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Comportamiento asintotico para el periodo del gendulo simple
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We investigate the asymptotic behaviors of the period for a simple pendulum with arbitrary initial conditions. The study of the vibrational
and rotational solutions for the simple pendulum shows that in the asymptotic limit the behavior is of the same type for both motions, when
the energy tends towgl. Here we present a logical deduction for the behavior in both cases. We obtain that the asymptotic behavior of the
period goes to infinity logarithmically for the two solutions of the pendulum.
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Se estudia el comportamiento asitito del periodo para ungmdulo simple sometido a condiciones iniciales arbitrarias, analizando las
soluciones vibracional y rotacional, las cuales muestran, émitlasinético, el mismo comportamiento cuando la efnetgende angl. Se
presentan dgficamente resultados nénicos de las soluciones concluyendo que el comportamient@tsintel periodo tiende a infinito

de forma logaditmica.

Descriptores:Comportamientos asidticos; periodo; pndulo simple.

PACS: 01.55.+b; 02.30.Hg

1. Introducdon dondew? = g/I, conl la longitud del @ndulo y g la ace-

. ] ] ] leracbn local de la gravedad. Al realizar una primera integra-
En meanica chsica uno de los problemasamestudiados y  ¢jon de la Ec. (1) como funon de la enerig E, se obtiene
conocidos es el delgmdulo simple. La soludn de la ecua-

cibn de movimiento se puede encontrar resolviendoarizm E— }mlzéz — mgl cos 0 @)
camente dicha ecuasi sujeta a condiciones iniciales dadas. 2 ’
El interés principal de este trabajo recae en estudiar los co
P?rtamientos asinticos del periodo para eepdulo simple
1

En el presente ddulo se escribe el periodo dedpdulo
simple como fundn de la enefig considerando los siguien- .50
tes casos: movimiento vibracional y movimiento rotacional 62 — 4ﬁk2 1— ) 3)
obteniendo el comportamiento agitico del periodo para es- l k2 ’
tos casos. Adeas, se presenta otro caso en el cuabeldulo
tiende asiriticamente a la posion vertical dnde permane- ¢gon
ce indefinidamente y por supuesto no esm#co su movi-

Mjonde se ha escogido el nivel de referenciader: /2
(energ@a potencial cero); es decir, el plano de donde cuelga
el pendulo. Esta expre@n se puede reescribir como

miento. 1+ £
En la Sec. Il se resuelve el movimiento vibracional y se - 7m9l’ k<1 4)
deduce el comportamiento aditito para el periodo como 2

funcion de la enerig.. En la Sec. Il se presenta el mismo for- para integrar (3) se hace el cambio de variable
malismo para el movimiento rotacional.
sin —

sing = —-2, (5)

2. Movimiento vibracional _
con lo que se obtiene

Para un pndulo de masa y longitud!, se tiene la ecuatn

L. . . »
de movimiento bien conocida dy l
.‘ toto=fs [ = Kk @
0+ wising =0 Q) 0 [1—k?sin® ] 9

Q |~



COMPCRTAMIENTO ASINTOTICO PARA EL PERIODO DEL PENDULO SIMPLE

Esta integral es una integraligica incompleta de primera
clase. Para obtener el periodo del movimiento vibracional es

conveniente partir del reposé & 0 ; 6 = 0y). Con estas
condiciones iniciales se obtiene de (5) que= 7/2 para la
amplitud inicial, ya qués = sinfy/2. Por consiguiente, el

péndulo tarda un cuarto del periodo para llegar a la base y a

tomart, = 0, la cual es una constante de integéacirrele-
vante en (6), el periodo queda dado por

/2
T:4\/7/d50:4\/7K(k,g), (7
90 [1fk2sin2<p] 9

donde la fundn K(k,7/2) es la integral éptica completa
de primera clase. Para obtener un comportamientotdisiot
de la expredin (7), se desarrolla el denominadérrhino a
término y usando el teorema de Wallis [2], se obtiene

l 1\? 1-3\?
T=2m /- |1+ (=] P+ (—) K+
o e (5) e (53)
Para k < 1 el comportamiento asiatico del periodo es

e ()¢]

Parak~0 se obtiene el comportamiento asnico del gndu-
lo. Este comportamiento deja de saligdo cuando la desvia-

[N

(8)

(9)
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FIGURA 1. El periodo del pndulo simple como funén de la
enerda para condicones iniciales arbitraris. = E/mgl and
t/ = th.

3. Movimiento rotacional

Ahora se considera que etpdulo rota y el &lculo es aalo-
go al caso descrito en la se@uianterior. En este caso se
escribe la expreéh (2) como

491

9.2 = Tﬁ |:1 — k2 sin2 Z:| 5 (13)

lo que implica que se ha cambiade — 1/k y por consi-

cion angular es de 9 grados aproximadamente. El resultado §&liente (4) se convierte en

observa en la Fig. 1 (parte izquierda), pues el periodo es inde-

pendiente de la amplitud y el periodoBs= T, = 27/1/g.
Cuando la eneilg aumenta aproxiamdose angl, k tiende a
la unidad como se puede observar de (4), y la integiptiea
diverge conforme a [3]

1 16

Por lo tanto, se ha obtenido que el periodo diverge lbogar

camente como
1 16
T=Ty—In|{—=].
O n(lkz)

Este resultado puede observarséfigamente al resolver

(10)

(11)

numéricamente la expresn (7), la cual se muestra en la Fig.

1. Esta gafica se obtuvo mediante un programa @uicD

realizado en Fortran. El lado izquierdo de lafiga ' < 1)

corresponde a este, hecho donde la singularidaal est
E’ = 1, esdecir

E=—=1.

12)
mgl

2
1+
mgl

k% = (14)

Al tomar el cambio de variable = 6/2, se llega a una ex-
presbn similar a la Ec. (6), dada por

®
l

t—tozk\/7/ahpl:k\/7K(k,g0)7
go [1—k251n290]2 9

(15)

la cual tamb2n es una integral igltica incompleta de prime-
ra clase. Para el caso del movimiento rotacional égldplo
cumple un periodo completo &, de forma que ahora el
periodo es dos veces el tiempo que @hgulo tarda en ir de
0 aw. Por lo tanto, al tomat, = 0 como en el caso anterior,
se tiene

/2
T:Qk\/T/dSO
9 0 [1— k2sin® o]

=2k

=

éK (k f) . (16)
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De modo que se ha obtenido una integrgiteda completade Haciendo el cambio de variable

primera clase aloga a (7) pero multiplicada pét EI com-

portamiento asirgtico de la integral @ptica involucrada en y = sing (19)
(16) es del mismo tipo que el caso anterior cuahde 1y 2

por consiguiente el periodo tan@ni diverge logatmicamen-
te como en el atlisis hecho en la sedm anterior para el
movimiento vibracional. Para el caso en dque- 0 se tiene . q )

queK (k, 7/2) tiende ar/2 y por lo tanto el periodo tiende a v=4/7 (1-v%), (20)

se obtiene

k
T — To3. a7 cuya integral es

Este comportamiento se muestra en la parte derecha de la

grafica que corresponde al comportamiento del periodo cuan- — tanh [\/?(t _ to)} 7 1)
do E — oo es decir, cuandé — 0y por lo tantoT — 0,

como se puede apreciar de (17),lo cual es razonable puesto

que el tiempo que toma elpdulo en cruzar un punto fijo de donde finalmente se obtiene que

de la circunferencia descrita por la masalecrece si la ve-

locidad a}ngular crece. EI.comportamiento acmnb cqando 0 = 2gin—! {tanh { Q‘TH ' (22)
E' — 16k — 1 es el mismo que en la parte izquierda de l

la gréfica, es decir, tiende a infinito logamicamente, con el

mismo tipo de fun@n (10), excepto por el factor multiplica- Cuandod = m se concluye que el periodd — oo, es decir
tivo que tiende d cuandoE crece. el péndulo queda vertical.

Para completar este alisis se incluye el caso en el cual Para el caso rotacional se procede en la misma forma par-
el péndulo se encuentra en la separatriz entre los movimieriiendo de las Ecs. (13) y (14). El resultado que se obtiene es
tos oscilatorio y rotatorio, cuya sol@ri se puede encontrar €l mismo que en el caso descrito anteriomente, es decir se
exactamente. Para ello se parte de las Ecs. (3) y (4) cuandbtiene la Ec. (19) y por consiguiente se obtiene la misma

E = mgl 0 seak — [4]. Entonces concluson, para la parte derecha de lafita cuandd = 1.
50 La manera en que se llega a estas situacionesbéisint
Lz o |4 S 1g cases aumentando la amplitud dehdulo en el movimiento
29 ) (18) oscilatorio o dismunuyendo la velocidad angular en el caso
rotacional.
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