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e-mail: acorona@fcfm.buap.mx

E. Ley-Koo
Instituto de F́ısica, Universidad Nacional Autónoma de Ḿexico.
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The forces between pairs of conducting spheres at different separations and with fixed potential differences are evaluated using bispherical
coordinates on the basis of Ref. 1. The experimental arrangement, the method and the results of the measurement of such forces are reported.
The analysis of the measurements is carried out by comparison with the forces evaluated for the corresponding values of the geometrical and
electrical parameters, finding a good agreement.
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Se evaĺuan las fuerzas entre pares de esferas conductoras a diferentes separaciones y con diferencias de potencial fijas, usando coordenadas
biesf́ericas con base en la Ref. 1. Se reportan el arreglo experimental, el método y los resultados de la medición de tales fuerzas. El análisis de
las mediciones se realiza comparando con las fuerzas evaluadas para los valores correspondientes de los parámetros geoḿetricos y eĺectricos,
mostŕandose un buen acuerdo.

Descriptores: Esferas conductoras; fuerza electrostática.

PACS: 41.10 Dq

1. Introduction

This didactic article is aimed at both students and teachers
of advanced undergraduate or graduate courses of electro-
magnetism. The references “On the evaluation of the ca-
pacitance of bispherical capacitors” [1], Forces between two
uniformly charged cylinders versus forces between two con-
ducting cylinders” [2], and “Measurement of forces between
two parallel conducting cylinders” [3] provide the mathemat-
ical, physical and experimental background of the problem
studied in the present article.

The work deals with the forces between pairs of conduct-
ing spheres at different separations and with fixed potential
differences. The evaluation of such forces is developed in
Sec. 2 on the basis of the work of Góngora and Ley Koo,
using bispherical coordinates for the description of the as-
sociated electric field [1]. The experimental arrangement,
the method of measurement, and the data on the geometrical,
electrical and force variables are reported in Sec. 3, including
a comparison with the forces evaluated according to the re-
sults of the previous section. Section 4 contains a discussion
of the above results, as well as other points of didactic inter-
est. The Appendix presents the key equations of [1] needed
for the development of Sec. 2.

2. Evaluation of the forces from the electric
field described in bispherical coordinates

The evaluation to be developed in this section on the basis of
Ref. 1 had already been anticipated in Ref. 2. Both articles
deal with the same electrostatic problems of two conductors

kept at a fixed potential difference, but differ in the geome-
try of the conductors, namely spherical and cylindrical, re-
spectively. In Ref. 2 the cylindrical geometry was chosen be-
cause of its simple solution and corresponding didactic value;
the experimental work for the measurement of the forces be-
tween pairs of cylinders at a fixed potential difference and
different separations has also been done [3]. In Ref. 2 it was
also recognized that the solution for the spherical geometry
based on Ref. 1 could also be constructed, but requires some
elaborate mathematics. Next we provide the details of such a
construction, using some equations of Ref. 1 as presented in
the Appendix.

We assume that one of the spherical conductors defined
by η = η1 is kept at an electrical potentialV1 while the other
defined byη = η2 is grounded. The electrical force on either
one is evaluated by integrating the Maxwell stress tensor

↔
T =

~E ~E

4π
− ↔

I
~E · ~E

8π
(1)

over its area,

~F =
∮

d~a· ↔T =
∮

d~a ·
[ ~E ~E

4π
− ↔

I
~E · ~E

8π

]
. (2)

In the case of conductors both the area elements and the
electric intensity field are perpendicular to the surface. Con-
sequently, the contribution of the second term in Eq. (2) is
a half of that of the first term. Specifically, the force on the
grounded conductor is evaluated by using the electric field in-
tensity from Eq. (A.10) and the unit vectorη̂ from Eq. (A.3),
obtaining
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2 )Cl′(cosh η1)
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∫ π

0

∫ 2π

0

dξ sin ξdϕ[− sinh η2 sin ξ(̂i cos ϕ + ĵ sin ϕ)− k̂(cosh η2 cos ξ − 1)]N1Pl(cos ξ)Nl′Pl′(cos ξ). (3)

In the evaluation of this integral it can be pointed out that
the product of the scale factorshξhϕ, Eqs. (A.2), the unit vec-
tor η̂2, Eq. (A.3), and the factors (cos hη2 − cos ξ)3/2 of the
electric intensity field, Eq. (A.10), leads to the cancelation
of the binomial factors. The integration over the azimuthal
angle gives zero for the terms in the transverse directionsî
andĵ, and2π for the longitudinal term alonĝk. The remain-
ing integrations overξ for the two terms in the binomial mul-
tiplying k̂ correspond to the matrix element of cosξ,

∫ π

0

dξ sin ξNlPl(cos ξ) cos ξNl′Pl′(cos ξ)

=
(l + 1)√

(2l + 1)(2l + 3)
δl+1,l′

+
l√

(2l − 1)(2l + 1)
δl−1,l′ ,

(4)

and the orthonormality integral
∫ π

0

dξ sin ξNlPl(cos ξ)Nl′Pl′(cos ξ) = δl,l′ . (5)

The final result is

~F2 = k̂
V 2

1

4

∞∑
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2 )

sinh[(l + 1
2 )(η1 − η2)]

×
{

Cl(cosh η1)(l + 1
2 )

sinh[(l + 1
2 )(η1 − η2)]

− cosh η2

[
Cl+1(cosh η1)(l + 3

2 )
sinh(l + 3

2 )(η1 − η2)]
l + 1√

(2l + 1)(2l + 3)

+
Cl−1(cosh η1)(l − 1

2 )
sinh[(l − 1

2 )(η1 − η2)]
l√

(2l − 1)(2l + 1)

]}
. (6)

Since the force is proportional to the square of the poten-
tial difference it is convenient to use the reduced forceF/V 2.
Its value depends only on the coordintesη1 andη2 of each
sphere, which are determined by the geometrical parame-
tersR1, R2 andd through Eqs. (A.4) and (A.6). Its experi-
mental value can be determined from measurements with dif-
ferent values of the potential difference.

FIGURE 1. Experimental arrangement to measure the forces be-
tween conducting spheres.

3. Measurement of the forces and comparison
with their calculated values

The experimental arrangement for measuring the electrical
forces between conducting spheres, maintained at fixed po-
tential differences, involved electrical, aligning and force
measuring instrumentations, as sketched in Fig. 1 and de-
scribed next. A PASCO ES-9070 Kilovolt power Supply
with an output varying from 0 to 6 Kilovolts provided the
potential difference between the conducting copper spheres.
A cathetometer, with a length of 50 cm and an accuracy
of ± 0.001 cm, was used to establish the vertical align-
ment of the spheres and to measure their separation. An
Ohaus 300D electronic balance, with a capacity of 30 g, an
accuracy of±0.001 g and a reproducibility of± 0.007 g, was
used to measure the electrostatic force between the spheres.

Some of the details about the geometrical, electri-
cal and mechanical arrangements and measurements are
also described following the successive steps of the ex-
periment. Spheres with different combinations of diame-
ters2R = 1.775, 1.111, 0.952, and 0.873 cm were used. One
of the spheres was hung from a horizontal glass rod using
a thin # 32 copper wire; the other sphere is supported by
a 20 cm high dielectric base resting on the plate of the bal-
ance (Fig. 1). The upper and lower spheres are connected
to the positive and negative terminals of the power supply,
respectively, using # 32 copper wires. The voltage applied
to the spheres was measured with a high voltage tip cou-
pled to a Fluke 79 digital multimeter; the chosen values were
V = 7.5, 10.9, 14.2, 17.5 and 20.5 statvolts. The balance was
placed on a concrete base in order to eliminate any vibrations,
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and it had a servomechanism to keep its plate fixed. The
vertical alignment between the upper sphere and the lower
one was checked with the axis of the cathetometer’s lens.
The error for misalignment was estimated to be of the or-
der of± 0.01 cm. The cathetometer was used to measure
the closest distance∆ between the upper and lower spheres,
leading to the distanced = ∆+R1+R2 between their respec-
tive centres. Before the voltage is applied to the spheres, the
reading of the balance is adjusted to zero, 0.000 g; after the
voltageV is applied by turning on the power supply, the at-
traction between the spheres produces a negative readingM
in grams. The numerical value of the force of attraction in
dynes is obtained as the product of this reading times the lo-
cal value of the acceleration of gravity, g = 978 cm/s2 for
Puebla City. If the spheres are not properly aligned, the up-
per sphere moves and the balance reading oscillates. When
the alignment is achieved, the upper sphere remains at rest
and the balance reading is stable after a situation of electro-
mechanical equilibrium is reached. This provides a criterion
about the quality of the alignment. Each time it was satis-
fied, the reading of the balance and the separation between
the spheres∆ indicated by the cathetometer’s vernier were
written down. The separation between the spheres was sys-
tematically changed by raising the upper sphere.

The numerical results of the measured geometrical, elec-
trical and force parameters are reported in Table I and Figs. 2-
3 , including the comparison with the theoretical values for
the reduced forceFt/V 2 from Eq. (6). The first three sets
of measurements involve pairs of spheres with different radii
and the same value of the potential difference, and they are
presented graphically in Figs. 2a-c. The last two sets of
measurements correspond to a pair of spheres with the same
radii R1 = R2 = 1.775 for two different values of the poten-
tial difference, and are incorporated in Figs. 3a and 3b.

The theoretical formula of Eq. (6) is an infinite series,
but its fast convergence has been numerically tested. For
the first four sets of data in Table I, two or three terms are
sufficient to achieve convergence of the evaluated forces to
the reported accuracy. For the last set of data the number of
terms had to be increased to 5-10 as the separation between
the spheres∆ became smaller from 0.22 to 0.02 cm.

The numerical comparison of the measured and evalu-
ated values of the reduced forces, as reported in the last
two columns of Table I and their graphical representations in
Figs. 2 and 3, show their overall good agreement for spheres
of different sizes at different distances and different potential
differences.

The last two sets of data forV = 20.5 and 3.75 statvolts
cover the large and small separation domains, respectively.
The continuous smooth increasing variation of the reduced
force as the separation decreases can be followed in the Ta-
ble I. Notice the different scales for the reduced force in
Figs. 3a and 3b, which are necessary in order to appreciate
the changes in the respective domains. For very small separa-
tions the voltage was reduced in order to avoid the discharge
between the spheres.

FIGURE 2. Reduced force versus distance for pairs of spheres with
radii a) R1 = 1.775cm, R2 = 0.873cm, b) R1 = 1.775cm,
R2 = 0.952 and c)R1 = 1.775cm, R2 = 1.111cm. Experi-
mental values in circles with error bars and theoretical values from
Eq. (6) in broken-line curves.

4. Discussion

The evaluation of the forces between conducting spheres
at given separations and potential differences has been dis-
cussed in Sec. 2. The corresponding method and numeri-
cal results of measurement of the geometrical, electrical and
force parameters have been reported in Sec. 3, including a
comparison with the values of the reduced force evaluated on
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TABLE I. Numerical values of the radii of the spheres R1 and R2 (cm), the potential difference V (statvolts), distance between their centers
d(cm), reading of the balanceM (g) and corresponding forceF (dynes), measured reduced forceF/V 2, and its counterpart evaluated from
Eq. (6)Ft/V 2 ((dynes/statvolts)2).

R1 R2 V d M F F/V 2 Ft/V 2

1.775 0.873 20.5 4.72 13 13 0.031± 0.001 0.021

4.23 19 19 0.045± 0.003 0.033

3.87 26 25 0.59± 0.004 0.051

3.50 43 42 0.100± 0.005 0.091

3.19 82 80 0.190± 0.008 0.170

1.775 0.952 20.5 4.95 13 13 0.031± 0.003 0.032

4.52 19 18 0.043± 0.004 0.045

4.16 26 25 0.059± 0.004 0.063

3.86 36 35 0.083± 0.005 0.088

3.65 46 45 0.107± 0.005 0.115

3.46 64 63 0.150± 0.007 0.156

1.775 1.111 20.5 4.99 18 18 0.043± 0.004 0.039

4.65 22 21 0.050± 0.004 0.051

4.38 26 25 0.059± 0.004 0.065

4.17 32 31 0.074± 0.004 0.081

3.86 47 46 0.109± 0.005 0.119

3.64 67 65 0.155± 0.007 0.165

1.775 1.775 20.5 8.30 7 7 0.017± 0.003 0.012

7.40 9 9 0.021± 0.003 0.18

6.61 13 13 0.031± 0.003 0.027

5.95 20 20 0.047± 0.004 0.041

5.44 28 27 0.064± 0.004 0.060

5.07 38 37 0.088± 0.005 0.083

4.80 47 46 0.109± 0.005 0.110

4.50 67 65 0.155± 0.007 0.159

4.33 86 84 0.200± 0.008 0.206

4.20 108 106 0.252± 0.009 0.259

1.775 1.775 3.75 4.26 3 3 0.21± 0.08 0.23

3.77 12 12 0.8± 0.02 0.90

3.67 30 29 2.1± 0.4 1.73

3.63 46 45 3.2± 0.6 2.64

3.62 56 55 3.9± 0.7 3.0

3.59 87 85 6± 1 5.4

3.58 190 186 13± 2 7.25

3.57 241 236 17± 3 10.9
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FIGURE 3. Reduced force versus distance for a pair of spheres with equal radiiR1 = 1.775 cm for large and small separations.

the basis of Eq. (6). A good agreement between the experi-
mental and theoretical values was found.

Some general and some specific points of didactic inter-
est are worth pointing out. The problem of the forces between
two conductors involves geometrical and electrical elements.
In the cases of Refs. 2 and 3 and this work, the choices of
coordinates allow the simultaneous incorporation of both el-
ements in the formulation and solution of the problem. For
the cylindrical conductors the lowest harmonic term in bipo-
lar coordinates gives the exact solution to the problem [2].
For the spherical conductors, the use of bispherical coordi-
nates leads to theR− separable harmonic expansion of the
electrostatic potential of Eq. (A.7), which in turn generates
the electric intensity field of Eq. (A.10), and this is the basis
for obtaining Eqs. (3)-(6) for the force between the spheres.
The fast convergence of the latter is an indication that it has
indeed incorporated both the geometrical and electrical ele-
ments in the right combination. As a point of comparison, the
solution based on the infinite set of charge images on both
spheres, obtained by Maxwell [3], involves a much more
slowly convergent series.

The original question “Under what conditions can the
force between two conducting spheres be approximated by
Coulomb’s law?” which motivated our writing of Refs. 2
and 3 and the present article, was already answered in Ref. 2.
Here it can be taken up again emphasizing that the inverse
square law is valid for point charges or for uniformly charged
spheres,ie, monopole-monopole interaction. The charge dis-
tributions in the conducting spheres studied in the present
work are given by Eq. (A.12) and its counterpart forη = η1.
Figures 4 illustrate the charge distributions on the surfaces of
a) a pair of sphere with the same radiiR1 = R2 = 1.775 cm
and b) two spheres with very different radiiR1 = 1.775
andR2 = 0.01 cm, respectively, as functions of theξ bi-
spherical coordinate and the separation distanced. Their de-
partures from uniform distributions reflect the importance of
the electrostatic induction effect, and translate into deviations
from Coulomb’s force.

(a)

(b)

FIGURE 4 a) Surface distributionsσ(d, ξ) for a pair of spheres with
equal radiiR1 = R2 = 1.775 cm. b) Two spheres with different
radii R1 = 1.775 cm andR2 = 0.01 cm as functions of the bi-
spherical coordinate and separation distanced.
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A Appendix

The transformation equations between bispherical and carte-
sian coordinates are

x =
a sin ξ cosϕ

cosh η − cos ξ
, y =

a sin ξ sinϕ

cosh η − cos ξ
,

z =
a sinh η

cosh η − cos ξ
. (A.1)

The scale factors and unit vectors in biespherical coordi-
nates are given by ,

hξ = hη =
a

cosh η − cos ξ
,

hϕ =
a sin ξ

cosh η − cos ξ
, (A.2)

and

ξ̂ =
(cosh η cos ξ − 1)(i cos ϕ + ĵ sin ϕ)− k̂ sinh η sin ξ

cosh η − cos ξ

η̂ = − sinh η sin ξ(̂i cosϕ + ĵ sin ϕ) + k̂(cosh η cos ξ − 1)
cosh η − cos ξ

,

ϕ̂ = −î sin ϕ + ĵ cos ϕ (A.3)

The positions of the conducting spheres are defined by
the respective values of the coordinateη = η1 > 0 andη =
η2 < 0 with the corresponding radii

R1 = acschη1,

R2 = −acschη2, (A.4)

and centres on the z-axis at ,

z1 = a coth η1,

z2 = a coth η2. (A.5)

The spheres become points in the limiting situa-
tionsη1 →∞ andη2 → −∞ for which the radii of Eq. (A.4)
vanish andz1 → a, z2 → −a in Eq. (A.5); these points are
the so-called poles. The distance between the poles for the
spheres described by Eqs. (A.4)and (A.5) can be written in
terms of the radii and the distance between the centres of the
spheresd as

2a =

√
(d + R1 + R2)(d + R1 −R2)(d−R1 −R2)(d−R1 + R2)

d
. (A.6)

The electrostatic potential function between the spherical conductorsη = η1 at a potentialV1 andη = η2 connected to the
ground is given by the biespherical harmonic expansion

φ(ξ, η, ϕ) = V1(cosh η − cos ξ)1/2
∞∑

l=0

Cl(cosh η1)
sinh [(l + 1

2 )(η1 − η2)]
sinh [(l +

1
2
)(η − η2)]NlPl(cos ξ), (A.7)

where

Cl(cosh η1) =
∫ π

0

sin ξ′NlPl(cos ξ′)dξ′

(cosh η1 − cos ξ′)
1
2

,

=
1

2lNl
(sech η1)

1
2+l

× 2F1(
l

2
+

1
4
,
l

2
+

3
4
; l +

3
2
; sech2η1) (A.8)

are the coefficients in the normalized Legendre polynomial
expansion of the inverse square root of the binomial

1
(cosh η1 − cos ξ)

1
2

=
∞∑

l=0

Cl(cosh η1)NlPl(cos ξ). (A.9)

The reader may notice the presence of the binomial in
Eq. (A.7), which is a reflection of theR− separability of the
Laplace equation. It is also easy to verify that the poten-
tial function satisfies the boundary condition at the respective
electrodes.

The electric intensity field is obtained as the negative gra-
dient of Eq. (A.7):
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~E(ξ, η, ϕ) = −
[
ξ̂

∂

hξ∂ξ
+ η̂

∂

hη∂η
+ ϕ̂

∂

hϕ∂ϕ

]
φ(ξ, η, ϕ)

= −V1

a
(cosh η − cos ξ)

3
2

∞∑

l=0

Cl(cosh η1)
sinh [(l + 1

2 )(η1 − η2)]

{
ξ̂

[
Nl

dPl(cos ξ)
dξ

+
sin ξ

2(cosh η − cos ξ)
NlPl(cos ξ)

]

× sinh
[
(l +

1
2
)(η − η2)

]
+ η̂

[
(l +

1
2
) cosh

[
(l +

1
2
)(η − η2)

]
+

sinh η sinh [(l + 1
2 )(η − η2)]

2(cosh η − cos ξ)

]
NlPl(cos ξ)

}
. (A.10)

In particular, on the grounded spherical conductor it be-
comes

~E(ξ, η = η2, ϕ) = −η̂
V1

a
(cosh η2 − cos ξ)

3
2

×
∞∑

l=0

Cl(cosh η1)(l + 1
2 )

sinh [(l + 1
2 )(η1 − η2)]

NlPl(cos ξ), (A.11)

which is perpendicular to the spherical surface. The same
holds at the other electrode.

The electric charge distribution on the grounded sphere
follows from Gauss’s law,

σ(ξ, η = η2, ϕ) =
η̂ · ~E(ξ, η = η2, ϕ)

4π

= − V1

4πa
(cosh η2 − cos ξ)

3
2

×
∞∑

l=0

Cl(cosh η1)(l + 1
2 )

sinh [(l + 1
2 )(η1 − η2)]

NlPl(cos ξ) (A.12)

The total charge on the sphere is obtained by integrating
Eq. (A.12) over its surface,

Q2 =
∫ π

0

∫ 2π

0

σ(ξ, η, ϕ)hξdξhϕdϕ

∣∣∣∣
η=η2

= − V1

4πa
2πa2

∞∑

l=0

Cl(cosh η1)(l + 1
2 )

sinh [(l + 1
2 )(η1 − η2)]

×
∫ π

0

dξ sin ξNlPl(cos ξ)
(cosh η2 − cos ξ)

1
2

= −V1

2
a

∞∑

l=0

(l + 1
2 )Cl(cosh η1)Cl(cosh η2)

sinh [(l + 1
2 )(η1 − η2)]

. (A.13)
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