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Clebsch-Gordan coefficients forU (8) D O(8) D SU(3): the first steps
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The group chair/(8) D O(8) D SU(3) plays an important role in systems of many gluons and in a schematic model for QCD at low
energy. In order to calculate decay probabilities one has to calculate the Clebsch-Gordan coefficients of this group chain. In this contribution
we present the basic idea in the example&6f(3) D SO(3). Afterwards, the polynomial states of thg8) chain are constructed and the
procedure to obtain the Clebsch-Gordan coefficients is outlined. Partial results are presented.
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La cadena de grupds$(8) D O(8) D SU(3) juega un papel importante en sistemas de muchos gluones y en un modelo&smupara

QCD a hajas enetgs. Para poder calcular probabilidades de decaimiento se necesita calcular los coeficientes de Clebsch-Gordan para esa
cadena de grupos. En esta contrilducpresentamos la ideasica en el ejemplo d6U(3) D SO(3). Posteriormente, se contruye los

estados polinomiales de la cadénés) y se indica como obtener los coeficientes de Clebsch-Gordan. Presentamos resultados parciales .

Descriptores: Coeficientes de Clebsch-Gordan; gluones; QCD.

PACS: 02.20.-a; 12.39.Mk

1. Introduction efficients needed in order to determine transition ratios and
decay properties of hadrons. Normally, the algebraic proper-

The groupl(8) appears always when eight degrees of freedies of a group and its algebra are used, as illustrated in [11]
doms are involved. For example, a gluon has eight color defor the SU(2) group and in [12-14] for th&U(3) group.
grees of freedom [1] and thus the color part can be describedowever, for higher rank groups these methods get more in-
by aU(8) group_ Because the g|u0n has Spin one (three matH[OlVed and Unpractical. In [15, 16] amore praCtica| procedure
ematical degrees of freedom) a many gluon system can b&as proposed for th&/’(5) > SO(5) > SO(3), playing an
described byU(24) > U(8) ® U(3) [2], where theU/(3)  important role for the geometric model of the nucleus [17].
refers to the spin part and a many gluon state has to be in thEnere, the polynomial expressions of thg5) states were
Comp'ete Symmetric irreducib'e representaﬁon ("'r[é“bb of constructed eXp|ICIt|y USing basic Couplings in terms of boson
U(24), which relates the color and the spin part. Of coursecreation operators. The Clebsch-Gordan Coefficients were
thel (8) group is reduced to the col6U (3) groupand/(3)  Obtained by direct calculation of the integrals involving the
is reduced to the spifO(3) group, with integer spins only. polynomial states. The basic idea for the construction of the
The reduction is well known and given in [2,3]. However, the Polynomials were borrowed from [18, 19].

construction of states is less known. The first attempts have Calculation of decay properties in the schematic model
been made in [4, 5], though tH#/(3) subgroup considered of QCD at low energy [7,9] might be very important in order
in [5] is not the color group and only symmetric irreps of to decide whether the pentaquark exists [20-24] or not. In
U (8) where considered. Using a symmetric irrefii(8) isa  a first estimate within the schematic model, where we have
first valid step towards a more general construction of statesformation about the distribution of quark-antiquark pairs in
and it will be followed also in this contribution. the pentaquark and in the residual particles, indicate that the

In [7-9] many quark and antiquark states where consigbentaquark is just the sum of a nucleon and a kaon, i.e. the
ered. A general classification for many quark and antiquarkvidth of the state should be very large and a peak should not
states in only the s orbital level was given. For simplifying thePe seen, confirmed in part by other the experiments and also
calculations, pairs of quark-antiquark were mapped to bosor&iticized in Ref. [26] (and references therein). Wether or not
[10]. There are four different types of bosons correspondinghis is the case, can only be decided through an explicit cal-
to quark-antiquark pairs with flavai\, A) (A = 0,1) and  culation.
spinS (S = 0, 1) denoted by, S]. The cases [0,0] and A first and important step forward towards the construc-
[0,1] correspond to a one- and three-dimension harmonic ogion of many gluon and quark-antiquark states is therefore
cillator, known from text books. The case [1,0] correspondsconstricting the states to the symmetric irreplefs). The
to the eight dimensional harmonic oscillatoe, to theU (8) Clebsch-Gordan coefficients (CGC) are then obtained as in-
group with a symmetric irrep. The last case [1,1] is mathe+tegrals over a product of three polynomials.

matically identical to the many gluon problem. In the second section we illustrate the basic ideas on how

Why does one need the explicit form of states oft{8)  to obtain the CGC's for the example 6TU(3) D SO(3).
group? One answer is the calculation of Clebsch-Gordan cdn the third section we give the expressions of the polynomi-
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als of symmetric states iti(8) D SU(3), on how to obtain The maximum weight state in terms of these operators is
states with good seniority and how to obtain the CGC’s ofgiven by

this problem. Only a report on the current status is given.
Further work has still to be done.

N—1

Pvoyinvi=t (bT) | 0) = Ap (bT : bT)T (b41)' 1 0), (3)

ithn = (N —1)/2andA,,; given b
2. The ExampleSU(3) D SO(3) D SO(2) with n = (N —1)/2 and A, given by

This is a well known example with important implications in 1
nuclear physics [25, 27]. The group chain under considera- A, = (20 +2)! : (4)
tion is " (2n)1(20 +2n + 1))

SU(3) D SO(3) D SO(2
(3> (3)> @ A state with lower weight can be obtained by applying

(A )k L M, (1)  acertain number of times the lowering operatar [11, 29]

where(\, ;1) denote thesU (3) irrep, » is a multiplicity label, ~ @nd the resuiltis

L the angular momentum arid its projection. Here, we will 1 Nl
only consider irreps of the typ@V, 0) which are symmetric [ (l+m)! ] : (bT ) bT) T plempl | 0)
and the multiplicity labek=1. (1 —m)(20)! -

The first step consists in the construction of polynomials Nt
which are in the highest weight state 0 (3), i.e. M = L. = B (bT : bT) * Yim (bT) 10), (5)
For that, the elementary permissible diagrams (epd’s) [28]
have to be constructed, or in other words a complete set %here th
basic couplings in terms of the boson creation operb&,pr
(m = 0, £1) such that all states of highest weight for a fixed
angular momentum can be obtained for a given total number 1
of oscillation quantadv [29,30]. There are two epd’s [29,30], B, = { Am } : 7 (6)

(2n 4+ 20 + DN (2n)!!

eYlm(bT) is the spherical harmonics in terms of the
boson operators [11] and,,; given by [30]

ie.
A=1b! o :
+1 which differs in the sign factof—1)™ to Ref. [30] for conve-
B-_v3[bob or b.b 2 nience.
T [ ® }0 =(-0). @) The CGC's ofSU(3) D SO(3) D SO(2) are related to

|  the following integration over three polynomials,

((N3,0)l5l5 | Pivy oyais () | (N2, 0)lals — 11) = (lals — b, lily | Isl3) (N3, 0)l5 || Piny 0y, ((0) || (N2, 0)l2)
= ((N2,0)1als — 115 (N1,0)1l111 | (N3,0)1l313)1((N3,0) ||| Py, 0y (BT ||| (N2,0))1,  (7)

where we have chosen for convenience he highest weight in
S0(3) for the ponnomiaITs with indices 1 and 3 and where a1y elements of Eq. 7 are obtained. The next step is to
(N3, 0)l3l5 | Pv, 0)1,1,(0") | (No, 0)lals — 11) can be cal-  yetermine the triple reduced matrix element$6f(3) in the
culated algebraically, using the commutation relations of thepirq Jine. They are obtained by choosing the particular val-
creation and annihilation boson operators and the expressiqpsslk — N,.. Forthat case th6U(3) CGC is 1 and the triple

of L_ in terms of the boson operators. The matrix elementeqyced matrix elements are obtained. Knowing the reduced
can be obtained by either using the results for the sphetyq he triple reduced matrix elements andsii&(2) CGC's

ical harmonics, given in [11], or by applying directly the gnapjes us to calculate t567(3) CGC's. Because th&U (3)

polynomial (0 | P, 01,1, (b) to the right hand side, using cGc can be written as a product of an isoscalar factor and an
b™ = (9/0b! ) and algebraic manipulations through a nu- SU(2) CGC [13], we obtain

merical algebraic program like MATHEMATICA [31]. The
algebraic program will be the option used in the determina- (7, 0)1l,; (N4, 0)11; || (N3, 0)13):

tion of the matrix elements.

In Eq. (7) the second line determines the reduced ma- _ (N3, 0)03 | Piav, 0y ((9)) ] (N2a0)12>_ ®)
trix elements((N3, 0) || P, 0)((b)) || (N2,0)), supposing ((N3,0) [[| P, 0(b" [[] (N2,0))1
that the SU(2) CGC'’s are known. Once the reduced matrix
elements are known, with the help of tt#/(2) CGC's alll This procedure leads to the analytic expression of
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(l1e¥€§‘¥ls )!

(S0 () ()

Litia=l3
2

((N2,0)1l2; (N1,0)1ly || (N3,0)1l3)1 = (=1)

[leNQT {(N3 s+ DNy — I)N(2 + 1)(2ls + 1) (Ia + I3 — 1)1y + Iy — 1)1y + 15 — zg)z]% -
N3! (N1 + 1+ DNy = I)M(Ng + 1 + DN = )11 + 12 + 13+ 1)! 7
which can be compared to the list given in [12] and with the
analytical formulae given in Ref. [14] (there, the more elegan
method of vector coherent states was used). { 1(1,1) Cl(l’l)}

Of course, there are more general procedures to obtainl /" 7/
this result as mentioned in the introduction, e.g. using the (1,1)q
commutation properties of the algebra of the group. How- = » (L 1)f', (1, 1)f | (1,1)fo)s [bT ® bL . (12)
ever, the method described here is practical for higher rank fo ’

groups (especially for the example discussed in the next sec- In terms of the standard notation of ti$é/(3) genera-
tion) and leads to the CGC’s needed. In general, not all posors [6], the relation to thé?}fl’l)l of Eq. 11 is given by
sible irreps of a high rank group are needed. For example, (1.1)

in the U(8) group only the completely symmetric irrep is T, — +/§ {bT ® b} T Ty =—V3 {b* ® b}
needed in this work and for gluons at most three rows are 01+1

(1,1)4

010

requested. For such restricted cases, the method presented in, NAET (1,1)a
this work, might be sufficiently effective. Vi=+v6 { ® } 1417
(1,1)a
. _ T

3. The chainU(8) > O(8) > SU(3) UL =6 ®1’L1% .
The bosons under consideration have eight degrees of free- y _ _o [bT ® b} (1) _ (13)
dom and belong to the flavor irrep (1,1). 000

The group chain under consideration is The next step is to construct the epd’s (elementary cou-

plings) of U(8). In [4] the following epd’s (also denoted as
U@B)DO@B)DSUBB)DU(1) ®SU(2) integrity basi$ where obtained using the method of generat-

ing functions (see Eq. (16) of Ref. [4]).

A=b]
. . . i . 011
whereY is the hypercharge]" the isospin and’; its third i 0.0)
component. TheV is the total number of bosons,the se- B=b® bT} '
niority (number of bosonsiot coupledin pairs with flavor - 000
(0,0). CGC's of the chaiwU (3) > U(1) ® SU(2) are well (1,1)

_[pt ot
known and available [32, 33]. ¢= _b 2b }

011

The generators of U(8) are given by - (1,1)7 (0:0)
o D= b%@[b*@b*}
Clpr, = [pl@0] (11) : J000
3 YTTs - (1,1)7 3:0)
— |pt T T
wherel is a short hand notation fdn, 1) andp is a multi- B= _b ® {b @b } I
plicity label which is normally 1 except for the irrdp=(1,1) o
where it ebtains velues 1 end 2. The valpe= 1 refere Fo -bT o [bT ° bq (1,1)7(0:3) 14)

to the antisymmetric coupling and = 2 to the symmetric 53
- --1lg3

one [34]. The possible values bfare (0,0), (2,2) and (1,4) i o , )
for the symmetric and (3,0), (0,3) and (%, yr the antisym- A state is a polynomial in these epd’s, where according to [4]

metric coupling. One can linearize the indéXT'T3) to f  the epdC’ can appear only in powers of 0, 1 or 2. Instead
where the association is given in Table I. of choosingC as a dependent epd, one can take instBad

The generators af)(8) are given by the antisymmetric andF as dependent epd’s. These two epd’s satisfy a relation
couplings and thus the algebra ©f8) contains 28 genera- which permits the appearance of only one of the couplifigs
tors. The generators of th#l/(3) subgroup are given by the ©f £ as @ power in the polynomial. The relation is

couplingl” = (1,1);. 1 /15 3 2
The algebra forSU(3), the only one needed for the cal- EF =—c4/5C +4/;ABC- TﬁA D, (19)
culation, is given by
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where the polynomial has the following structure when only

TABLE |. Linearization of the indexY T'Ts) to p. powers ofE appear
f Y T Ts p—E5"
1 0 1 1 N—-A—p+ny—2n:
2 1 12 12 % Z cnlngAmanclL*ruD; piny 27 (21)
3 -1 1/2 1/2 e
4 1 and similar when only powers df appear
0 0
5 0 0 p_ Fugx
6 1 1/2 -1/2
N—p—A4+nq—2n
7 -1 1/2 -1/2 x>y Cin, AT BT CA M DT TR (22)
8 0 1 -1 ning

In Table Il we give a list of all polynomial up to four
This relation can also be used to express third powexs of bosons. The result up to 12 bosons is also available. In realis-
in terms of the other epd’s, as is suggested in [4]. We thougfic calculations [2,7,9] no more than six bosons were needed.
take the second choice as also was done in Ref. [5] (there, States of lower weight but with the same hypercharge
however, the subgrougl(3) is not the color group, whose in SU(3) are obtained by applying the lowering operators of
generators have to be antisymmetric). SU(3) in a particular way to the highest weight state (see
ChoosingE and F as dependent epd’s, there are two Ref. [6]). Restricting, for the moment, to irreps of the type

types of polynomials, one with\ + 3k, \) and the otherwith (A, .+ = A), i.e. no powers ofZ nor F' appear, the state of
(A, A + 3k) respectively, i.e. lower weight with the sam&” as in the maximum weight

state is given by
E™D™C™B"A™|0)F"> D" C" B"* A™|0). (16) o
I > ‘ > NT—Uivg‘PN:V()\,/L) | 0>7 (23)
Fixing the total number of quants, the A andy for the first
case (only powers oF appear), we obtain the following re-
lation between the powers on the monomial

TaBLE IlI. List of the polynomial with definite seniority up to

N =4.
N =nq + 2ng + 2n3 + 3ng + 3ns N v (A, ) polynomial
A=ny1+n3+ 3n;s 0 0 (0,0 1
1 1 (1,1 A
p=mn1+ns. (17) 2 0 0,0) (1/4)B
Similar relations hold when only powers &f appear 2 2 (1.1) (1/v2)C
2 2 (2,2) (1/2)A?
N =n1 + 2ny + 2n3 + 3ng + 3ns 3 1 (1,3) (1/2V5)AB
A=y 4+ s 3 3 (0,0) (1/2v5)D
3 3 (3,0) (v/5/3V2)E
1= n1 + ng + 3ns. (18) 3 3 (0,3) (V5/3V2)F
Up to now, the polynomials have no good seniorifythe 3 3 (2.2 v (5/14)ASC
guantum number of th@(8) group. This is achieved requir- 3 3 (3.3) (1/v6)A
ing that the application of 4 0 (0,0) (1/8v10)B?
) 4 2 2,2 (1/4/3)A*B
B = b bl (19) 4 2 11) (1/4v/3)BC
4 4 1,1 v/ (2/55)AD
on a polynomial in terms of the above monomials, give zero 4 4 (2 2) (49% c?
(no pairs are contained). This leads to the polynomials which (22) (5/ )2
have a given seniority and whele = v. Explicitly, the con- 4 4 3.3) (V5/6)A*C
dition reads 4 4 (4.4) (1/2v6)A"
- 4 4 (4.1) (V5/6)AE
BPy_,(\)(A,B,C,D,E(F))[0)=0 (20) 4 4 (1,4) (V5/6)AF
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TABLE Ill. Some quadruple reduced matrix elements ufyto= 4.

N3 V3 Ny 21 N2 123 (Nsvs |||| Pnyvy |]]] Nava)
2 2 1 1 1 1 1
3 1 1 1 2 0 1
3 3 1 1 2 2 V3
4 0 2 1 2 0 810
4 2 2 1 2 2 24//10
4 4 2 2 2 2 V6
where the normalization of the state is given by Now, we are in the same position as in the simple example
= al2B14(2) — 28)! of the second section. Suppose, we know
(A=)

(N3v3(A3, 13) fn3 | PNyvyiy hgain) fn | Nov2(Az, p2) f2
= fm3 - fm1>7 (25)

iéﬁ A=fra-RIO+B—a+k) .

22N — 28— k)(B—a+ k)2

This equation can be used as a check for the algebraic calcu- _ _ _ _
lation using MATEMATICA. The restriction to irrepé\, ) ~ where f,, is a short hand notation of the maximum weight
is sufficient for most cases of interest in hadron physics, atY 773)» as defined in [6]j.e. (Y), = (A — p)/3 and

least at low energy. The other irreps might however be im{7)m = (A+u)/2. Through the additional knowledge of the
portant for the description of pentaquark states. SU(3) CGC's [32,33] we can obtain the CGC'’s of the chain
| givenin (10),.e.

(N3v3(As, 13) fms | PNy Oaspn) fo | N2v2(Xe, p12) fns — fmi)

= (A2, 12)f2 = fms = Fm1; (A1, 1) fmt | (A3, 18) Fins) o (Nsvs(Ns, 113) ||| Povygvg (g 1] Nava(A2, i)

= (Nava(Xo, p12); Nuva (A, pa) ||| Navs(Xs, 1)) e (M2 pr2) fo=Fma— fm1s (M, 1) Frnt | (A3, 23) Fims) e (Nsvs ||| Py ||| Nav2)e,

€
(26)

where the CGC ofU(8) D O(8) D SU(3) DU(1) ® SU(2)
has been written as a product of an isoscalar factor oJ
U(8)D0(8)DSU(3) and the CGC obU (3)DU (1)RSU(2). ]
In a first step, the triple reduced matrix elements of the polyno4. Conclusions
mials is obtained in the second row through a set of linear equations
involving differento: and3 and knowing the expressions of Eq. (25) In this contribution we have indicated the procedure on how to ob-
and theSU(3) CGC's. The next step is to obtain the quadruple re-tain the Clebsch-Gordan coefficients of the chélifs) > O(8) >
duced matrix elements, which are obtained choosing= N, and ~ SU(3) D U(1) ® SU(2) for symmetric irreducible representations
(A, 1) = (Ng, Ni). The calculation of the expression (25) is done in U(8). The procedure was illustrated for the group ch8ilii(3)
using the code MATEMATICA [31]. D SO(3) D SO(2) for the SU(3) Clebsch-Gordan coefficients, in
Using the first and the last two lines in Eq. (26) we can de-the case of symmetric representations56f(3). The obtained ana-
termine certain quadruple reduced matrix elements. Up to now, wéytical expression can be compared to existing ones.
used highest weight states @(8) only, for SU(3) irreps (A, A), The importance of the Clebsch-Gordan coefficients of the chain
e. (Ak, M\x) = (vk, V). This implies thatalse = 3 = v1 + 1» starting with U (8) lies in the possibility to obtain via their use
and, by constructiolVs = N; + N». In Table lll we list some of  branching ratios of hadron decays involving gluons and quark-
these values. The corresponditig8) > O(8) D SU(3) isoscalar  antiquark pairs, but it can also be used in any other problem related
factors are all equal to one because the couplings considered are &laU (8) group.
stretched. In order to obtain non trivial values one has to use lower
weight state for the polynomial with indices 2.
Up to now we have only calculated the expressions in Eq. (25ACknowledgment
With frms — fmi = fm., i.€. within the maximum weight states in
all polynomials. The lowering operators (Eq. (23)) have not beerfFinancial help from DGAPA, project No. IN119002, and CONA-
applied yet. This is the next step we plan to do. CyT is acknowledged.
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