAb

)}
M(x, iA, t) +

∞∑

j=1

irj

zj − iAb
M(x, zj/b, t)

]


+


A1/2e−Ab

[{
f(0) +

∞∑

j=1

(
rj

zj
− rj

zj + iAb

)}
M(−x,−iA, t) +

∞∑

j=1

irj

zj + iAb
M(−x, zj/b, t)

]


+ A1/2 exp(−Ax) exp(iA2t/2). (36)

with f(0) = (1−Ab)−1 as given before Eq. (34). Note that

ψ−(x, t) = ψ+(−x, t). (37)

4. Conclusion

The problem we discussed has the advantage that it can be
solved analytically using only the wave functionM(x, κ, t)
that appear in the old problem of diffraction in time [3].

With the help of the Mittag-Leffler development this re-
sult probably would still be valid for more physical cases
in which an electrostatic field is suddenly applied to bound
states of electrons in atoms or nucleons in nuclei.
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