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The vector potentiald\ (r) produced by spherical, cylindrical, and elipsoidal uniform superficial distributions of electrical charge rotating

at a constant angular velocity, are found. This is done by modeling such a distributions as if they were simple bobbins msdeais

of a very thin coil carrying a current and calculating simply the dipolar potentiAli,(r) produced by them. Due that in the case of the
spherical geometry the potential(r) has already been calculated its value is used as a consistence test of the present approach, for the two
other geometries the analytical calculation of the potentials is not so trivial by this reason the equalness Agpfaeesnd A (r) is proved

trough a numerical evaluation of the complex integrals appearing in the Biot-Savart expressfofr forThe respective magnetic fields
generated by these three rotating distributions have an identical structure: they are constant inside the surfaces while outside them they are
dipolar-like (nearby to radiation zone). An application of the above results to quark confinement inside hadrons is proposed.

Keywords: Rotating charge distribution; magnetic vector potential; bobbins; magnetic dipole expansion; quark confinement; magnetic field.

Se hallan los potenciales vectorialeér) producidos por distribuciones superficiales de cargeteta esferoidales, @ildricas y elipsoidales

rotando en una velocidad angular constanteEsto es hecho modelando a estas distribuciones como si fueran bobidasddtas de

alambre delgado portando una corrieftg calculando simplemente los potenciales dipolakgg(r) producidos por ellas. Debido a que

en el caso de la geome&tresérica el potencialA (r) ya ha sido calculado, su valor es usado como prueba de la consistencia del presente
enfoque, para las otras dos georiatiel calculo anéico de los potenciales no es trivial lo cual nos obliga a probar la igualdad &ap(e)

y A(r) atraves de una evaluamn nunérica de las complejas integrales que aparecen en la expiisit-Savart para\. (r). Los respectivos

campos maggticos generados por estas tres distribuciones rotando tienen la misma estructura: son constantes adentro de ellas mientras que
afuera son de tipo dipolar cercana a la zona de rathia@e propone una aplicaci de los anteriores resultados al confinamiento de quarks

dentro de hadrones.

Descriptores: Distribucion rotante de carga; potencial vectorial méiigp; bobinas; expartan dipolar; magatica; confinamiento de quark;
campo magaético.

PACS: 41.20; 07.55.D

1. Introduction cumbersome analytical calculation of the integrals appearing
in the Biot-Savart expression fek(r) and model such a ro-
It is well known about the difficulties concerning to the calcu- tating surfaces as if they were bobbins having the same shape
lation of the exact value of the magnetic vector potemtiat) ~ that the distributions and made of circular loops of a very
associated to an arbitrary superficial distribution of electricthin wire carrying a current, the vector potentialé (r) as-
charges which is rotating at a constant angular velogity ~ Sociated to the rotating surfaces are simply the dipolar poten-
In fact, this happens even for uniform and quite symmetricafials Aqjp(r) produced by these bobbins. The way it is proved
superficial distributions whereas the only well known exist-the equalness betweek(r) and Aip(r) is as follows:
ing analytic solution for this kind of devices is that of the
spherical distribution 1] and the most it has been done for
other different geometries is to find approximate solutions
[For points very far away of the sources it is possible to know
the values of the potential&(r) of several symmetrical dis-
tributions €.g, cylindrical, elipsoidal, and conical) of electric
charge at uniform rotation 2[]. The main problem for per-
forming these calculations lies in the cumbersome integrals
appearing in the Biot-Savart expression fofr). By focus-
ing on three surfaces (spherical, cylindrical and elipsoidal) ii) For these two geometries it is evaluated numerically
symmetrical enough which are uniformly charged, the pur- the respective integral appearing in the Biot-Savart ex-
pose of this work is to calculate the vector potentials pro- pressions forA (r) and comparated this quantity with
duced by them when they are rotating at a constant angular Aip(r) finding that the dipolar potentials account very
velocity. For accomplishing this task we shall go round to the well for the Biot-Savart potentials.

i) In the case of the rotating sphere it is comparated the
value ofAip(r) as itis predicted by the bobbins model
with the already known expression fé(r) obtained
in Ref. 1 through a formal calculation of the Biot-
Savart integral. Since it is found that both expressions
coincide, this encourage us to investigate the predic-
tions of the present approach for the cylindrical and
elipsoidal distributions.
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In order to make the numerical integrals independent of somearrying a currenf then in Sec. 2 it is calculated the dipolar
particular value of the dimensions of the distributions it is potentials and verify numerically the validity of our approxi-
made a suitable change of coordinates into dimensionlessation. Finally in Sec. 3 it is given a brief discussion of our
variables. It is necessary to observe that within bobbins imfindings.
age, the uniformity of electric charge on the surfaees-(ct)
shall be understood as the condition that the linear density oé Circular loops
turns A = dN/ds of the wire on the bobbins is constant. = P
Likewise, the determination of the values of the several pa- ) ) ) o )
rameters€.g, \, I, o, etc) involved in the problem shall be Let us cons_lder a cw_cular bobbin consisting Mf circular
done through the assumption that the magnetic dipolar md20Ps of radius: carrying a current
ments must have the same value in both of the imagegs (
bobbins and rotating surfaces). Our conclusions are mainly Jx)= NId(z—H)d(p—a)p
two, the first one is that through the use of bobbins model it
is possible to calculate the previously unsohigd= V x A with center at the origin and contained in a plane which is
fields in a fashion which has the advantage of being matheparalell to theXY plane as it is sketched in Fig 1. The dipo-
matically simpler than the method of calculating analyticallylar magnetic moment generated by this current distribution
the non trivial integrals appearing in the Biot-Savart equationis
and the other is that the three fields calculated have in com-
mon a dipolar-like structure outside the distributions while m— l/d?’l Ix J(1) = Nra?Tk, (1)
inside them they are constant. 2

The way we shall proceed in this work is as follows, in

Sec. 1 we give a survey of the known results on circular loopgvhile the respective Biot-Savart potential associated to this
| current is

1 p'=2m / /
Alr) = &/ IO _ Fonr, / dg’ cos ¢ 2. @
dr ) |r—=1| A4rx o=0 /p*+a2+2apcos(p—¢)+ (z—2)2

In the context of the present approach the above two equa-
tions are very useful so they will be used recurrently in the| Let us now proceed to calculate the potentials of interest
following. for us.

Z

3. Superficial charge distributions at uniform
rotation

«N Qoops _ _ o
An electrical chargé) uniformely distributed on a surface of

— particular shape which is rotating with respect to its symme-
iB try axis at a constant angular velocitywill be thought here
as a bobbin made a¥ loops of coil carrying a constant cur-
rent. The coil will be assumed to be twined around in such
away it preserves the same shape of the rotating distribution.
H ' In Figs. 2—4 are shown the three particular superficial (spher-
ical, cylindric and elispoidal) distributions of electric charge
under consideration together with their respective associated
Y bobbins.

"\

=l

3.1. Rotating sphere

@)
/A PR

According with the stated above, an spherical shell of ra-
dius R having a charge uniformly distributed according to
o = Q/(4mR?) which is spinning round at uniform angular
velocity w aroundZ — axis will have associated a one layer

X spherical bobbin ofV turns wrapping up all of the sphere and
FIGURE 1. Plane circular circuit ofV loops of radius: paralell to carrying a constant curredit= Qv = 2wo R? [The current
the XY plane and carrying a curret density associated to this device is
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2L

FIGURE 2. (2a) Spherical shell of radiug rotating uniformly with

angular velocityw along Z axis and containing a chargg uni- o ) ) )
formly distributed on it according to = Q /(47 R?). (2b) Spher- FIGURE 3. (3a) Cylindrical shell of radiug and heigh® L rotating

ical bobbin of radius? made of N' loops and carrying a current uniformly with angular velocityw along Z axis and containing a
I =Quv=Qu/(2n). charge® uniformly distributed on it according to6 = Q/(4waL).

(3b) Cylindrical bobbin of radiua and heigh2 L made ofV loops

) and carrying a curremt = Qv = Qw/(2m).
Isinf

¥
2R _ —
This arrangement is sketched in Fig. 2. The linear density o?_h's value form leads to a magnetization
turns (=number of turns/meter) of the bobbin will be assumed

J(r) =pv =6(r — R)owp =06(r — R)

[1,3]]-

m —~

here to be constant at a value M = AR = owRk. 3)
AoV _1dN 41

ds Rd9 37R’ One must observe that the above values for hatand M

In order to check the consistency of the present approaci¢oincide with those found in Ref. 1 through a quite lengthy
we first calculate the magnetization generated byHeops ~ Calculation of the integral
and compare the obtained result with the already known for
the rotating sphere found in Ref. 1. m = }/d31 1x J(1).

From Eq. (1), the magnetic dipole momeinh generated 2

by dN = ARd6 turns on the sphere will be . . - . .
This encouraging resultindicates a good signal of consistence

dm = dN7p?Tk = A\rR*I sin? 0dok. of our approach.
In order to proceed further, let us now calculate the re-
spective value of the dipole vector potentiali,(r) produced
by m.
m — 1 A2 R3TK. By using cylindrical coordinates (with the respective re-
2 placement = p’) in Eq. (2) the potential produced by the
| N turns twined around the surface of the sphere will be

To be integrated this quantity over all of the distribution, the
total dipole moment generated by theloops is

O=m @' =27 / /
A(r) = Lo Ry / 9’ sin ¢’ / dy' cos s. (4)
A 0'=0 g=0 /T2 + R2 = 2[pp cos(p — ¢') + 27/]

In order to evaluate adequately the above integral it is necessary to consider two different cases.
3.1.1. A(r) inside the spherer: < R

By making an expansion in powers &fin Eq. (4) it is obtained

- [0 a=Tetem 1 2 ,
Alr) = %ARQM oo db’sin ¢’ /aw dovcos a {1 -3 [(;) -2 (1'0% cosasinf + ';ZZ)]

+3 <T)2 2 pcosasin@'—i—ZZ/ g (T)Q 2 (£ cosasi 0’+ZZ/ ’ (5)
(=) —2(= = —— (=) —2( = cosasin = — e h
8 |\R R R2 16 |\ R R R?
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As it is easily observed in the last equation, the two
first integrals vanish while the third one also called dipolar
term, does not. In fact this term leads to a dipolar potential T
Agip(r) = (pom/8) A pp. By using that

41

Quw
- and ==
3TR o’

the potential inside the spherical bobbin will take the form

wao

T sinfp 0<r<R. (6)

R
Agip(r) = H2 3

The above dipolar potential is exactly the same to the"'GURE 4. (4a) Elipsoidal shell of minor axis and major axis
Biot-Savart potential of the rotating spherical distribution ¢ “’t”‘_“f‘g uniformly wuth_angular _vel_ocntyu alon_g z axis and
found in Ref. 1. This coincidence indicates that our ap—conta'mm‘}j a charge) u.mformly. d'St.nbUted on it a.ccordmg 0

. . o = Q/S(e) whereS(e) is the elipsoid area. (4b) Elipsoidal bob-
proach work; very well (at least for the internal region of th?bin of radiusa and major axis: made of N loops and carrying a
sphere) and incidentally save us the cumbersome calculatiofrrents = Qv = Qu/(2n).
of the Biot-Savart potential generated by the rotating charged
sphere.

To make sure that_our approach works completely well ing 5 Rotating cylinder
the case of the spherical geometry let us study now the other
region of interest. Our next goal is now to determine whether if the present
method can be applied to the calculation of the vector po-
tential associated to a chargeuniformly distributed on the
side of a cylinder of heigtl2L and radiusz which is spin-
ning round at uniform angular velocity along its symmetry
(Z-)axis. In order to investigate a bit more on this matter let
us first calculate the linear density of turh@ssociated to a

(o R cylindrical bobbin carrying a current which will be mod-
Agip(r) = ; AI(—)p@. eling to the rotating cylinder as it is sketched in Fig 3. The
" way it is determined\ here is by making equal the value of
Using the prescribed values farand! this potential can be the magnetic dipole moment of the bobbin (dependingjon
written as with the one of the rotating cylindrical surface. This simple
procedure is shown below.
Within the image of a cylindrical bobbin a¥ turns car-

3.1.2. A(r) outside the spherel < r

After doing an expansion in powers &f/r in Eq. (4) and
keeping only the dipolar term, it is obtained

B poRYwo sin

Adp(r) =—5—-5¢ R<r (7) rying a currenff = Qu = 2Lawa, the value of the associated
magnetic dipole moment will be
This result also coincide exactly with the respective ex- R
pression for the rotating sphere found in Ref. 1. mY = /dm = /deQIk
z=+1L N N
3.1.3. A(r) for the rotating sphere. = )\7m2]/ dz'k = 2LmaI k.
z=—1L

With Egs. (6) and (7) the dipolar potential associated to thé€On the other hand, the magnetic moment generated by the
spherical bobbin can be written in a simplified way as followsrotating cylinder is the one generated by the current

J=6( —a)ow kx1=awd(p —a)od,

PP 0<r<R,
3 (8) thatis

_ poRow

Aqip(r) = A(r) A
3 3PP R<r.

1 ~
m = 3 / d*1 1x J = nla’k.
The coincidence between the values of the dipolar and _ y i
Biot-Savart potentials, stimulates us to investigate whether if herefore, by making equal the valuesrafg, andmy g,
our alternative and simpler approach works well for describt 1S 0ptamedA = 1/2_L. _Wlth this vaIL_Je for), the corre-
ing other different geometries at uniform rotation. Let us ex-SPonding magnetization in both of the images will be
plore this possibility for both the cylindrical and elipsoidal Mo — m » 9
distributions. N = 5oaT awok. 9)
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Once it is known\, we are now in position of calculating :
the value of the dipolar vector potential as it is predicted by ! 1
the present approach. ol

According with Eq. (2) the potential associated to a cylin-
drical bobbin must have the form

11 |

/ LA |
Alr) = /Lo]a/dN/MQ |
in 2 _or 142 i . ol et :

B ,uoI)\ /Z’:L dz/ /2# d(p/ cos S0/ R (10)
T Arx e VP2 +12 Jo i A

2r-1
\/1 R ENE)

wherel? = a? + z’2. By making an expansion in powers of
(2r - 1)/(r?* + 12) in (9) and keeping only the dipolar term o =

(proportional to the first non vanishing integral) it is obtained : i
the general form for the dipolar potential
Agip(r) = Ho P m x p, (11) FIGURE 5. The four spatial regions of interest in the case of the
ar (r2 +a?)Vr2 4+ a2 + L2 cylindrical bobbin of radius: and height2L. It is implicitly as-

sumed that for each case the azimuthal angle runs over all of its

— 2%
wherem = w/a°k. range0 < ¢ < 2.

From the above expression it is obvious thgf,(r) de-
pends on the correlation between the values, ef a, andL.
In order to obtain an expression fa,(r) where it can be  [The first order corrections tdgj(r) are
seen in a more explicit way its behaviour, we have found con-

venient to divide the space basically in the four following re- 12 - 1L? + 5a?
gions : Inside cylinder( < p < a, —L < z < +L), Region 2r2 4 g2’ 92 y2
| (up and down external parts to cylinder lid$:< p < a, 1572 — 412 15a% — 4L?

L <| z 1), Region Il ( external regions to cylinder edges: 1= 2 @212’ and

a < p, L <| z |), and Region Il (external part to cylin-

der side: a < p,<| z |< L). In the above it is im- forregions|, II, inside cylinder and Ill, respectively].

plicitly understood that for each case the azimuthal angle From the above expression it can be observedAhg(r)
runs over all of its rang® < ¢ < 2x. In Figure 5itis has a dipolar-like structure which becomes more evident for
sketched this single partition. From this figure one can se@oints very far away from the current. We may also note
that our election lies basically in the dominant spatial quanfrom (12) that in the limit case of a very long cylinder
tities characterizing each one of these regions, that is: ina << L, this potential has the same structure to the one of
side cylinder the dipolar expansion factor musifx& + L2 the sphere given by Egs. (6) and (7).

because for any field point = (z,y, z) inside it, it holds In order to be able of distinguishing whetherAfg(r)

thatr = /22 + y2 + 22 < Va2 + L2; since for any source gg predicted by bobbins method is equal to the Biot-Savart
point1 on the cylinder it holds that < v/a* + L?, hence  potential

in the Region | the corresponding dipolar expansion factor
must bev/r2 + a2 where obviouslyL < rand; in Region o [ J(1)
Il the expansion parameterisbecause its minimal value is A(r) = E/ r—1]
Vva? + L? < r, and in Region Il the respective parameter is

2 22

Vr? + L? because the minimal value otthere, isa. ~ generated by the cyIndrical surface distribution at rotation it
~ According with the above, the expression for the potentials neccesary to use numerical methods. This last obeys to the
in terms of leading quantities is fact that at the moment there is not reported any analytical
A (r) = o o5 calculation of these integrals. In Fig. 6 it is plotted the re-
dip 0 4 p sult of performing the numerical integration dfr) and then
P divided by Agiy(r) against
P r — 62 p 2 + Z\?
—  a < p; L<|z] L (7) (Z)
.2 2\3/2 a
o) (17 +a?) / (12)
ﬁ, O<p<a; 0<|z|<L for several values of = a/L << 1. The coordinates/L
(a® + L2) andp/a have been chosen to run in the ran@es] in steps
%23/2, a < p; 0<|z|<L. of 0.1. From this figure it is evident the good agreement be-
(r? +L?) tween Agpp(r) and A (r) except at the edges = —L and
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z = +L ofthe cylinder and also on the side= a of it. These 50

singular discrepancies come mainly from the Biot-Savart ex-

pression for the potential where at the side of the cylinder it

vanishesA(p = a,,z) = 0 while for | z |= L the diver-

gence is quite strong since it goesedsg e beinge << 1.

For this reason these values were not included in Eq. (12).£30¢

The physical explanation about the null valuefofr) at the '

boundaryp = a comes from the fact that always on the sur-

face of a perfect conductor the magnetic fi#lds zero pro-

viding that only tangentidB fields can exist 4] which is pre-

cisely the case. On the other hand, the steep valud {o) ol A~ ] |

at| z |= L arise as a consequence that we have assumed .

cylindrical shell of finite heighR L consequently it does not ‘

have physical lids but it has hollows which deform strongly 00— o / 5 5 m o

both the line fields and the intensity of tiiefield. Once it ' ) oL _ _

is clarified the above we can conclude reasonably from Figf'GURE 6. Numerical value of the Biot-Savart potentia(r) for

ure 6 that the potential generated by a uniform distribution of'® ¢as€ of cylindrical geometry divided by the dipolar potential

. s . A 4;p(r) of the respective bobbin all as a functiongfL and for

electric charge on a cylindrical shell at rotation is equal to &
. ) o . several values of = a/L << 1.

dipolar vector potential produced by a cylindrical bobbin of

N turns.

NG

lzVL=1

must be the same in both sets of coorgindt:e:f:Qw/(%).
3.3. Rotating elipsoid The surface of the unitary sphere 6 = 47 and from
=@ =05 = oS itfollows thatsg = o(S/S) where
As a last example of the eficiency of the bobbins method
let us find the vector potential generated by a ch&gai- 21a? (1 +V1- 62>

formly distributed on the surface of an elipsoid (of revolu- S(e) = o \1_ Vi

tion) of heigth2¢ and major axia which is spinning round

at uniform angular velocitw along its symmetryf—)axis. is the elipsoid area and= a/c its eccentricity If the density
The calculation forA(r) in this case is not so difficult as current generated by the rotating elipsoid is

apparently it seems to be if one notes that under a transfor-

mation of coordinates from the usual et y, 2} to the hat J(1) =0(r" —ro)owp'@’

set{X=x/a, Y=y/a, Z=z/c}, the equation of the elipsoid , P

p2/22A+ zé/c2 = l/becorpeé t}he equation of an sphere of ra-Vherep’ = r’sin ¢’ and
diusR = 1, thatisp? 4+ Z2 = 1, wherep = /22 + y2 and o = a

o=V X2+ Y2 respectively. Under this transformation the V1= (1—e?)cos?d
elipsoidal_problem is now reduced tc_) the W_eII k_nown case _Ofthen its magnetic moment will be

the spherical geometry (in hat coordinates in this case) which

is given by Egs. (6) and (7) and whose hat version is m l/dgl 1x 3(1)
- 2
P \ _
Ar)="° 5P B 5on (13) =ma owF (e)k, (14)
— <7
= " where
It is worth it to remark at this point that the above ex- 7 _ 2 14vI—e2
21 —e? — e In| =5
pression is the one we are looking for providing the electrical F(e) = e n(lﬂ/ler) (15)
chargeQ is the same on both surfaces. (1—e2)3/2

To give an explicit expression for (13) in terms of the the corresponding magnetization associated to the rotating
usual set of coordinates it is necessary first to state the rel%‘lipsoid is

tions beween the hat and non-hat physical quantities involved

. . . - 3 ~
in the problem. To begin with the azimuthal angle does not Moiipe = 5 m2 = 3 aowF (k. (16)
change the sma?c 4

y Yy [In the limit case of an sphere whede-c=R ande=a/c=1,

¢ = arctan - = arctan T the area becomes
p=27 r=1

consequently the respective angular velocity: dy/dt will S = lime_1a> / do / d—x“ = A7 R?
not change also. The first consequence of this is that current =0 w=m1 1= (1 =€)z
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while for e = 0 which corresponds to the degeneration of

the elipsoid into an infinite line (namely either of the straight

linesc — oo ora — 0), the area diverges]. ol
Let us observe that in the limit case of an sphere=R

(i.e. e=1) the current isI(1) = 6(+' — R)owRsin#'¢y’ and

F(e = 1) = 4/3 with which (16) reduces consistently to (3).

Using the relations between the hat and non hat quantities

in (13) the potential can be written as

to S(e) ~

A)

Ay

a
=

)
&

<

1.0 —

Agi =
dlp(r) 1672d2 F(e)m X
2 2\2
pla 0<y/(2)"+(2)7<1, i -
X 1 p 5 B 17 00 — __ S
2 213/2qa (B) T (%) 4 o0 L0 [(pfa)+(z/L)]" 20 3.0
{(5) + (% } FIGURE 7. Numerical value ofA (r)a/p in the case of the elip-

soidal shell ( continued line ) and the rgspective dipolar potential
where S(e) is the elipsoid area and F(e) is given by (15).  Aaip(r) (dotted line) both as a function of (p/a)? + (/L) for
For the rotating elipsoid, the analytical solution of the S€Veral values of the eccentricity £ e = a/c < 1).
corresponding Biot-Savart equation

ke [ I
an=g [0

[T -

and in this limit case the potential (12) becomes

pla 0<p<a

0 fo M X D
Ac(jig (r)ﬁg 2 €\ P 1 (19)
has not been done so far, consequently it is also necessary a[l + (p/L)?]3/? a<p

in this case to use numerical methods in order to check the o
coincidence between the values of Eq. (17) augt). In  AS it was expected of the symmetry of the problem, in this
Fig. 7 we have plotted the result of integrating numerically!imit there is not dependence an

Biot-Savart equation for several values of the eccentrigity |t IS convenient to stress also that for the cylinder case
of the elipsoid. As it is seen from such a figure there is aV& have plotted in Fig. 6A(r)/Adp(r) and not A(r)

very good agreement between(r) and A gp(r) whence it agginstr/L, this ob.e.ys tothatin (12) therg are invplved many
is possible to conclude that the bobbin method also works ii€gions in the partition of the space and it is easier to see the
this case. We may observe that similarly as it happened iRehavior of the potentlgl in this way. _H_owever, for the limit
the above case of the cylinder, the coil method allows us als§2S€ Of @ very long cylinder << L it is worth it to ver-

to calculate the vector potential associated to the elipsoiddfy numerically whether if the dipolar potentid.gip(r) as

superficial distribution of electric charge at uniform rotation it IS given by (12) is the same to the respective Biot-Savart
in both a simpler and precise way. potential A(r). The results of these numerical calculations

are shown in Fig. 8 where we have plottadr) and A gp(r)
againstp. As itis easily seen from this figure these potentials
are the same.

Referring to the elipsoidal distribution at rotation let us
bserve from Eq. (17) that the respective potential has sev-
ral particular characteristics, first of all and as it was nat-
urally expected the general expression fofr) must have
s p 0<r<R an strong dependence on the eccentrieityln addition to

Afr) = Lo 2P \ - (18)  this A(r) depends on both coordinatgga andz/c and not
Am R® %p R<r, on p andz. In the limit case where the elipsoid becomes an
sphere ¢ = ¢ = R), the area of the elipsoid iS = 47R?
from this equation altogether with Egs. (11), and (17) it re-and Eq. (17) leads consistently to Eq. (18). For a degenerate
sults evident that the magnetic potentials generated by thglipsoid into an infinity line ¢ = a/c — 0) the potential of
three superficial distributions at rotation considered in thisgq. (17) diverges.
work have in common a dipolar-like structure. Concerning to the common characteristics of the poten-
Concerning in particular to the cylindrical distribution tials (12), (17), and (18) we point out that there basically
let us observe that in the limit case of a very long cylinderthree which are not difficult of seeing. The first one is that
a << L there would be just two regions of interest, namelythey have azimuthal symmetry which was expected from the
the inner and the external (Region lll) parts to the cylindersymmetric shape of them aroundaxis. Another common

4. Conclusions

By observing that the potential of the sphere given by Egs. (62
and (7) can be written in terms of the magnetic moment as
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w0l | behaviour is that these potentials vanish alongaxis
' (p = 0), this due to that the curredtcirculates along di-
e rection. Finally let us observe that they behave is such a way
A o that their maximal value, for fixed values of the radial coor-
L dinater = ct, is reached at th& Y —plane (.e. 6 = 7/2).
20

Let us calculate now thB fields generated by the three
A®) rotating surfaces. The expression for the magnetic field
generated by the rotating sphere is easily calculated from
Eqg. (18) and its value is

B, (r)=V x A(r)

o 1 { 2m, 0<r<R,

47 R? | [3(m - #)f—m] f—;, R<r. (20)

" 47 RB

00 A . :
0.0 1.0 p/a 20 3.0

FIGURE 8. Numerical value ofA (r) for the case of a very long The main characteristic of this potential is that it is con-
cylinder (L >> a) together with the respective dipolar potential Stant inside the sphere while outside it is dipolar-like, reach-
A.ip(r) both as a function of. ing its minimum value for = ct at the XY -plane, while

|  along positiveZ axis has its maximal value.

From Eqg. (12) itis found that thB field generated by the rotating cylindrical shell is

Lo 3(r? +a?) + L? (22— p?) +2(r* + a®)(r? + a® + L?)
B.y(r) =V x A(r) = — m-r)r-+ -
u(r) (r) am | (r2 + a2)2[r? + a2 + L2]3/2 ( ) (r2 + a®)2[r2 + a2 + L2]3/2
. (a2+L2)3/2
. (aQ +L2)3/2
N Mo 1 [S(mr)r—m m a < p; L<|Z| (21)

AT (@ + 122 oy 0<p<a 0<|z|<L

)f - m) (E LN
(r2 + L2)3/2

‘w
—~
B
>

a < p; 0<|z|< L.

The structure of this field is quite the same to the one of
the sphere, it is constant inside the shell while outside it hasve find that the magnetic fields (20), (21), and (22) have

a dipolar-like behaviour. interesting features which would be applied to the study of
Finally from Eq. (17) the magnetic field for the elipsoid some aspects of the Strong Interactions of Elementary Par-
is ticles. In Quantum Chromodynamics (QCD) the more ac-
o S(e) cepted theory, of the Strong Interactions of Elementary Par-
Belip(r) =V x A(r) = 167205 F(e) ticles [p] it is believed that intense Chromo Magnetic Fields
are generated inside hadrons which confine quarks inside
P 2 . 2 them. Nowadays, it is well known that one of the central
2m 0< () + () <1 problems of QCD is about the precise structure of the confin-
“ ¢ ing potentials. Altough many phenomenological potentials
% 3(m - £)f — m] 2 2 have been proposed in the literature accounting for such a
p z . .
7 < <> + <> property, however the m_ost extensively used in meson phe-
<p> 2 <Z> 2 a ¢ nomenology is the following
—_ + —
a ¢ V(r) = Voou(r) + Veons(r) = 7% + kr, (23)

(22) The first termVeoy in (23) is a color Coulomb potential
As it is observed from the above equati®y;;,(r) has also  which accounts for the spectra while the otfigs a linear
exactly the same structure than those of the sphere and tlome, accounts for quark confinement [This is due that it ac-
elipsoid. counts successfully for quark confinement besides of repro-
Once calculated th® fields we were looking for, we ducting very well almost all of the mesonic spect&]].
want to point out that there exist an interesting physical situ-  According with the present approach whose main fea-
ation where it can be applied present results. Incidentallyures are given by Egs. (20) (21), and (22) it is possible to
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show that (23) must be necessarily the structure of a quark- Refering to the assumed spherical shape for a meson, itis
quark potential inside a meson if we think of it as an sphericalvorthwhile to observe that Egs. (24) and (25) would have
colorless particle containing a quark (q) and anti-quapk ( been derived anyway if instead we were assumed that the
on whose surface is uniformly distributed a color chafge meson was either cylindrical or elipsoidal. A good exam-
(asigned to the quarg which is rotating at a constant veloc- ple of the independence of these last equations on the shape
ity and where a point-like color chargel (correspondingto of the meson (either spherical, cylindrical or elipsoidal) is
an anti-quarkg) ) is at rest on the center of the sphere (originthat found in Ref. 9 where it was shown successfully that if
of coordinates). one thinks of a meson as a relativistic cylindrical tube flux it
Concerning to the confining part of (23), it arises due thateads to a reliable values of the so called Isgur-Wise function
as it is seen from Eq. (20) the chrom® field inside hadron describing hydrogen-like mesonic systems where one of the
must be constant, proportional to its magnetic moment, anduarks is very heavy and the other is very light.
directed alongz-axis. Effectively, since the respective non  From the discussed above we want to conclude the
Abelian chromo electric fieldl. must be also constant in- present work by saying that the bobbins method allows to
side hadrons and it must be on thé’-plane, that is calculate in a simple way the previously unsolved magnetic
fields generated by the spherical, elipsoidal, and cylindrical
L ) . charged surfaces at constant rotation. THedields are the
wherewB, = ctis its |ntenS|_ty, f[h's_ makes that_the structure dipolar fields generated by the bobbins and they are constant
of th? scalar chromo potential |pS|de hadr,‘)”s induced by thf':hside the shells while outside they have a dipolar-like struc-
rotating color charge) must be linear, that is ture. We have also found that Egs. (24) and (25) are a good
Veont(r) = K. (24)  example of a possible theoretical utility of the present study.

E.= —-wB. X p=—wB.p

On the other hand the Coulomb-like part of (23) comes from
the point-like color charge placed at the origin and it must be
of the form ¢ Acknowledgment
Veoul(r) = — (25)
The two above equations together with Superposition Princiwe want to thank to N. A. and J. E. without whose unvaluable

ple guarantee the consistence of the mesonic potencial givéiPmments would not be possible this work. We acknowledge
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1. D.J. Griffiths, Introduction to Electrodynamic2nd Edition, 5. I.LA. Aitchison and J.G. Hey,Gauge Theories in Particle
(Prentice Hall, New Jersey 1989). Physics (A Practical Introduction, )2nd Edition, (A. Hilger,

2. A.D. Alexeiev, Problemas de Electrodamica Chsica (MIR, Bristol and Philadelphia 1989).

Mosdl 1977). 6. K. JohnsonAct. Phys. PolonB6 (1975) 865.
3. P. Lorraine, D.R. Corson and F. Lorraif8lectromagnetic /- W.A. PoncepPhys. RewD19(1979) 197.

Fields and Wave2nd Edition, (W.H. Freeman 1988). 8. M.G. Olsson, S. Veseli, and K. WilliamBhys. Re\D51 (1995)
4. J.D. JacksorClassical Electrodynami¢c2nd Edition, (J. Wiley 2079.

& Sons, New-York, Chichester, Brisbane, Toronto 1975). 9. M.G. Olsson and S. VeseRhys. RevD51 (1995) 2224.

Rev. Mex. . 49 (2) (2003) 182-190





