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Comportamiento asintótico para el periodo del ṕendulo simple
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We investigate the asymptotic behaviors of the period for a simple pendulum with arbitrary initial conditions. The study of the vibrational
and rotational solutions for the simple pendulum shows that in the asymptotic limit the behavior is of the same type for both motions, when
the energy tends tomgl. Here we present a logical deduction for the behavior in both cases. We obtain that the asymptotic behavior of the
period goes to infinity logarithmically for the two solutions of the pendulum.
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Se estudia el comportamiento asintótico del periodo para un péndulo simple sometido a condiciones iniciales arbitrarias, analizando las
soluciones vibracional y rotacional, las cuales muestran, en el lı́mite asint́otico, el mismo comportamiento cuando la energı́a tiende amgl. Se
presentan gŕaficamente resultados numéricos de las soluciones concluyendo que el comportamiento asintótico del periodo tiende a infinito
de forma logaŕıtmica.

Descriptores:Comportamientos asintóticos; periodo; ṕendulo simple.
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1. Int roducción

En mećanica cĺasica uno de los problemas más estudiados y
conocidos es el del péndulo simple. La solución de la ecua-
ción de movimiento se puede encontrar resolviendo numéri-
camente dicha ecuación sujeta a condiciones iniciales dadas.
El inteŕes principal de este trabajo recae en estudiar los com-
portamientos asintóticos del periodo para el péndulo simple
[1].

En el presente artı́culo se escribe el periodo del péndulo
simple como funcíon de la enerǵıa considerando los siguien-
tes casos: movimiento vibracional y movimiento rotacional
obteniendo el comportamiento asintótico del periodo para es-
tos casos. Adeḿas, se presenta otro caso en el cual el péndulo
tiende asint́oticamente a la posición vertical d́onde permane-
ce indefinidamente y por supuesto no es periódico su movi-
miento.

En la Sec. II se resuelve el movimiento vibracional y se
deduce el comportamiento asintótico para el periodo como
función de la enerǵıa. En la Sec. III se presenta el mismo for-
malismo para el movimiento rotacional.

2. Movimiento vibracional

Para un ṕendulo de masam y longitudl, se tiene la ecuación
de movimiento bien conocida

θ̈ + ω2
0 sin θ = 0 (1)

dondeω2
0 = g/l, con l la longitud del ṕendulo y g la ace-

leracíon local de la gravedad. Al realizar una primera integra-
ción de la Ec. (1) como función de la enerǵıaE, se obtiene

E =
1
2
ml2θ̇2 −mgl cos θ, (2)

donde se ha escogido el nivel de referencia enθ = π/2
(enerǵıa potencial cero); es decir, el plano de donde cuelga
el péndulo. Esta expresión se puede reescribir como

θ̇2 =
4g

l
k2


1−

sin2 θ

2
k2


 , (3)

con

k2 =
1 +

E

mgl

2
, k < 1. (4)

Para integrar (3) se hace el cambio de variable

sin ϕ =
sin

θ

2
k

, (5)

con lo que se obtiene

t− t0 =

√
l

g

ϕ∫

0

dϕ
[
1− k2 sin2 ϕ

] 1
2

=

√
l

g
K(k, ϕ). (6)
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Esta integral es una integral elı́ptica incompleta de primera
clase. Para obtener el periodo del movimiento vibracional es
conveniente partir del reposo (θ̇ = 0 ; θ = θ0). Con estas
condiciones iniciales se obtiene de (5) queϕ = π/2 para la
amplitud inicial, ya quek = sin θ0/2. Por consiguiente, el
péndulo tarda un cuarto del periodo para llegar a la base y al
tomart0 = 0, la cual es una constante de integración irrele-
vante en (6), el periodo queda dado por

T = 4

√
l

g

π/2∫

0

dϕ
[
1− k2 sin2 ϕ

] 1
2

= 4

√
l

g
K

(
k,

π

2

)
, (7)

donde la funcíon K(k, π/2) es la integral elı́ptica completa
de primera clase. Para obtener un comportamiento asintótico
de la expresíon (7), se desarrolla el denominador término a
término y usando el teorema de Wallis [2], se obtiene

T = 2π

√
l

g

[
1 +

(
1
2

)2

k2 +
(

1 · 3
2 · 4

)2

k4 + · · ·
]

. (8)

Para k ¿ 1 el comportamiento asintótico del periodo es

T = T0

[
1 +

(
1
4

)
k2

]
. (9)

Parak∼0 se obtiene el comportamiento armónico del ṕendu-
lo. Este comportamiento deja de ser válido cuando la desvia-
ción angular es de 9 grados aproximadamente. El resultado se
observa en la Fig. 1 (parte izquierda), pues el periodo es inde-
pendiente de la amplitud y el periodo esT = T0 = 2π

√
l/g.

Cuando la energı́a aumenta aproxiḿandose amgl, k tiende a
la unidad como se puede observar de (4), y la integral elı́ptica
diverge conforme a [3]

K −→1
2

ln
(

16
1− k2

)
. (10)

Por lo tanto, se ha obtenido que el periodo diverge logarı́tmi-
camente como

T = T0
1
π

ln
(

16
1− k2

)
. (11)

Este resultado puede observarse gráficamente al resolver
numéricamente la expresión (7), la cual se muestra en la Fig.
1. Esta gŕafica se obtuvo mediante un programa numérico
realizado en Fortran. El lado izquierdo de la gráfica (E′ < 1)
corresponde a este, hecho donde la singularidad está en
E′ = 1, es decir

E′ =
E

mgl
= 1. (12)

FIGURA 1. El periodo del ṕendulo simple como función de la

enerǵıa para condicones iniciales arbitrarias.E
′

= E/mgl and
t′ = ω0t.

3. Movimiento rotacional

Ahora se considera que el péndulo rota y el ćalculo es ańalo-
go al caso descrito en la sección anterior. En este caso se
escribe la expresión (2) como

θ̇2 =
4g

l

1
k2

[
1− k2 sin2 θ

2

]
, (13)

lo que implica que se ha cambiadok → 1/k y por consi-
guiente (4) se convierte en

k2 =
2

1 +
E

mgl

. (14)

Al tomar el cambio de variableϕ = θ/2 , se llega a una ex-
presíon similar a la Ec. (6), dada por

t− t0 = k

√
l

g

ϕ∫

0

dϕ
[
1− k2 sin2 ϕ

] 1
2

= k

√
l

g
K(k, ϕ),

(15)

la cual tambíen es una integral elı́ptica incompleta de prime-
ra clase. Para el caso del movimiento rotacional, el péndulo
cumple un periodo completo en2π, de forma que ahora el
periodo es dos veces el tiempo que el péndulo tarda en ir de
0 aπ. Por lo tanto, al tomart0 = 0 como en el caso anterior,
se tiene

T = 2k

√
l

g

π/2∫

0

dϕ
[
1− k2 sin2 ϕ

] 1
2

= 2k

√
l

g
K

(
k,

π

2

)
. (16)
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De modo que se ha obtenido una integral elı́ptica completa de
primera clase ańaloga a (7) pero multiplicada pork. El com-
portamiento asintótico de la integral elı́ptica involucrada en
(16) es del mismo tipo que el caso anterior cuandok → 1 y
por consiguiente el periodo también diverge logarı́tmicamen-
te como en el ańalisis hecho en la sección anterior para el
movimiento vibracional. Para el caso en quek → 0 se tiene
queK(k, π/2) tiende aπ/2 y por lo tanto el periodo tiende a

T −→ T0
k

2
. (17)

Este comportamiento se muestra en la parte derecha de la
gráfica que corresponde al comportamiento del periodo cuan-
do E → ∞ es decir, cuandok → 0 y por lo tantoT → 0,
como se puede apreciar de (17),lo cual es razonable puesto
que el tiempo que toma el péndulo en cruzar un punto fijo
de la circunferencia descrita por la masam decrece si la ve-
locidad angular crece. El comportamiento asintótico cuando
E′ → 1 ó k → 1 es el mismo que en la parte izquierda de
la gŕafica, es decir, tiende a infinito logarı́tmicamente, con el
mismo tipo de funcíon (10), excepto por el factor multiplica-
tivo que tiende a1 cuandoE crece.

Para completar este análisis se incluye el caso en el cual
el péndulo se encuentra en la separatriz entre los movimien-
tos oscilatorio y rotatorio, cuya solución se puede encontrar
exactamente. Para ello se parte de las Ecs. (3) y (4) cuando
E = mgl o seak → [4]. Entonces

l

2g
θ̇2 = 2k2


1−

sin2 θ

2
k2


 . (18)

Haciendo el cambio de variable

y = sin
θ

2
(19)

se obtiene

ẏ =
√

g

l

(
1− y2

)
, (20)

cuya integral es

y = tanh
[√

g

l
(t− t0)

]
, (21)

de donde finalmente se obtiene que

θ = 2 sin−1

[
tanh

[√
g

l
T

]]
. (22)

Cuandoθ = π se concluye que el periodoT → ∞, es decir
el péndulo queda vertical.

Para el caso rotacional se procede en la misma forma par-
tiendo de las Ecs. (13) y (14). El resultado que se obtiene es
el mismo que en el caso descrito anteriomente, es decir se
obtiene la Ec. (19) y por consiguiente se obtiene la misma
conclusíon, para la parte derecha de la gráfica cuandok = 1.

La manera en que se llega a estas situaciones asintóti-
cas es aumentando la amplitud del péndulo en el movimiento
oscilatorio o dismunuyendo la velocidad angular en el caso
rotacional.
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