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Electron scattering by nuclei at high momentum transfers is studied within the Fermi smearing approximation (FSA), where binding effects
on the struck nucleon are introduced via the relativistic mean field theory (MFT). The model naturally preserves electromagnetic current
conservation, since the response tensor for an off-shell nucleon conserves the same form that for a free one but with an effective mass.
Different parameterizations for the inelastic nucleon structure function, are used. We also analyze the behavior of the experimental nuclear
response in terms of the scaling variabley associated to the model. Recent CEBAF data for the inclusive cross section of4.05 GeV electrons
on 56Fe, are well reproduced for all measured geometries. The theoretical scaling function describes properly the trend of the experimental
data, except at high values ofQ2 and large negative values ofy. Future improvements to the model are proposed.
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La dispersíon de electrones a altas transferencias de impulso es estudiada usando la distribución de momentos de un nucleón, mientras
que los efectos de ligadura se introducen mediante la teorı́a de campo medio relativista. El modelo naturalmente conserva la corriente
electromagńetica, ya que el tensor respuesta para un nucelón fuera de la capa de masas mantiene la mı́sma forma que la de un nucleón
libre pero con una masa efectiva. Diferentes parametrizaciones de la respuesta inelástica del nucléon son usadas. También analizamos la
respuesta nuclear experimental en términos de la variabley de escaleamiento asociada al modelo. Los datos recientes del CEBAF para la
seccíon eficaz inclusiva de electrones de 4.05 GeV sobre56Fe, son bien reproducidos para todas las geometrı́as medidas. La función de
escaleamiento teórica describe propiamente la tendencia de los datos experimentales, excepto a valores altos deQ2 y valores negativos dey.
Se proponen futuras mejoras al modelo.

Descriptores: Dispersion inelastica de electrones; Dispersion relativista; Leyes de escalamiento.

PACS: 25.30.Dh; 11.80-m; 89.75.Da

1. Introduction

Inclusive electron-nucleus scattering experiments performed
in different regions of the square four-momentumq2

(q ≡ (ω,q)) and energyω transfers, provide information on
the nuclei constituents and excited degrees of freedom. The
regions are:

(i) the quasielastic scatteringregion,ω ≤ Q2/2M , with
M being the nucleon mass andQ2 ≡ −q2 > 0, where
experimental data can be analyzed in terms of scaling
variables providing information on nuclear dynamics
and the nucleon momentum distribution;

(ii) the inelastic scatteringregion,ω ≥ Q2/2M + Mπ,
with Mπ being the pion mass, where nucleon reso-
nances are excited and medium induced modifications
of their properties can be studied;

(iii) thedeep inelastic scatteringregion,

W ≡
√

(p + q)2 ≥ 2GeV,

Q2 ≥ 1(GeV/c)2,

beingp the initial nucleon four-momentum, where pos-
sible modifications of quarks and gluon distributions
in the nucleon induced by the medium can be investi-
gated. In the later case the response function also re-
flects the presence of 6-quark bags in the nuclear wave
function.

Electron scattering from nuclei has been analyzed in the
past within the domain

Q2 <∼ 1(GeV/c)2(q ≡ |q|<∼ 1GeV/c) [1, 2].

Many observables were properly described by the nonrela-
tivistic nuclear many-body theory with, if necessary, the in-
clusion of the isobar∆ degree of freedom and meson ex-
change currents. Examples are the descriptions of the longi-
tudinal and transverse response function; and the evaluation
of the Coulomb sum rule [3–5]. Nevertheless, starting from
the NE3 SLAC experiment [6] and with the advent of the CE-
BAF [7] with electron energies of the order of4 GeV, we are
able to reach momentum transfers withQ2 > 1 (GeV/c)2

(q > 1 GeV/c) and two new features appear now:

i) after the scattering process the struck nucleon is rel-
ativistic, having momenta of the order of the nucleon
mass;

ii) the probability for exciting internal degrees of freedom
of the nucleon (nucleon inelastic response) becomes
increasingly important for such momenta transfers.

Another important property to be analyzed is they scal-
ing, which has been introduced by West [8] and Kamazoe [9],
beingy the minimum momentum of the struck nucleon along
the virtual photon direction. They showed that within the
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impulse approximation, and when the quasielastic scatter-
ing is the dominant reaction mechanism, a scaling function
F (y,Q2) can be extracted from the measured cross section,
which at highQ2 values scales depending only ony. Finally,
at such largeQ2 values, it is also valid to ask about the impor-
tance of the final state interaction (FSI) between the emerging
nucleon (or hadron) and the residual nucleons , and about the
way this interaction influences the cross section and the scal-
ing.

The ideal theoretical starting point should be a relativisti-
cally covariant theory of nuclei. However, such an approach
is not practicable due to the difficulties in treating meson ex-
change interactions. In fact in the past, data coming from
the NE3 SLAC experiment [6] were analyzed with different
variants of the plane wave impulse approximation (PWIA).

One of the first PWIA calculations included one-hole (1h)
and two-particle - one-hole (2p-1h) excitationsi in the resid-
ual nucleus, and without including the FSI [10]. In this way
the cross sections, when expressed in terms of the well known
Bjorken variablex ≡ Q2/(2Mω), have been fairly well re-
produced in the quasielastic peakii (x ' 1) and inelastic
(x < 1) regions, while they were underestimated forx > 1.
Both, the quasielastic and inelastic cross sections regions are
strongly overestimated when the spectral function was ap-
proximated by the momentum distribution (FSA).

In order to correct the above mentioned discrepancies
at x > 1, the FSI is introduced in several different ways.
For instance, the discrepancy is circumvented in the region
1 < x < 2, when the PWIA is extended introducing pair cor-
relations [11]. Forx > 2 more than two nucleons could be in-
volved in the scattering process and thus the use of an optical
potential is required [12]. Benharet al. [13] have improved
the PWIA results by introducing the FSI through an opti-
cal potential and by generating a folding function from the
multiple-scattering Glauber theory. An alternative scheme
to the PWIA model has been introduced by Rinat and Tara-
gin [14], being the FSI is introduced through binary collisions
between knocked-on nucleon and a nucleon from the nucleus
core. Results from CEBAF 4.05 GeV electron scattering [7]
on 56Fe are well reproduced forx < 1 in this case, and a sat-
isfactory correspondence in the left hand side neighborhood
of the quasielastic peakx >∼ 1 is obtained [15]. Neverthe-
less, in the low energy lost region the calculated cross section
overestimates the data by a factor up to 2-10 for all anglesθ,
and this discrepancy is associated to uncertainties in the mo-
mentum distribution used in the calculation.

As matter of fact, independently of the implemented ap-
proach, the scaling function behavior of the model has been
analyzed and compared with the data, leading to different ver-
sions of the scaling variable. Between them we mention the
y scaling variable from Refs. 11 and 13, theyG Gurvitz’s
one from Ref. 15, and theyWC used by Ciofi and West in
Refs. 16 and 17. All these variables were obtained from the
“same” energy conservation relation, and the differences be-
tween them come from the approximation adopted in each
case for the nucleon dynamic (relativistic or not), binding ef-

fects and the residual nucleus excitation energy. FSI play
an important role in the description of the experimental scal-
ing function. For example, for the naive PWIA the theoreti-
cal scaling function is an increasing function of theQ2 vari-
able, which reach the experimental data only asymptotically
at largeQ2 values. This contradicts the trend of the data,
which decrease whenQ2 is increased for a fix value of the
usualy scaling variable, being this ascribed to the fact that
FSI are more important at smallQ2.

In the present work we implement a FSA where the bind-
ing effects are introduced through the struck nucleon kine-
matics which is described within the mean field theory based
on quantum hadrodynamics (QHD) [18], and within a nuclear
matter framework. This should be a fair approach as the elec-
tron probes a region of dimensions1/q, and as at momentum
transfers high enough , the surface effects in nuclei are sup-
posed to be of minor importance. The FSI is also included
in some extent within the present approach since the nucleon
is bounded before and after the interaction with the photon,
and therefore acquires an effective mass. The Fermi smear-
ing effects are described here with a momentum distribution
generated by a perturbation scheme in a 0p0h + 2p2h + 4p4h
configuration space for the initial nucleus. In this way in the
residual nucleus we have 1h, 2p3h, 4p5h, 1p2h,and 3p4h ex-
citations when the struck nucleon is removed. We analyze as
well, different parameterizations for the inelastic nucleon re-
sponse measured at SLAC. Finally, we also discuss the scal-
ing behavior of the model, which results in a stringent test
of the FSA+MFT approach, based on the evaluation of the
theoretical scaling function.

The paper is organized as follows. In Sec. 2 we summa-
rize the FSA+MFT model for the nuclear response and dis-
play the corresponding expression for the cross section. In
Sec. 3 we describe the used momentum distribution. The
scaling variable and the scaling function within the present
model are worked out in Sec. 4. Finally, the results are shown
in Sec. 5 and the conclusions are drawn in Sec. 6.

2. Cross section and nuclear response model

In the Born approximation theA(e, e′)A′ differential cross
section reads

d2σ

dΩ′dε′
=

e2

q4

k′

k
Lµν(k, k′)WA

µν(ω,q), (1)

being k, k′ ≡ |k|, |k′|, WA
µν the nuclear response tensor,

Lµν(k, k′) = 1/2[k′µkν + kµk′ν + (q2/2 −m2/2)gµν ] the
lepton tensor describing incoming and outgoing plane-wave
electron states of four-momentumk = (ε ≡ √

k′2 + m2,k)
andk′ = (ε′ ≡ √

k′2 + m2,k′) respectively, andΩ′ ≡ (θ, φ)
the scattering angle. The PWIA lies on the following assump-
tions:

i) the nuclear current operator can be written as the sum
of the one-body nucleon currents;
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ii) the target decays virtually into a on-shell (A-1) nucleus
(spectator) and the off-shell (p2 6= M2) struck nucleon,
of four-momentump = (p0,p) ; and

iii) the nucleon that absorbs the photon is the same that
leaves the target without interaction with the spectator,
the final state interactions (FSI) being dropped. Un-
der these assumptions, the nuclear response can be ex-
pressed as a convolution [10]

WA
µν(ω,q) =

∑
mt

∫
dEdpPmt(E,p)wmt

µν (p, q), (2)

of the nucleon responsewmt
µν (p, q) (mt=p and n for pro-

tons and neutrons respectively) with the nuclear spec-
tral function Pmt(E,p). This gives the joint probabil-
ity of finding a nucleon with three momentump in-
side the target nucleus, and remove it with an energy
E = EB + Eexc

A−1. EB = MA−1 + M −MA is the nucleon
binding energy andEexc

A−1 the excitation energy in which
the residual nucleus is left. We will work within the FSA
Pmt(E,p) ∼ nmt(p)δ(E − EB), givingnmt(p) the proba-
bility of finding a nucleon with momentump, and isospinmt

in the target|0A〉.
Notice that for an off-shell nucleon, the energy

p0=p0(E,p) depends on its removing energy and its three-
momentum, thus to implement the PWIA or any extension
including FSI one must address some important questions.
First, the nucleon structure function is determined experi-
mentally from proton or deuteron scattering on on-shell (free)
targets, beingp2 = M2 (or p0 = Ep ≡

√
p2 + M2). In

our case we treat with an off-shell bounded nucleon with
p0 6= Ep, andp0 = p0(E,p) depends on how the binding
effects are included. Second, we need to extend the on-shell
nucleon structure function to the off-shell regime to use it
as input in the nuclear response calculation. The minimal
hypothesis adopted in majority of works is to assume that
wmt(off-shell)

µν (p, q) = wmt(on-shell)
µν (p̃, q̃), wherep̃ andq̃ depend

on the off-shell prescription adopted forp0 = p0(E,p) .
Third, whatever is the(p̃, q̃) pair we have a lack of the electro-
magnetic gauge invariance becausewmt(off-shell)

µν qν 6= 0, due
to the on-shell to off-shell extension. This brings in additional
complications, a procedure being required to restore current
conservation [10,19].

In our case the nucleon will be bounded by interaction
with the scalarφ and vectorVµ mesons fields, within the
framework of quantum hadrodynamics(QHDI) [18]. The nu-
cleus response tensor is the Lorentz invariant amplitude and
reads [20]

WA
µν(ω,q) =

kMA√
(k.PA)2 −m2M2

A

V

(2π)3

×
∑

p′m′
sm′

t

∑

f

〈PA|Ĵ(0)µ|p′m′
sm

′
t, P

f
A−1〉

× 〈p′m′
sm

′
t, P

f
A−1|Ĵ(0)ν |PA〉

× (2π)4δ(PA + k − k′ − P f
A−1 − p′), (3)

beingPA = (MA, 0) andP f
A−1 = (

√
p2

f + (Mf
A−1)2,pf )

the target and residual nucleus four-momentum respectively,
with the massMf

A−1 = MA−1 + ωf
A−1 including the exci-

tation energyωf
A−1. The sum onf encloses the set of final

residual nucleus states. We also sum on the final states of the
struck nucleon with four-momentump′ = (p′0,p

′), spinm′
s

and isospinm′
t, with densityV/(2π)3 in the quantization vol-

umeV . Ĵ(x) = iψ̄(x)Γµ(q)ψ(x) is the effective hadron cur-
rent density operator with (for the nucleon elastic response
case)

Γµ(q) = F1(q2)γµ + iF2(q2)
κ

2M
σµνqν ,

beingψ(x) andκ the nucleon field and anomalous magnetic
moment, respectively.

We are going develop on the same footing the nuclear
response calculation within the mean field theory (MFT)
(where the meson fields are approximated by their vac-
uum spectation,i.e. constant, values), and in the relativistic
Hartree approximation RHA [18] (where vacuum fluctuation
corrections are added to the MFT results). Later, when we
compare the calculated cross section with the data, the RHA
election will be justified. The nucleon field is expanded as

ψ(x) =
1√
V

∑
pmsmt

√
M∗

E∗
p

[
u(pmsmt)apmsmte

ip·x

+ b†pmsmt
v(pmsmt)e−ip·x]

, (4)

where the spinorsu(pmsmt) are solutions of the Dirac equa-
tion

(α · p + βM∗)u(pmsmt) = (p0 − C2
V

ρB

M2
)u(pmsmt),

and single particle spectrum is given by

p0 = C2
V

ρB

M2
+ E∗

p,

with E∗
p =

√
p2 + M∗2 and M∗ ≡ M + Σ(CS ,M∗).

M∗ < M is the effective mass acquired by the nucleon by
action of the attractive scalar field and is determined self-
consistently [18] through the scalar self-energyΣ ≡ ΣMFT

or ΣRHA

ΣMFT (M∗) = − C2
S

M2

4
(2π)3

pF∫

0

dp
M∗

√
p2 + M∗2 ,

ΣRHA(M∗) = ΣMFT (M∗) + ∆M∗,

Rev. Mex. F́ıs. S52 (1) (2006) 88–96



SCATTERING OF GeV ELECTRONS AND SCALING WITHIN THE MEAN FIELD THEORY APPROACH 91

with

∆M∗ =
C2

S

M2

2
(2π)2

[
M∗3ln

(
M∗

M

)
M2(M −M∗)

− 5
2
M(M −M∗)2 +

11
6

(M −M∗)3
]

. (5)

ΣMFT includes the tadpole diagram a) in the Fig. 1, re-
taining in its evaluation only the contribution from nucle-
ons in the filled Fermi sea in the nucleon propagator (tick
full lines). ΣRHA includes the same diagram but the full
nucleon propagator (which encloses the contribution of the
occupied negative-energy states) is used in the evaluation of
the self-energy. Then the MFT or the RHA are derived by
summing up the self-energy to all orders through the self-
consistent determination ofM∗, being this procedure conver-
gent in both cases. The first term inE∗

p accounts for the ac-
tion of the repulsive vector field.CV andCS are the two free
parameters [21], fixed to reproduce the experimental bind-
ing energy per nucleon of−16 MeV at the Fermi momentum
pF = 1.42fm−1 (or the baryon densityρB = 0.19fm−3)
for the normal nuclear matter, getting

C2
S ≡ g2

S

(
M2

m2
S

)
= 267.1 C2

V ≡ g2
V

(
M2

m2
V

)
= 195.9,

wheregS andgV , and,mS andmV are the coupling con-
stants and masses of the scalar and vector mesons, respec-
tively.

Assuming that the residual nucleus is left in its ground
state and adopting the prescriptions ii) and iii) mentioned
above, the response tensor can be obtained from Eqs. (3)
to (5) as

WA
µν(q) = 2

∑
mt

∫
dp

M∗

E∗
p

nmt(p)wmt
µν (p∗, q), (6)

where the factor 2 resembles the sum over spin states, and

wmt
µν (p∗, q)=wmt

e1 (Q2, ν∗)
[
−gµν+

qµqν

q2

]

+wmt
e2 (Q2, ν∗)

[
p∗µ
M∗−ν∗

qµ

q2

][
p∗ν
M∗−ν∗

qν

q2

]
, (7)

with p∗ = (E∗
p,p) andiii ν∗ = p∗ ·q/M∗ . nmt(p) is the nu-

cleon momentum distribution in the target ground state|0A〉.

nmt(p) =
V

(2π)3
〈0A|a†pmsmt

apmsmt |0A〉, (8)

normalized as2
∫

dp nmt(p) = Nmt , with Nmt = Z, N
for mt = p, n. The elastic Lorentz scalar functions present
in (7) are

wmt
e1 (Q2, ν∗) = τGmt2

M

(
Q2)δ(ν∗ − Q2

2M∗

)
(9)

wmt
e2 (Q2, ν∗) =

Gmt2
E (Q2) + τGmt2

M (Q2)
1 + τ

δ

×
(

ν∗ − Q2

2M∗

)
(10)

where Gmt

E (Q2) = Fmt
1 (Q2) − Fmt

2 (Q2)κmtτ and
Gmt

M (Q2) = Fmt
1 (Q2) + Fmt

2 (Q2)κmt are the electric and
magnetic form factors, andτ = Q2/4M∗2. In the numer-
ical calculations we adopt the Sachs form for them, assum-
ing that they do not change in the nuclear medium. Equa-
tions (7), (9) and (10) show that the MFT or RHA lead
to the prescriptionwmt(off-shell)

µν (p, q) = wmt(on-shell)
µν (p∗, q)

and w(off-shell)
e 1,2 (Q2, ν) = w(on-shell)

e 1,2 (Q2, ν∗), for the elastic
case. The nucleon spinors carry a four momentump∗ being
p∗2 = M∗2, and asM∗ < M this makes us remember that
the struck nucleon is bounded. Lorentz , parity and gauge in-
variances are now also fulfilled as were for a nucleon of mass
M , as consequence of the form of the Eq. (7).

For Q2 > 1 (GeV/c)2 the probability of exciting internal
states of the nucleon is important, and a replacement

wmt
e 1,2 → wmt

1,2 = wmt
e1,2 + wmt

i1,2,

in (7) should be done, adding an inelastic contribu-
tion wmt

i1,2. For wmt
i1,2 we use different parametric fits

done at SLAC forp(e, e′)p′ and d(e, e′)d′ data through
the Eqs. (7), with M∗=M . We assume that the
recipewoff−shell

i1,2 (Q2, ν) = won−shell
i1,2 (Q2, ν∗), which natu-

rally appears in the elastic case, is also valid for the inelas-
tic nucleon response function. Finally, the decomposition
wmt

1,2 = wmt
e1,2 + wmt

i1,2 leads also to split the inclusive cross
Sec. (1) in elastic and inelastic contributions.

3. Nucleon momentum distribution

The momentum distributionnmt(p) is calculated in a
0p0h + 2p2h + 4p4h configuration space for the A-target, be-
ing

|0A〉 = N

|0p0h〉+

∑

p′s,h′s

cp1p2h1h2 |p1p2h1h2〉

+
∑

p′s,h′s

cp1p2p3p4h1h2h3h4 |p1p2p3p4h1h2h3h4〉

 , (11)

where these|npnh〉, (with n = 0, 2, 4) stand for the unper-
turbed states. In this way in the residual nucleus we have 1h,
2p3h, 4p5h, 1p2h,and 3p4h excitations when the struck nu-
cleon is removed. The residual nucleon-nucleon interaction
is included within a perturbative approach as in Ref. 22 by
expanding the coefficientsc2p2h andc4p4h up to the first and
second order, respectively being
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cp1p2h1h2 = −〈p1p2h1h2|V̂ |0p0h〉
(2!)2Ep1p2h1h2

,

cp1p2p3p4h1h2h3h4 =
〈0p0h|V̂ |p1p2h1h2〉〈p1p2h1h2|V̂ |p1p2p3p4h1h2h3h4〉

(4!)2Ep1p2h1h2Ep1p2p3p4h1h2h3h4

. (12)

This “minimum” perturbative scheme allows to include norm
correctionsN = 〈0A|0A〉−1, avoiding in this way contribu-
tions of unbalanced disconnected diagrams. HereV̂ is the
residual interaction, for which a Landau-Migdal parameteri-
zation, supplemented by the static one pion exchange poten-
tial, this reading

V̂ (q) =
∑

I

V I(q)OI
1(q̂) ·OI

2(−q̂) (13)

where the quantum numbersI = T, S, J stand, respectively,
for the isospin , the spin and the total angular momentum.
The operatorsOI(q̂) are defined as

O000(q̂) = 1; O010(q̂) = i(q̂ · σ);

O011(q̂) = (q̂× σ), O100(q̂) = τ ;

O110(q̂) = i(q̂ · σ)τ O111(q̂) = (q̂× σ)τ,

and the strengthsV I(q) are defined in Ref. 22 and depend on
the usual Landau-Midgal parametersf , f ′, g andg′. Finally,
from Eqs.(11) ,(12) and (13) in a nuclear matter framework,
we get

nmt(p)=
3Nmt

4πp3
F

[
θ(1− p)+δn(2)(p)+δn(4C)(p)

]
, (14)

wherep ≡ |p| is measured in units of the Fermi momen-
tumpF . The first term is the usual 0p0h Fermi step function,
while δn(2)(p) andδn(4C)(p) (where the superscriptC in-
dicates “connected” 4p4h diagrams) enclose 2p2h and 4p4h
contributions respectively, which deplete it. The expressions
for δn(2)(p) andδn(4C)(p), are given in Ref. 22.

4. Scaling

It is possible to express the nuclear cross Sec. (6) as the con-
volution

d2σ

dΩ′dε′
= 2π

pmax∫

pmin

dpp
∑

mt=p,n

nmt(p)
dσmt(p, ω,q)

dΩ′

×E∗
p + ω

q
, (15)

with the polar averaged single nucleon cross section
(ν ≡ p.q/M∗ andp ≡ |p|)

dσmt(p, ω,q)
dΩ′

=
dσM

dΩ′
1
2π

∫
dcosθp

∫
dφp

2M∗

E∗
p

pq
E∗

p + ω

{(
1 +

pz

M∗
Q2

qν

) ( ν

ω

)2

wmt
2 (Q2, ν)− Q2

q2
wmt

1 (Q2, ν)

+
(

1
2

Q2

q2
+ tan2 θ

2

) [
wmt

1 (Q2, ν) + wmt
2 (Q2, ν)

( px

M∗

)2
]}

, (16)

wheredσM/dΩ′ is the Mott cross section. The scaling func-
tion is defined as

F (ω,q) =
d2σ

dΩ′dε′ (ω, q)

N
dσn

e (pmin, ω, q)
dΩ′ + Z dσp

e (pmin, ω, q)
dΩ′

× q
Epmin + ω

, (17)

wherepmin corresponds top = ±pminq̂ and can be ob-
tained from the energy conservation relationω = E∗

p+q−E∗
p

as

ω =
√

(q± pmin)2 + M∗2 −
√

(pmin)2 + M∗2, (18)

which gives

pmin =

∣∣∣∣∣−
q
2

+
ω

2

√
4M∗2

Q2
+ 1

∣∣∣∣∣ .

We also stress here that, because the nucleon momentum dis-
tribution nmt(p) is a rapidly decreasing function ofp, we
makepmax → ∞ in Eq. (15). The MFT or RHA scaling
variable is defined as [23]

y = −q
2

+
ω

2

√
4M∗2

Q2
+ 1, (19)

beingpmin = |y| for a fixed(ω, q) pair. At highQ2 values
is q ' ωqe andy ' (ω − ωqe)/2, in such way thaty < 0
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(y > 0) corresponds toω < ωqe (ω > ωqe). In this limit and
for y < 0,

dσmt

dΩ′
E∗

p + ω

q

in Eq. (15) depends only very weakly onp [10] and therefore
it can be factorized out and evaluated atp = pmin. Addition-
ally, if the contribution of inelastic channels is negligible

(
dσmt

dΩ′
' dσmt

e

dΩ′

)
,

which should happen atω < ωqe, from (15) and (17) we get

F (ω, q) = F (y) ' 2π

∞∫

|y|

dppn(p). (20)

This indicates that, forQ2 →∞, F scales iny i.e., it depends
only ony and not on(ω, q) or (ω, θ) separately. This peculiar
feature can be tested by calculatingF (y, Q2) from (17) and
varyingQ2 for a fixedy < 0, looking for the approximately
constant value given in the Eq. (20).

5. Results

We now compare the differential cross section calcu-
lated within our model, with the CEBAF experimental re-
sults for 56Fe [7] for the various accessible geometries
θ=15, 23, 30, 37, 45, 55, 74◦. One of the parameterizations
for wmt

i1,2 was found by Bodeket al. [24] in the kinematical
range1 < Q2 < 20 (GeV/c)2 and0.1 ≤ x ≤ 0.77. The
other one was reported by Whitlow [25], and corresponds to
the range0.6 < Q2 < 30 (GeV/c)2 and0.06 ≤ x ≤ 0.9. The
functions obtained in these parameterizations are described in
detail in Ref. 26, and as they do not cover all the low energy

FIGURE 1. (a) Tadpole diagram included in the MFT and RHA
self-energies. (b) Tadpole exchange diagram that is added in order
to get the relativistic Hartree Fock self-energy. The dashed lines
indicate the propagator of the scalar (S) or vector meson (V) that
interacts with a nucleon n (full lines).

FIGURE 2. We show the sensibility with the effective massM∗ of
the quasielastic and inelastic contributions to the cross sections per
nucleon for56Fe. Here the replacementε′ = ε + ω is done. In the
panel (a) both cross sections are shown separately for the values
M∗ = 1, 0.64, and0.74. Thin lines indicate elastic cross sections
while thick lines indicate the inelastic one. In panel (b) the total
elastic + inelastic cross section is shown for the different values of
M∗. Again, experimental results come from Ref. 7.

and momentum transfer region of CEBAF, an extrapolation
is necessary. Also in this section we compare the dependence
of the experimental (Fexp) and FSA + RHA theoretical (Fth)
scaling functions versusy andQ2 variables. The experimen-
tal functionFexp is obtained from Eq. (17) using the cross
sections reported in the CEBAF 4.05 GeV data for56Fe [7],
divided by the nucleon off-shell elastic cross section, calcu-
lated withwmt

1,2 = wmt
e1,2. The theoretical functionFth is also

obtained from Eq. (17), being

d2σ

dΩ′dε′
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evaluated including both elastic and inelastic parts,i.e., with
wmt

1,2 = wmt
e1,2 + wmt

i1,2.
Within the MFT and for 56Fe (pF = 1.36 fm−1),

M∗ = 0.648M . This value is too low to reproduce satisfac-
torily the total cross section since the quasielastic peak is
shifted too much to the right and its width (∆ωqe) is enlarged
in excess, as shown in the Fig. 2. We try to improve the MFT
description by adding the vacuum fluctuation corrections to
ΣMFT , and go to the RHA whereM∗ = 0.74M . As can
be seen in Fig. 2 the RHA the binding-energy shift is more
moderated and the width is diminished, getting a better de-
scription for the total cross section. This improvement is not
casual since as it is well known the RHA yields to the “best”
single-particle spectrum in the sense that it minimizes the en-
ergy of the whole system. FSI are taken into account in our
model at the RHA level. Binding effects are present in the fi-
nal state, since the nucleon still has massM∗ after absorbing
the photon. This simple form of introducing FSI has never
been used previously to describe a multi-GeV electron ex-
periment with the inclusion of the inelastic nucleon response,
being only described in the past the quasielastic cross section
at intermediate energies in the MFT framework [23].

Our results for the total cross section are shown in Fig. 3.
As can be seen in, the overall agreement is good for all angles
θ, considering that the cross section varies over several orders
of magnitude. Atω < ωqe (x > 1) Withlow’s fit seems to be
preferred to Bodek’s, which is due possibly to differences in
the extrapolation for thex > 1 range. Forω > ωqe (x < 1)
the behavior is opposite. We see that the model tends to over-
estimate thex > 1 data, in the last twoθ values. The inelas-
tic response dominates the cross section at these geometries
sinceQ2 >∼4(GeV/c)2, and this overestimation could be also

FIGURE 3. Calculated differential cross section per nucleon for dif-
ferentθ geometries for56Fe. Experimental data come from Ref. 7.
Results are shown for both, the fitting of Bodek and Withlow of the
inelastic nucleon response, and for a valueM∗ = 0.74 correspond-
ing to the RHA.

FIGURE 4. Comparison of the nuclear matter momentum distri-
bution used in our calculations (full lines), with its second order
approach (dotted lines) and the momentum distribution of Ref. 27
(dashed lines).

as consequence of uncertainties in the extrapolation for
x > 1. Finally in Figure 4 we show the momentum distribu-
tion obtained from the Eq.(14) together with its second order
approach, beingδn(4C)(p) dropped. In the same figure we
show the momentum distribution of Ref. 27 (parameterized
in [12]), which was obtained within a second order pertur-
bation approach over a set of unperturbed variational wave
functions. It is clear that in a second-order approach the mo-
mentum distribution is strongly overestimated.

The tendency towardsy-scaling is evidenced more clearly
whenF (y, Q2) is plotted as a function ofQ2 for y fixed. Ex-
perimental and theoretical results fory = 0, −0.1, −0.2,
−0.3,−0.4 and−0.45 GeV/c, values for whichQ2 falls into
the range of the data for each angle, are exhibit in Figure 5.
There we see thatFexp scales at highQ2 and tend asymp-
totically to a constant value fory <∼ − 0.3 GeV/c. From
the experimental point of view, the overall trend ofFexp is
satisfactory described within the FSA + RHA, in sense that
our model gives an increasing scaling function in terms of
Q2 when is plotted for a fix value of they, following the ex-
perimental data behavior. In contrast to the previous PWIA
calculations [10] the scaling function is well reproduced at
low Q2 for small negativey values, which indicates that both
the binding effects and FSI are properly accounted for the
RHA in this Q2 range. ForQ2 >∼ 2 (GeV/c)2 the inelastic
nucleon contribution to the cross section becomes important
and dominant. In fact, when the inelastic contribution is

Rev. Mex. F́ıs. S52 (1) (2006) 88–96



SCATTERING OF GeV ELECTRONS AND SCALING WITHIN THE MEAN FIELD THEORY APPROACH 95

FIGURE 5. Scaling functionF (y, Q2) for 56Fe as a function of
Q2 for different values of they scaling variable. Theoretical re-
sults obtained within our model are shown for the next cases: i)
dropping the inelastic structure function (dotted line); ii) including
the inelastic structure function by means of the Bodek’s fit and us-
ing the RHA valueM∗ = 0.74M (solid line) and the bare mass
value (dot-dashed line).

dropped (wmt
1,2

∼= wmt
e1,2), Fth trivially scales to a constant

value, which is different to the experimental limit as con-
sequence of droppingwmt

i1,2. As can be seen from Fig. 5,
the theoretical scaling functionFth calculated within the
FSA+RHA improves the overall description of the data as
y decreases, but underestimate the data at lowQ2 values
and overestimates them at highQ2 domain. This could be
ascribed to the way we extrapolatewmt

i1,2(Q
2, ν) off-shell,

which is achieved by making the replacementM → M∗ in
ν, being the sensibility to this change also shown in Fig. 5.
In fact, whenM∗ = M , which in our approach means to

drop binding effects and FSI,Fth falls underFexp, specially
for large negativey values, evidencing that these effects are
important to get the rightFexp behavior and its asymptotic
limit [7]. One then could conclude that at lowQ2 one should
to adoptM∗ < M , but that for highQ2valuesM∗ must be
increased. In other words, the scaling analysis clearly indi-
cates that aq-dependence on the effective massM∗ is re-
quired in order to improve the agreement between data and
theoretical results, as it was previously reported in Ref. 19
for Q2 ≤ 1.3 (GeV/c)2, in the context of a different model.
To get a more realistic behaviour of the effective mass withq,
we must to include the exchange contribution (see Fig. 1(b))
in the self-energy and go to the relativistic Hartree-Fock ap-
proximation [28]. The price to be paid is that now we must
couple the photon to the intermediate nucleon in diagram (b)
from Fig. 1, and calculate the corresponding vertex correc-
tion to get gauge invariance.

6. Conclusions

In summary, to treat the scattering of GeV electrons by nu-
clei we have implemented a new Fermi smearing approach.
Binding effects and FSI are introduced through the nucleon
effective mass within the RHA, that leads to better results
than the plain MFT [26]. In the model, current conservation
is preserved naturally without ad-hoc modifications in the
structure functions. Fermi smearing effects are introduced
through a new momentum distribution that accounts for 2p2h
and 4p4h correlations in the target, generated via a perturba-
tive approach in nuclear matter. We get a reasonable over-
all description of the behavior of the measured cross section
at CEBAF, for the scattering of4.05 GeV electrons on56Fe.
The agreement for all the accessible geometries, has been sig-
nificantly improved in comparison with previous theoretical
studies [15].

Comparison between experimental and theoretical results
shows that the theoretical scaling function obtained within
our approach describes properly the trend of the experimental
recent CEBAF data on inclusive scattering of4.05 GeV elec-
trons on56Fe, except at high values ofQ2 and large negative
values ofy. As a conclusion, it is suggested that a modifica-
tion of the RHA model capable of producing aq-dependence
of the effective nucleon massM∗ is required in order to im-
prove the agreement between the theoretical and experimen-
tal results.
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i. These configurations are originated by picking-up a nucleon
from the 0p0h and 2p2h ground state components, respectively.

ii. The quasielastic peak energy for a nucleon at rest corresponds
to ωqe ≡ Q2/2M , which forq/M À 1 leads toωqe ' q.

iii. Q2 andν = p.q/M are commonly used as independent vari-
ables forwmt

1,2 in the nucleon response.
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