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Clebsch-Gordan coefficients forU(8) ⊃ O(8) ⊃ SU(3): the first steps
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Apartado Postal 70-543, Circuito Exterior, C.U., 04510 México, D.F., Mexico.
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The group chainU(8) ⊃ O(8) ⊃ SU(3) plays an important role in systems of many gluons and in a schematic model for QCD at low
energy. In order to calculate decay probabilities one has to calculate the Clebsch-Gordan coefficients of this group chain. In this contribution
we present the basic idea in the example ofSU(3) ⊃ SO(3). Afterwards, the polynomial states of theU(8) chain are constructed and the
procedure to obtain the Clebsch-Gordan coefficients is outlined. Partial results are presented.
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La cadena de gruposU(8) ⊃ O(8) ⊃ SU(3) juega un papel importante en sistemas de muchos gluones y en un modelo esquemático para
QCD a bajas energı́as. Para poder calcular probabilidades de decaimiento se necesita calcular los coeficientes de Clebsch-Gordan para esa
cadena de grupos. En esta contribución presentamos la idea básica en el ejemplo deSU(3) ⊃ SO(3). Posteriormente, se contruye los
estados polinomiales de la cadenaU(8) y se indica como obtener los coeficientes de Clebsch-Gordan. Presentamos resultados parciales .

Descriptores: Coeficientes de Clebsch-Gordan; gluones; QCD.
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1. Introduction

The groupU(8) appears always when eight degrees of free-
doms are involved. For example, a gluon has eight color de-
grees of freedom [1] and thus the color part can be described
by aU(8) group. Because the gluon has spin one (three math-
ematical degrees of freedom) a many gluon system can be
described byU(24) ⊃ U(8) ⊗ U(3) [2], where theU(3)
refers to the spin part and a many gluon state has to be in the
complete symmetric irreducible representation (irrep)[N ] of
U(24), which relates the color and the spin part. Of course,
theU(8) group is reduced to the colorSU(3) group andU(3)
is reduced to the spinSO(3) group, with integer spins only.
The reduction is well known and given in [2,3]. However, the
construction of states is less known. The first attempts have
been made in [4, 5], though theSU(3) subgroup considered
in [5] is not the color group and only symmetric irreps of
U(8) where considered. Using a symmetric irrep inU(8) is a
first valid step towards a more general construction of states
and it will be followed also in this contribution.

In [7–9] many quark and antiquark states where consid-
ered. A general classification for many quark and antiquark
states in only the s orbital level was given. For simplifying the
calculations, pairs of quark-antiquark were mapped to bosons
[10]. There are four different types of bosons corresponding
to quark-antiquark pairs with flavor(λ, λ) (λ = 0, 1) and
spin S (S = 0, 1) denoted by[λ, S]. The cases [0,0] and
[0,1] correspond to a one- and three-dimension harmonic os-
cillator, known from text books. The case [1,0] corresponds
to the eight dimensional harmonic oscillator,i.e. to theU(8)
group with a symmetric irrep. The last case [1,1] is mathe-
matically identical to the many gluon problem.

Why does one need the explicit form of states of theU(8)
group? One answer is the calculation of Clebsch-Gordan co-

efficients needed in order to determine transition ratios and
decay properties of hadrons. Normally, the algebraic proper-
ties of a group and its algebra are used, as illustrated in [11]
for the SU(2) group and in [12–14] for theSU(3) group.
However, for higher rank groups these methods get more in-
volved and unpractical. In [15,16] a more practical procedure
was proposed for theU(5) ⊃ SO(5) ⊃ SO(3), playing an
important role for the geometric model of the nucleus [17].
There, the polynomial expressions of theU(5) states were
constructed explicitly using basic couplings in terms of boson
creation operators. The Clebsch-Gordan Coefficients were
obtained by direct calculation of the integrals involving the
polynomial states. The basic idea for the construction of the
polynomials were borrowed from [18,19].

Calculation of decay properties in the schematic model
of QCD at low energy [7,9] might be very important in order
to decide whether the pentaquark exists [20–24] or not. In
a first estimate within the schematic model, where we have
information about the distribution of quark-antiquark pairs in
the pentaquark and in the residual particles, indicate that the
pentaquark is just the sum of a nucleon and a kaon, i.e. the
width of the state should be very large and a peak should not
be seen, confirmed in part by other the experiments and also
criticized in Ref. [26] (and references therein). Wether or not
this is the case, can only be decided through an explicit cal-
culation.

A first and important step forward towards the construc-
tion of many gluon and quark-antiquark states is therefore
constricting the states to the symmetric irrep ofU(8). The
Clebsch-Gordan coefficients (CGC) are then obtained as in-
tegrals over a product of three polynomials.

In the second section we illustrate the basic ideas on how
to obtain the CGC’s for the example ofSU(3) ⊃ SO(3).
In the third section we give the expressions of the polynomi-
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als of symmetric states inU(8) ⊃ SU(3), on how to obtain
states with good seniority and how to obtain the CGC’s of
this problem. Only a report on the current status is given.
Further work has still to be done.

2. The ExampleSU(3) ⊃ SO(3) ⊃ SO(2)

This is a well known example with important implications in
nuclear physics [25, 27]. The group chain under considera-
tion is

SU(3) ⊃ SO(3) ⊃ SO(2)

(λ, µ)κ L M, (1)

where(λ, µ) denote theSU(3) irrep,κ is a multiplicity label,
L the angular momentum andM its projection. Here, we will
only consider irreps of the type(N, 0) which are symmetric
and the multiplicity labelκ=1.

The first step consists in the construction of polynomials
which are in the highest weight state ofSO(3), i.e. M = L.
For that, the elementary permissible diagrams (epd’s) [28]
have to be constructed, or in other words a complete set of
basic couplings in terms of the boson creation operatorb†m
(m = 0,±1) such that all states of highest weight for a fixed
angular momentum can be obtained for a given total number
of oscillation quantaN [29,30]. There are two epd’s [29,30],
i.e.

A = b†+1

B = −
√

3
[
b† ⊗ b†

][0]

0
= (b · b) . (2)

The maximum weight state in terms of these operators is
given by

P(N,0)lM=l

(
b†

)
| 0〉 = Anl

(
b† · b†

)N−l
2

(b+1)
l | 0〉, (3)

with n = (N − l)/2 andAnl given by

Anl =
[

(2l + 2)!!
(2n)!!(2l + 2n + 1)!!l!

] 1
2

. (4)

A state with lower weight can be obtained by applying
a certain number of times the lowering operatorL− [11, 29]
and the result is

[
(l + m)!

(l −m)!(2l)!

] 1
2 (

b† · b†
)N−l

2
Ll−m
− bl

+1 | 0〉

= Bnl

(
b† · b†

)N−l
2

Ylm

(
b†

)
| 0〉, (5)

where theYlm(b†) is the spherical harmonics in terms of the
boson operators [11] andBnl given by [30]

Bnl =
[

4π
(2n + 2l + 1)!!(2n)!!

] 1
2

, (6)

which differs in the sign factor(−1)n to Ref. [30] for conve-
nience.

The CGC’s ofSU(3) ⊃ SO(3) ⊃ SO(2) are related to
the following integration over three polynomials,

〈(N3, 0)l3l3 | P(N1,0)l1l1(b
†) | (N2, 0)l2l3 − l1〉 = (l2l3 − l1, l1l1 | l3l3)〈(N3, 0)l3 || P(N1,0)l1((b)) || (N2, 0)l2〉

= 〈(N2, 0)1l2l3 − l1; (N1, 0)1l1l1 | (N3, 0)1l3l3〉1〈(N3, 0) ||| P(N1,0)(b
† ||| (N2, 0)〉1, (7)

where we have chosen for convenience he highest weight in
SO(3) for the polynomials with indices 1 and 3 and where
〈(N3, 0)l3l3 | P(N1,0)l1l1(b

†) | (N2, 0)l2l3 − l1〉 can be cal-
culated algebraically, using the commutation relations of the
creation and annihilation boson operators and the expression
of L− in terms of the boson operators. The matrix element
can be obtained by either using the results for the spher-
ical harmonics, given in [11], or by applying directly the
polynomial〈0 | P(N3,0)l3l3(b) to the right hand side, using
bm = (∂/∂b†m) and algebraic manipulations through a nu-
merical algebraic program like MATHEMATICA [31]. The
algebraic program will be the option used in the determina-
tion of the matrix elements.

In Eq. (7) the second line determines the reduced ma-
trix elements〈(N3, 0) || P(N1,0)((b)) || (N2, 0)〉, supposing
that the SU(2) CGC’s are known. Once the reduced matrix
elements are known, with the help of theSU(2) CGC’s all

matrix elements of Eq. 7 are obtained. The next step is to
determine the triple reduced matrix elements ofSU(3) in the
third line. They are obtained by choosing the particular val-
ueslk = Nk. For that case theSU(3) CGC is 1 and the triple
reduced matrix elements are obtained. Knowing the reduced
and the triple reduced matrix elements and theSU(2) CGC’s
enables us to calculate theSU(3) CGC’s. Because theSU(3)
CGC can be written as a product of an isoscalar factor and an
SU(2) CGC [13], we obtain

〈(N2, 0)1l2; (N1, 0)1l1 || (N3, 0)1l3〉1

=
〈(N3, 0)l3 || P(N1,0)l1((b)) || (N2, 0)l2〉
〈(N3, 0) ||| P(N1,0)(b

† ||| (N2, 0)〉1
. (8)

This procedure leads to the analytic expression of
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〈(N2, 0)1l2; (N1, 0)1l1 || (N3, 0)1l3〉1 = (−1)
l1+l2−l3

2

(
l1+l2+l3

2

)
!(

l2+l3−l1
2

)
!
(

l1+l3−l2
2

)
!
(

l1+l2−l3
2

)
!

×
[
N1!N2!

N3!

] 1
2

[
(N3 + l3 + 1)!!(N3 − l3)!!(2l1 + 1)(2l2 + 1)(l2 + l3 − l1)!(l1 + l2 − l3)!(l1 + l3 − l2)!

(N1 + l1 + 1)!!(N1 − l1)!!(N2 + l2 + 1)!!(N2 − l2)!!(l1 + l2 + l3 + 1)!

] 1
2

, (9)

which can be compared to the list given in [12] and with the
analytical formulae given in Ref. [14] (there, the more elegant
method of vector coherent states was used).

Of course, there are more general procedures to obtain
this result as mentioned in the introduction, e.g. using the
commutation properties of the algebra of the group. How-
ever, the method described here is practical for higher rank
groups (especially for the example discussed in the next sec-
tion) and leads to the CGC’s needed. In general, not all pos-
sible irreps of a high rank group are needed. For example,
in the U(8) group only the completely symmetric irrep is
needed in this work and for gluons at most three rows are
requested. For such restricted cases, the method presented in
this work, might be sufficiently effective.

3. The chainU(8) ⊃ O(8) ⊃ SU(3)

The bosons under consideration have eight degrees of free-
dom and belong to the flavor irrep (1,1).

The group chain under consideration is

U(8) ⊃ O(8) ⊃ SU(3) ⊃ U(1)⊗ SU(2)

[N ] (ν0000) (λ, µ) Y T, T3, (10)

whereY is the hypercharge,T the isospin andT3 its third
component. TheN is the total number of bosons,ν the se-
niority (number of bosonsnot coupledin pairs with flavor
(0,0). CGC’s of the chainSU(3) ⊃ U(1) ⊗ SU(2) are well
known and available [32,33].

The generators of U(8) are given by

CρΓ
Y TT3

=
[
b† ⊗ b

]ρΓ

Y TT3

, (11)

whereΓ is a short hand notation for(λ, µ) andρ is a multi-
plicity label which is normally 1 except for the irrepΓ=(1,1)
where it obtains values 1 and 2. The valueρ = 1 refers
to the antisymmetric coupling andρ = 2 to the symmetric
one [34]. The possible values ofΓ are (0,0), (2,2) and (1,1)2

for the symmetric and (3,0), (0,3) and (1,1)1 for the antisym-
metric coupling. One can linearize the index(Y TT3) to f
where the association is given in Table I.

The generators ofO(8) are given by the antisymmetric
couplings and thus the algebra ofO(8) contains 28 genera-
tors. The generators of theSU(3) subgroup are given by the
couplingΓ = (1, 1)1.

The algebra forSU(3), the only one needed for the cal-
culation, is given by

[
C

1(1,1)
f ′ , C

1(1,1)
f

]

=
∑

f0

〈(1, 1)f ′, (1, 1)f | (1, 1)f0〉1
[
b† ⊗ b

](1,1)a

f0

. (12)

In terms of the standard notation of theSU(3) genera-
tors [6], the relation to theC1(1,1)1

µ of Eq. 11 is given by

T± = ±
√

6
[
b† ⊗ b

](1,1)a

01±1
, T 0 = −

√
3

[
b† ⊗ b

](1,1)a

010

V ± = ±
√

6
[
b† ⊗ b

](1,1)a

±1 1
2± 1

2

,

U± =
√

6
[
b† ⊗ b

](1,1)a

±1 1
2∓ 1

2

,

Y = −2
[
b† ⊗ b

](1,1)a

000
. (13)

The next step is to construct the epd’s (elementary cou-
plings) ofU(8). In [4] the following epd’s (also denoted as
integrity basis) where obtained using the method of generat-
ing functions (see Eq. (16) of Ref. [4]).

A = b†011

B =
[
b† ⊗ b†

](0,0)

000

C =
[
b† ⊗ b†

](1,1)

011

D =
[
b† ⊗

[
b† ⊗ b†

](1,1)
](0,0)

000

E =
[
b† ⊗

[
b† ⊗ b†

](1,1)
](3,0)

1 3
2

3
2

F =
[
b† ⊗

[
b† ⊗ b†

](1,1)
](0,3)

−1 3
2

3
2

. (14)

A state is a polynomial in these epd’s, where according to [4]
the epdC can appear only in powers of 0, 1 or 2. Instead
of choosingC as a dependent epd, one can take insteadE
andF as dependent epd’s. These two epd’s satisfy a relation
which permits the appearance of only one of the couplingsE
or F as a power in the polynomial. The relation is

EF = −1
6

√
15
2

C3 +

√
3
5
A2BC − 2√

15
A3D, (15)
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TABLE I. Linearization of the index(Y TT3) to µ.

f Y T T3

1 0 1 1

2 1 1/2 1/2

3 -1 1/2 1/2

4 0 1 0

5 0 0 0

6 1 1/2 -1/2

7 -1 1/2 -1/2

8 0 1 -1

This relation can also be used to express third powers ofC
in terms of the other epd’s, as is suggested in [4]. We though
take the second choice as also was done in Ref. [5] (there,
however, the subgroupSU(3) is not the color group, whose
generators have to be antisymmetric).

ChoosingE and F as dependent epd’s, there are two
types of polynomials, one with(λ+3k, λ) and the other with
(λ, λ + 3k) respectively, i.e.

En5Dn4Cn3Bn2An1|0〉F n5Dn4Cn3Bn2An1|0〉. (16)

Fixing the total number of quantaN , theλ andµ for the first
case (only powers ofE appear), we obtain the following re-
lation between the powers on the monomial

N = n1 + 2n2 + 2n3 + 3n4 + 3n5

λ = n1 + n3 + 3n5

µ = n1 + n3. (17)

Similar relations hold when only powers ofF appear

N = n1 + 2n2 + 2n3 + 3n4 + 3n5

λ = n1 + n3

µ = n1 + n3 + 3n5. (18)

Up to now, the polynomials have no good seniorityν, the
quantum number of theO(8) group. This is achieved requir-
ing that the application of

B̄ = [b⊗ b](0,0)
000 (19)

on a polynomial in terms of the above monomials, give zero
(no pairs are contained). This leads to the polynomials which
have a given seniority and whereN = ν. Explicitly, the con-
dition reads

B̄PN=ν(λ,µ)(A, B, C,D,E(F )) | 0〉 = 0 (20)

where the polynomial has the following structure when only
powers ofE appear

P = E
λ−µ

3

×
∑
n1n2

cn1n2A
n1Bn2Cµ−n1D

N−λ−µ+n1−2n2
3 , (21)

and similar when only powers ofF appear

P = F
µ−λ

3

×
∑
n1n2

cn1n2A
n1Bn2Cλ−n1D

N−µ−λ+n1−2n2
3 . (22)

In Table II we give a list of all polynomial up to four
bosons. The result up to 12 bosons is also available. In realis-
tic calculations [2,7,9] no more than six bosons were needed.

States of lower weight but with the same hyperchargeY
in SU(3) are obtained by applying the lowering operators of
SU(3) in a particular way to the highest weight state (see
Ref. [6]). Restricting, for the moment, to irreps of the type
(λ, µ = λ), i.e. no powers ofE nor F appear, the state of
lower weight with the sameY as in the maximum weight
state is given by

NT α
−Uβ

+V β
−PN=ν(λ,µ) | 0〉, (23)

TABLE II. List of the polynomial with definite seniority up to
N = 4.

N ν (λ, µ) polynomial

0 0 (0,0) 1

1 1 (1,1) A

2 0 (0,0) (1/4)B

2 2 (1,1) (1/
√

2)C

2 2 (2,2) (1/2)A2

3 1 (1,1) (1/2
√

5)AB

3 3 (0,0) (1/2
√

5)D

3 3 (3,0) (
√

5/3
√

2)E

3 3 (0,3) (
√

5/3
√

2)F

3 3 (2,2)
√

(5/14)AC

3 3 (3,3) (1/
√

6)A3

4 0 (0,0) (1/8
√

10)B2

4 2 (2,2) (1/4
√

3)A2B

4 2 (1,1) (1/4
√

3)BC

4 4 (1,1)
√

(2/55)AD

4 4 (2,2) (5/4
√

19)C2

4 4 (3,3) (
√

5/6)A2C

4 4 (4,4) (1/2
√

6)A4

4 4 (4,1) (
√

5/6)AE

4 4 (1,4) (
√

5/6)AF
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TABLE III. Some quadruple reduced matrix elements up toNk = 4.

N3 ν3 N1 ν1 N2 ν2 〈N3ν3 |||| PN1ν1 |||| N2ν2〉
2 2 1 1 1 1 1

3 1 1 1 2 0 1

3 3 1 1 2 2
√

3

4 0 2 1 2 0 8
√

10

4 2 2 1 2 2 24/
√

10

4 4 2 2 2 2
√

6

where the normalization of the state is given by

N−2 =
α!2β!4(2λ− 2β)!

(λ− β)!2

×
α∑

k=0

(λ− β + α− k)!(λ + β − α + k)!
k!(α− k)!2(2λ− 2β − k)!(β − α + k)!2

. (24)

This equation can be used as a check for the algebraic calcu-
lation using MATEMATICA. The restriction to irreps(λ, λ)
is sufficient for most cases of interest in hadron physics, at
least at low energy. The other irreps might however be im-
portant for the description of pentaquark states.

Now, we are in the same position as in the simple example
of the second section. Suppose, we know

〈N3ν3(λ3, µ3)fm3 | PN1ν1ν1(λ1,µ1)fm1 | N2ν2(λ2, µ2)f2

= fm3 − fm1〉, (25)

wherefm is a short hand notation of the maximum weight
(Y TT3)m as defined in [6],i.e. (Y )m = (λ − µ)/3 and
(T )m = (λ+µ)/2. Through the additional knowledge of the
SU(3) CGC’s [32,33] we can obtain the CGC’s of the chain
given in (10),i.e.

〈N3ν3(λ3, µ3)fm3 | PN1ν1ν1(λ1,µ1)fm1 | N2ν2(λ2, µ2)fm3 − fm1〉

=
∑

ρ

〈(λ2, µ2)f2 = fm3 − fm1; (λ1, µ1)fm1 | (λ3, µ3)fm3〉ρ〈N3ν3(λ3, µ3) ||| PN1ν1ν1(λ1,µ1) ||| N2ν2(λ2, µ2)〉ρ

=
∑

ξ

〈N2ν2(λ2, µ2); N1ν1(λ1, µ1)|||N3ν3(λ3, µ3)〉ξ〈(λ2, µ2)f2=fm3−fm1; (λ1, µ1)fm1 |(λ3, µ3)fm3〉ξ〈N3ν3 ||||PN1ν1 ||||N2ν2〉ξ,

(26)

where the CGC of U(8) ⊃ O(8) ⊃ SU(3) ⊃ U(1)⊗ SU(2)
has been written as a product of an isoscalar factor of
U(8)⊃O(8)⊃SU(3) and the CGC ofSU(3)⊃U(1)⊗SU(2).

In a first step, the triple reduced matrix elements of the polyno-
mials is obtained in the second row through a set of linear equations
involving differentα andβ and knowing the expressions of Eq. (25)
and theSU(3) CGC’s. The next step is to obtain the quadruple re-
duced matrix elements, which are obtained choosingνk = Nk and
(λ, µ) = (Nk, Nk). The calculation of the expression (25) is done
using the code MATEMATICA [31].

Using the first and the last two lines in Eq. (26) we can de-
termine certain quadruple reduced matrix elements. Up to now, we
used highest weight states inO(8) only, for SU(3) irreps (λ, λ),
i.e. (λk, λk) = (νk, νk). This implies that alsoν = 3 = ν1 + ν2

and, by constructionN3 = N1 + N2. In Table III we list some of
these values. The correspondingU(8) ⊃ O(8) ⊃ SU(3) isoscalar
factors are all equal to one because the couplings considered are all
stretched. In order to obtain non trivial values one has to use lower
weight state for the polynomial with indices 2.

Up to now we have only calculated the expressions in Eq. (25)
with fm3 − fm1 = fm2 , i.e. within the maximum weight states in
all polynomials. The lowering operators (Eq. (23)) have not been
applied yet. This is the next step we plan to do.

4. Conclusions

In this contribution we have indicated the procedure on how to ob-
tain the Clebsch-Gordan coefficients of the chainU(8) ⊃ O(8) ⊃
SU(3) ⊃ U(1)⊗ SU(2) for symmetric irreducible representations
in U(8). The procedure was illustrated for the group chainSU(3)
⊃ SO(3) ⊃ SO(2) for theSU(3) Clebsch-Gordan coefficients, in
the case of symmetric representations ofSU(3). The obtained ana-
lytical expression can be compared to existing ones.

The importance of the Clebsch-Gordan coefficients of the chain
starting with U(8) lies in the possibility to obtain via their use
branching ratios of hadron decays involving gluons and quark-
antiquark pairs, but it can also be used in any other problem related
to aU(8) group.
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3. R. López, P.O. Hess, P. Rochford and J.P. Draayer,J. Phys. A
23 (1990) L229.

4. R. Gaskell, A. Peccia and R.T. Sharp,J. Math. Phys.19 (1978)
727.
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