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We present a simple technique for calculating and plotting the root locus of a linear control system. Although several programs are com-
mercially available for this purpose, and remarks on this subject can be found in dedicated texts, a complete description of the program code
is desirable to provide the designer with versatility and deeper insight. This report describes our technique and includes complete program
codes. In this technique, the roots of the system’s characteristic function are found by providing a single, unique guess value to be used in
a first derivative search algorithm in order to calculate the unknown set of roots. Similarly to other techniques, the root locus is found by
calculating the system’s set of roots as the gain varies in the range of interest. The resolution obtained depends on the sampling rate of the
gain parameter. The technique is suitable for any programming language and there is basically no limit on the root order of the system. To
illustrate the technique a four-pole order system is analyzed. Then, to improve the response of the system a lead compensation network is
added.. The usefulness of the technique is illustrated by comparing the time response of the compensated network over the uncompensated
one.
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Presentamos un#&cnica sencilla para calcular y trazar el lugar de lasesade un sistema de control lineal. Aunque existen diversos
programas comerciales para este psif y pueden encontrarse algunopitos sobre este tema en textos dedicados, es deseable tener
una descrip@n completa del @adigo del programa, perméndole al diseador mayor versatilidad y profundizaras en el sistema bajo

su estudio. Este reporte describe nuegtcaita e incluye @digos completos de la programaei En estaécnica las reces de la fundn
caracteistica se calculan proporcionandoamico valor de prueba que es utilizado en un algoritmoidibeda de derivada de primer orden.

De manera similar a otragtnicas, el lugar de lasices es construido mediante @laulo del conjunto de las iges del sistema en furdm

del padmetro de ganancia. Ladnica puede ser utilizada en cualquier lenguaje de programatisicamente no hajnhite en el orden del
polinomio caractéstico. Para ilustrar lgécnica analizamos un sistema lineal de cuarto orden al cual posteriormentéiaddeiaa red de
compensacin de adelanto de fase para mejorar la respuesta en el tiempo. La utilidaddeit¢a s ilustrada comparando la respuesta en
tiempo del sistema compensado con respecto al sistema original.

Descriptores:Sistema de control lineal; lugar de lasoes; estabilidad.

PACS: 84.30.B; 02.30.Y

1. Introduction the Nyquist stability criterion, the Nichols chart and the root-
locus-plotting. Vast literature on these subjects can be found,
The use of feedback in system controlling has become an infor example in Refs. 5 and 6.
portant tool in several areas as for example in automation of  With the advent of the personal computer and the avail-
industrial processes. Commonly applications can be found iability of faster processors, a suitable technique to be used
controlling of communication networks [1]. Additionally, the in a personal computer is the root-locus-plotting. This tech-
controlling of hydraulic drives represents an important toolnique gives accurate results and provides the designer with an
for metal forming machines, injection molding, and in the ample knowledge of the behavior of the system under inspec-
construction of testing devices [2]. Perhaps, the most comtion. Then, several parameters of the system (gain, damping
monly known application can be found in automatic aircraftfactor, time response, etc) can be calculated accurately. This
piloting [3]. Higher control system technologies can be foundallows for designing, not only stable systems, but also, by
in the manufacturing of semiconductor devices [4]. trial and error, it is possible to propose improvements over the
Independently of the area of the application, the mainoriginal design. In contrast, the other mentioned techniques
concern in system controlling is to calculate accurately theprdinarily give local, relative or moderate information [5,6].
performance of the system under design for stability, ime ré-  There are several commercially available programs in
sponse and reliability. control design and for root-locus-plotting, among them,
Calculating the stability of a feedback system has deRLOCUS function of MATLAB® is the most frequently
served a great deal of attention. Several techniques have beased. However, the designer depends on inherent built in
proposed on this subject. Among them, the most used arkinctions of the particular program or tool in use and no in-
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formation is available of the internals of these calculationsFig. 2A represents a phase-lag network because the phase an-
Thus, an open technique is desired to provide more versatilitgle associated with the phasor transfer function is negative
to the designer. In what follows we show how the proposedvhen the substitutios = iw is made, wheré = /—1,
technique works. w = 27 f, andfis the frequency.

2. Feedback transfer function considerations As a second example let us consider a network for con-
trolling the speed of a d-c motor. The devices involved in this
Let us consider the basic feedback block diagram shown igystem are composed by an isolation amplifier, a tachome-
Fig. 1. This system can be used to derive the feedback relaer a power amplifier an amplidyne and a d-c motor. A brief
tions common to all types of feedback theory [7]. In Fig. 1, description for each mechanical device follows.
C (s) represents the Laplace transform of the time depen-
dentinputc (¢), andR(s) the Laplace transform of the output
r(t). G(s) andH(s) are the forward and feedback transfer
functions respectively. The parameteis the complex vari-
able in the Laplace’s space.

The tachometer is a fixed field d-c generator and used
as a rotational speed sensor. The transfer function for the
tachometer is given by

Thus, as it is well known, the closed loop transfer func- Eout (s) K
tion can be written as w(s) 7
Cl(s) G (s) 1) . - .
R(s) 1+G(s)H(5) ( where K_T is the tachometer constant with dimensions of
Equation (1), represents the closed loop transfer funCYOIts/radmn 71
tion as the ratio of the Laplace-transformed integrodifferen-
tial equation describing the output function to the Laplace- R
transform of the integrodifferential equation describing the _\/W\
input function, with all initial conditions equal to zero [7].
Some examples are given in Sec. 3. g ‘I
The equation that results of equating the denominator in N C j— ot
Eq. (1) to zero is known as the characteristic equation. Itis
given by i i
1+G(s)H (s)=0. (2)

The characteristic equation, [Eq. (2)], is used to plot the
system root-locus as described in the next sections.

3. Examples of transfer functions

>
—_—T 0

Some typical examples found in electrical networks, are ll
shown in Fig. 2. The corresponding transfer function is ex- IN ouT
pressed for each network. As indicated above, the initial con- l
ditions are taken equal to zero. The terms phase-lead and

phase-lag indicates that one is considering steady-state sinu-
soidal excitation and response functions. For example,

R
O—1 A
Cls) . R(s)

1
Lo
| TS,
FIGURE 1. Basic feedback syster@. (s), is the Laplace transform
of the time dependent input(¢). R(s) is the Laplace transform
of the outputr (¢). G(s), andH (s) are the forward and feedback FIGURE 2. Basic electrical networks and transfer functions. A) In-
transfer functions respectively. The parametds the Laplace’s  tegrating or phase-lag network. B) Differentiating or phase-lead
complex variable. network. C) Phase-lead network with fixed DC attenuation.

H(s)
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The d-c motor uses electrical power to generate mechan- This equation will be used in the next section to attain
ical torque. The transfer function for the d-c motor is givensome general remarks on the analytical expression of the
by closed loop transfer function of a linear feedback system.

w(s) _ KM _ KZM/TZM
Ein (S) 1+ TS (S + 1/7—1\4) 7

4. General remarks on linear system transfer
whereK,, = 1/K;, 7,, = JR,/K, K. K, is the back functions

emf, or generator constant, measured in Volts per radian per
second,/ is the inertia of the motor shaft and the load mea- .
The results of the above example allows us to summarize

sured in slug-feét R, is the resistance of the shunt field and ) .
ome general remarks on the analytical expression of the

K, is the motor-torque constant measured in pound-feet pet ; : o
Ar;pere 7] a P P overall transfer function. This approach is similar to the one

The amplidyne is a very rugged electromechanical poweFound in dedicated texts, [6,7].
amplifier capable of the controlled transformation of a few |t can be seen that a feedback network consists basically
Watts into thousands of Watts. The amplidyne is essentiallyf a forward and a feedback path.
a d-c generator with an extra set of brushes, thus it consists of . _ o
a control field winding and a quadrature field or QQ brushes Each path in the network is composed by individual
used in much the same way as the elements of a d-c shuRtocks. Each block represents a set of electrical networks
generator. The transfer function for the amplidyne is giverpr/and servo-mechanical-electronic devices each having an

by associated rational transfer function which is written as
the quotient of two polynomials with constant coefficients.
Bout (s) _ Ky Moreover, the rational function is explici
= \ plicitly expressed as
Ein(s) (14 7e.5) (14 749) products of well determined poles an zeroes which charac-
K, /ToT, teriz_es the phy_sical behz_;\vior qf the ass_ociated component or
= 5+ 1/7.) (8 n 1/TQ) ) device at least in a functional linear region.
where K, is the amplidyne constant and is dimensionless, If N blocks, By, By, -, By are located in a particu-
andrc, andrg are the control and quadrature field time con-lar path, the overall transfer function for the path is given
stants [7]. by the product of the transfer function of each block as

The components described above can be combined to déB1)(Bz) - - - (By).
sign a driven d-c motor controlled system as shown in Fig. 3.
Using the transfer function for each component, it can bethe
shown that for this system

A global multiplicand parameter, denotediasepresents
unknown to be determined for stable working conditions.

2 This parameter is located in a specific block and it is usu-
H1/R.C ally in the form of a gain.. When parameters other tihan
G(s)H(s) = s/t are unknown, they are varied (one at a time), in this case the
s+ Ry + Ry corresponding root locus plot is defined as a generalized root
RiRyCy loci.
% K1 Ko (Ky /7 ) KaTeTg . From the above discussion, it is apparent that the open
(s +1/70) (s +1/1,) (s +1/7,,) loop equationG(s)H (s) can be expressed as
The productG(s) H (s) is known as the open loop transfer

function.

In this application it is considered that the gdiR is to
be determined for stable working conditions. All other pa-
rameters in the above equation are considered as constants,
except of course, the state variable

Denoting the gairk; by the variablet, the above equa-

_ (s—21)(s—22) ... (s — 2zm)
G = =00y (5= pa) e (5 = )

)

wherem < n, that is, the number of poles is greater than the
number of zeros. Compare with the example equation at the

tion can be written as end of Sec. 3.
2
The number of poles in the origin defines the type of sys-
G(s)H(s) = k s+1/RCy tem under consideration. If 0,1,2,3, and so on, poles are lo-
R+ Ry cated at the origin a type 0,1,2,3, and so on, system is defined.
s+ R{R>C The open-loop gain factok, is usually considered positive.

Ko(K,, [r)K 77 Equation (3) is the general analytical form that can be stud-
X 2w/ Tu)Rato g . ied by the root locus technique and this is the only case that
(s +1/7) (s +1/75) (s +1/7,) is considered in this work.
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R,
ISOLATION POWER D-C MOTOR
AMPLIFIER ( AMPLIFIER f—{ AMPLDYNE}—]  AND
GAN K| [ GAN K, LOAD R(s)
c, R
TACHOMETER

FIGURE 3. Block diagram for d-c motor controlling.

Fortunately the vast majority of linear servo-systems can béhis model by only changing the numerical values assigned to
modeled by equation (3). When the above conditions are ndhe poles and zeroes

fulfilled it is necessary to use partial fraction expansion tech- The programming platform is Mathc® Plus 6.0 and

nltueS to'lnteEnd t% de;crlt;]e the sy;tgm asin Eq. (S)Ib . was selected due to its powerful graphical environment.
y using Eq. (3), the characteristic equation, can be writ- The characteristic equation for this system can then be

ten as written as

(s—2z1)(s—22) ... (s — zpm)

(s =p1) (s —p2) .- (5 —pn)
From Eg. (4), the root-locus of the system is given by the

set of roots of the equation +k(s—2z1)(s—22)=0 (6)

1+k —0. 4

(s —p1) (s —p2) (s = p3) (s — pa)

(s —p1) (s —p2) - (5 — pn) where

+k(s—21)(s—22)...(s —2zm) =0, (5)

=0; =-1 =—4 = —6;
where the value of the gain is sampled over the range of in- h b2 bs ba

terest. 21 =—2—120; 2z = —2+120. @)
As m < n, Eg. (5) results to be a polynomial of order ) )
n. LetR1, R2, ..., R, denote the: roots of Eq. (5), then, the It can be seen that Eq. (6) is a polynomial of fourth degree

root-locus of the system is the plot of the real part against th@n the variables and that the restrictiom < n, is fulfilled.
imaginary part for each of the roots as the gain varies form  Explicitly, Eq. (6) can be written as
an initial to a final value.

Without lose of generality we will consider the most com-
mon case in which the gaiky, varies for positive values, al-
though this is not a restriction for the present technique.

st + 115% 4+ (34 + k)s? + (24 + 4k)s + 404k = 0.
We may express this polynomial as

5. Root locus construction, an example
ag(k)s* + az(k)s® + az(k)s® 4 ay(k)s + ag(k) = 0,

As mentioned above, the technigque can be used on any pro-
gramming system or language. where

The example discussed in Sec. 3 could be used to de-
scribe our root locus technique. Nevertheless, we consider
advisable to study a more complex system to enhance thede-  aa(k) =1, as(k) =11, aa(k) =34 +k,
scription. For this purpose, Ie_t us consider a unitary feedback ar(k) =24+ 4k and ag(k) — 404k,
control system. Typically, unitary feedback systems are sug-
gested as the starting point in system design [5]. In order to illustrate the technique we divide the descrip-

The example selected for this d_eS_}CI’IptIOI’l conS|st§_0f fion in the following steps:
four-pole, type-1 (one pole at the origin) system. Addition-
ally, for completeness, two arbitrary zeroes are also included.
The poles are located at 0, -1, -4 and —6 and the zeroes at Step a)ln the first step of the technique the characteris-
—2 —i20and at—2 + ¢20. Although the example is arbitrar- tic function is constructed. In Mathci the next statements
ily selected, several servo-systems can easily be studied witlire used for this particular example:

Rev. Mex. 5. 48 (6) (2002) 556-564
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a second-degree polynomial. In the example, the polynomial

ad(k) :=1 as(k)st + az(k)s® + as(k)s? + a1 (k)s + ao(k) =0 (8)
a3(k) =11
a2(k) == 34+ & is considered as
al(k) := 24 + 4k ay(k)s® 4+ as(k)s + az(k) = 0, 9)
a0(k) = 404k . .
[ for a particular, arbitrary value of. One of the roots of
f1(s, k) == ad(k) - s* + a3(k) - s> + a2(k) - s* Eq. (9) is used as the guess value.

Although the guess value provided is not critical, it is
possible that some values, especially when the guess value
results real, may cause the calculations to fall into an infinite
loop. This error is easy to detect by introducing a break point
in the loop (described in step d) after a reasonable number of
iterations. Mathca@gives an out of bounds message when
this error occurs. Experience shows that this error can eas-
ily be fixed by adding a pure imaginary number between one
and two to the guess value. Note that a unique guess value is
proposed for the overall process.

+al(k) - s+ a0(k)

The above directives are statements only for Mat@ad
the notation must be written accordingly for the programming
language selected. Obviously for each valué ef different
polynomial must be considered. For examplée; i 0, the
polynomial to be considered is

st +115% + 3452 + 245+ 0 = 0.

The dependence dnin the above statements will allow

to find a set of roots for each particular valueiafs described
in the next step. Step d) The next step is to write the loop where the

roots will actually be calculated. The next statements in

The above statements are Va.ll'd only for this exampl%/lathcac@ will calculate the first root of the characteristic
and must be rewritten for the particular system under study,

Notice however, that it is not necessary to calculate byequatlon
hand each coefficient of the polynomial. For this task, m«— 0
Mathca(@provides the built in function “Polynomial Coef- rootl(s, k) := Sm — 8
ficients”. while 1
In the above statements the characteristic function (de- Y Sm
noted as function one) is introduced only for programming f1(y, k)
manipulation. Sm+1 Y — N
@fl (y7 k)
Step b) In the second step the number of points for dis- break if | f1 (sm, k)| < 107°
playing the root-locus are chosen. Obviously, the higher the m e m+ 1
number of samples the better the resolution of the plot but break ifrn > 200
the larger the processing time. As it will be apparent in the Sm+1
simulations shown below, 800 samples give reasonable good
resolution for the selected example. In MatHdthe next In the above code one root of the characteristic equation
statements accomplish for this task (denoted first function) is calculated. The loop begins by set-
n ting the first entry of an array (entry zero) to the guess value
N =800; n=0.N; ky= 10400 and it is provided at the calling of the loop (next statement

The above statements allow varying the gain parametet?e”OW)' The loop approaches the actual root according to
from 0 to 0.077 (800/10400) in 800 equally spaced stepsa first derivative search. Every value estimated in the loop
Each value .is stored in a linear array with 8)(;0 entries. Thi is introduced into the function. When the absolute value of

variation is suitable for the example as it can be seen i‘;functlon-one computed in the proposed value results less than

Fig. 2A. The range of interest needs to be adjusted for eacho e predetermme_d error, in th'S. cgse%_,(lhe loop finishes
. . : and returns the estimated root within this very small error. If
particular case by trial and error by plotting the root-locus

: 200 iterations are not sufficient to find a root within this error,
several times. . N "
a break statement finishes the loop and an "out of bounds
message is obtained. Note that Math&niovides a builtin

Step c)The third step is to provide an initial guess value derivative function.
for initiating the process. A common way to do thisis by con-  In this case, the loop described above is executed 800
sidering the three terms of higher degree in the polynomial aimes by the next statement,
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m «— 0
root2(s,k,R) :== || $m < s
R1, :=rootl(sl, k), while 1
Y Sm
wheresl is the guess value arig, is then-th sampled gain. f2(y,k,R)
After complete execution, (no "out of bounds” message Sm+1 Y~
generated), a set of 800 roots within the specified precision dfyﬁ (y, k, R)
is obtained and stored in an array. Each root in the set cor- break if | f2 (s, k, R)| < 1078
responds to one of the elements in the gain array constructed me—m+1
in step b). As the characteristic equation for this example is a Sma1

polynomial of degree four, this set of roots is denoted as the
first-set of roots. Three more sets remain to be found.

In order to proceed further, the second-set of roots will bein t
calculated. For this, a second function is defined by using thfj
next statement

As in the first loop the guess value is provided and stored
he first entry of an array. Additionally, the corresponding
ain and value stored in the gain-array and in the first-set of
roots are provided for each iteration.

i  f1(s, k) The statement for executing 800 times the above code to
f2(s, k, R1) = s— R1° calculate the second-set of roots is
Notice that the second function has a degree less than the R2,, :=root2(sl, k,, R1,).

first function.

Notice that the first function has dependence onlyson At the end of the loop, the second-set of roots within the
and on the gain while the second function shows dependenggoposed precision is stored in the array. As described, each
also on the first-set of roots preViOUSly found. This will allow calculated root Corresponds to a gain stored in the gain array
to obtain the second-set of roots for each value stored in thgnd at the same time to a root stored in the first-set array.
first-set of roots. The technique follows the same sequence up to the fourth

The loop statements for calculating the second-set o§et of roots. For completeness, the statements for calculating

roots is then I the third and fourth set of roots follow:
£3(s, k, R1, R2) := M,
m e 0 s— R2
root3(s,k, R1,R2) :==|| $m < s

while 1

Y < Sm

f3(y,k, R1, R2)
Sm+1 < Y —

Zf3(y.k, R1, R2)
break if | £3 (s, k, R1, R2)| <1078
m—m-+1

Sm41
R3,, :=root3(sl, k,, R1,, R2,).
The code for finding the fourth set is
f3(s,k, R1, R2)
4(s,k,R1,R2, R3) := ———"———
f (87 ) ) ) ) S—RS 9

m<«— 0
rootd(s,k, R1, R2, R3) := S — S
while 1
Y Sm
f4(y,k, R1, R2, R3)
%fﬁl (y,k, R1, R2, R3)
break if | f4 (s, k, R1, R2, R3)| < 1077

m+«—m+1

Sm+1 < Y —

Sm—l-l

R4, :=rootd(sl, ky, Rl,, R2,, R3,).
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6. Root-locus plotting for the example the system just discussed. Several techniques to accomplish
) ] this are possible. Among them, let us choose, a simple
Figure 4A shows the root-locus obtained for the four-polejead compensation network introduced in the forward loop
example of the above section. The dashed line shows thgf the system. Let, the lead network consist of a pole located
desired damping ratio. In this case we have chosen the comy _16.0 and the zero at—1.6 (trial an error is necessary to find
monly used value 0.5. The intersection of the dashed lingyitaple values). Additional amplification is included to de-
with the root-locus corresponds to one of the roots. By exgrease the error signal, for impedance matching, and to meet
ploiting the graphical capabilities of Mathc&j which al- with the gain value that will be obtained after performing the
lows expanding portions of the plot, it is possible to estimate;|culations, Fig. 5. The characteristic equation for the com-

graphically the corresponding root an then to find it preciselyyensated system can be written as
by choosing the corresponding entry in the calculated arrays.

The intersection of the root-locus with the damping ratio line
results—0.363 -+ i0.612. (s =p1) (s =p2) (s = pa) (s = pa) (s = ps)

Once aroot is found, the gain and the remaining roots are +k(s—21)(s—2z2) (s —23) =0, (10)
obtained by consulting in the arrays the corresponding val-
ues. For this casé; = 0.033. The corresponding four roots

wherep, p2, p3, pa, 21, 22, COrresponds to the original sys-
are

tem, given in Eq. (7), angs, z3, correspond to the additional
R1 = —4.57; R2= —5.704; pole and zero introduced by the compensating network (-16.0
and -1.6, respectively).

It will be noticed that Eq. (10) corresponds to a fifth
R4 = —-0.363 —10.612. degree polynomial. The coefficients of the polynomial can

readily be found by using the “polynomial coefficient”, built

For reliability, each calculated root is introduced into the, ) : .
characteristic equation and its absolute value calculated fd toql provided b_y Mathca_@. Th(a_ fifth degree polynomial
or this characteristic function is given by

each corresponding gain value. The maximum error foun
results in less than 13°, representing an excellent precision
for most practical applications. s° + 275 + (210 + k)s® + (568 + 5.6k)s?

Once the complete set of roots and gain are known the (384 4 410.4k)s + 646.4k — 0,
system performance can be tested. For example, for a
unitary-step input, the overall transfer function can readily . o
be expanded in partial fractions and the time response cad'd the corresponding program statement is given by
be plotted by calculating the inverse Laplace transform. Fig-
ure 4B shows the time response for the four-pole system dis-f1(s, k) := a5(k) - s° + a4(k) - s* + a3(k) - s3
cussed above. It can be seen, from Fig. 4B, that the maxi-
mum overshoot occurs at approximately five seconds and the +a2(k) - s* + al(k) - s + aO(k).
system settles after approximately 14 seconds.

Let us illustrate how the present technique can be used tth order to plot the root-locus for the compensated system,
improve the performance of the system. For this purpose, I€he code for calculating the fifth set of roots must be added to

us consider that it is desired to speed up the time response 8¥€ overall previous code. For completeness we provide the
|  code for obtaining the fifth set of roots:

R3 = —-0.363 4 0.612;

fA(s, k, R1, R2, R3)

5(s, k, R1, R2, R3, R4) :=
f(s7 ) ) Y Y ) S*R4

m «— 0
rootb(s, k, R1, R2, R3, R4) := Sm — 8
while 1
Y — Sm

5 (y, k, R1, R2, R3, R4)

Sm+1 < Y — d
@]‘5 (y,k, R1, R2, R3, R4)
break if | £5 (s, k, R1, R2, R3, R4)| < 1077
m+—m-+1

break ifm > 200

Sm+1
R5,, :=root5(sl, k,,, R1,, R2,, R3,, R4,).
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FIGURE 4A. Root-locus plot for the example four-order pole sys-
tem. The poles are located at 0, -1., -4 and —6 and the zeroes

b 6 567 -535 —5020 47 437 05 372

—2 —¢20and at—2 + ¢20.

34

-307 <275 7242 21 L7 -145 CL12 08 047 005 008 05

12

0 2 4

FIGURE 4B. System time response to the unitary step input.

tem and Fig. 6B shows the corresponding time response

6

the unitary-step input.

For a 0.5 damping- factor we obtain the following roots,

Rl =
R3 =
R4 =

8

10 12 4 16 18 20

—2.39; R2=-0.70411.18;
—0.70 —41.18;
—7.46; R5=—15.74.

o) _ NETWORK RS)

FIGURE 5. Compensated system for the example. It includes an
amplification moduleA,a lead network for compensation and uni-
tary Feedback. The other parameters are as in Fig. 1.

original system (0.033). This represents an additional im-
Jrovement as increasing the gain decreases the error signal.

As it can be seen in Fig. 6B, the system responds
faster. The maximum overshoot now occurs at approximately
2.5 seconds and the system settles at approximately 8.0 sec-
onds, 6.0 seconds faster than the original. Then, an improve-
ment in time response and gain is obtained over the original
system.

Finally, we point out that the simulations were performed
in a personal computer with a 700 Mhz. processor. The max-
imum processing time was about 1.5 minutes. This running
time is comparable with the time of execution of commer-
cially available programs and gives the designer completely
free access to the internal code which is not possible with
built in programs.

7. Conclusions

A technique for calculating and plotting the root-locus of a

Sinear control system was presented. As in other techniques,

tt(1?1e characteristic equation of the system is analyzed as a

polynomial, which is a function of the gain parameter of the

system. The root locus is found by varying and sampling the
gain parameter in the range of interest. For each value of
the gain, a complete set of roots is obtained by providing a
unique guess value and performing a first derivative search
for calculating the actual values. For reliability, each root so

computed is substituted in the characteristic equation and an

The corresponding gain value, 0.825 results in a gain increasaror value is recorded. The maximum error results in less
of approximately 25 times as compared with the gain of thehan 10°'° and can easily be lowered if desired.

16 151 -142 -133 -124 -115 -106 97 88 79 1 <61 52 43 34 25 -16 07 02 11 2

(A)

(8)

FIGURE 6. A) Root-locus plot for the compensated system. The poles are located at 0, -1, -4, -6, -16 and the ze¥ees$2, —2 + 20

and -1.6. B) System time response to the unitary step input.
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To illustrate the simplicity and usefulness of the tech-the time response thus, showing the usefulness of having an
nique, a particular four-pole order system was selected. Thepen code root locus visualization technique.
root-locus of the system was plotted and the characteristic The technique can be implemented in any programming
roots and gain were found for a desired damping ratio. Théanguage and shows to be reliable and time efficient, offering
time response of the system to a unitary-step was obtained. A versatile tool for the interested designer.
lead compensation network was proposed for improving the
time response and by trial and error suitable parameters werg
found. The root-locus of the compensated system was com-
pared to the uncompensated one to show the improvement ifye thank to Manuel Sef for useful discussion.
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