
ENSEÑANZA REVISTA MEXICANA DE FÍSICA 48 (6) 556–564 DICIEMBRE 2002

Simple technique for root locus plotting

M. Cywiak
Centro de Investigaciones eńOptica, A.C.

Apartado Postal 37150 León, Guanajuato, Ḿexico

M. Castro
Centro de Investigación Cient́ıfica y de Educación Superior de Ensenada

Apartado Postal 2732, 22880 Ensenada, B.C., México

Recibido el 20 de junio de 2001; aceptado el 20 de febrero de 2002

We present a simple technique for calculating and plotting the root locus of a linear control system. Although several programs are com-
mercially available for this purpose, and remarks on this subject can be found in dedicated texts, a complete description of the program code
is desirable to provide the designer with versatility and deeper insight. This report describes our technique and includes complete program
codes. In this technique, the roots of the system’s characteristic function are found by providing a single, unique guess value to be used in
a first derivative search algorithm in order to calculate the unknown set of roots. Similarly to other techniques, the root locus is found by
calculating the system’s set of roots as the gain varies in the range of interest. The resolution obtained depends on the sampling rate of the
gain parameter. The technique is suitable for any programming language and there is basically no limit on the root order of the system. To
illustrate the technique a four-pole order system is analyzed. Then, to improve the response of the system a lead compensation network is
added.. The usefulness of the technique is illustrated by comparing the time response of the compensated network over the uncompensated
one.

Keywords: Linear control system; root locus; stability

Presentamos una técnica sencilla para calcular y trazar el lugar de las raı́ces de un sistema de control lineal. Aunque existen diversos
programas comerciales para este propósito y pueden encontrarse algunos tópicos sobre este tema en textos dedicados, es deseable tener
una descripcíon completa del ćodigo del programa, permitiéndole al disẽnador mayor versatilidad y profundizar más en el sistema bajo
su estudio. Este reporte describe nuestra técnica e incluye ćodigos completos de la programación. En esta t́ecnica las ráıces de la funcíon
caracteŕıstica se calculan proporcionando unúnico valor de prueba que es utilizado en un algoritmo de búsqueda de derivada de primer orden.
De manera similar a otras técnicas, el lugar de las raı́ces es construido mediante el cálculo del conjunto de las raı́ces del sistema en función
del paŕametro de ganancia. La técnica puede ser utilizada en cualquier lenguaje de programación y b́asicamente no hay lı́mite en el orden del
polinomio caracterı́stico. Para ilustrar la técnica analizamos un sistema lineal de cuarto orden al cual posteriormente se le añade una red de
compensación de adelanto de fase para mejorar la respuesta en el tiempo. La utilidad de la técnica es ilustrada comparando la respuesta en
tiempo del sistema compensado con respecto al sistema original.

Descriptores:Sistema de control lineal; lugar de las raı́ces; estabilidad.

PACS: 84.30.B; 02.30.Y

1. Introduction

The use of feedback in system controlling has become an im-
portant tool in several areas as for example in automation of
industrial processes. Commonly applications can be found in
controlling of communication networks [1]. Additionally, the
controlling of hydraulic drives represents an important tool
for metal forming machines, injection molding, and in the
construction of testing devices [2]. Perhaps, the most com-
monly known application can be found in automatic aircraft
piloting [3]. Higher control system technologies can be found
in the manufacturing of semiconductor devices [4].

Independently of the area of the application, the main
concern in system controlling is to calculate accurately the
performance of the system under design for stability, time re-
sponse and reliability.

Calculating the stability of a feedback system has de-
served a great deal of attention. Several techniques have been
proposed on this subject. Among them, the most used are

the Nyquist stability criterion, the Nichols chart and the root-
locus-plotting. Vast literature on these subjects can be found,
for example in Refs. 5 and 6.

With the advent of the personal computer and the avail-
ability of faster processors, a suitable technique to be used
in a personal computer is the root-locus-plotting. This tech-
nique gives accurate results and provides the designer with an
ample knowledge of the behavior of the system under inspec-
tion. Then, several parameters of the system (gain, damping
factor, time response, etc) can be calculated accurately. This
allows for designing, not only stable systems, but also, by
trial and error, it is possible to propose improvements over the
original design. In contrast, the other mentioned techniques
ordinarily give local, relative or moderate information [5,6].

There are several commercially available programs in
control design and for root-locus-plotting, among them,
RLOCUS function of MATLABR© is the most frequently
used. However, the designer depends on inherent built in
functions of the particular program or tool in use and no in-

SIMPLE TECHNIQUE FOR ROOT LOCUS PLOTTING 557

formation is available of the internals of these calculations.
Thus, an open technique is desired to provide more versatility
to the designer. In what follows we show how the proposed
technique works.

2. Feedback transfer function considerations

Let us consider the basic feedback block diagram shown in
Fig. 1. This system can be used to derive the feedback rela-
tions common to all types of feedback theory [7]. In Fig. 1,
C (s) represents the Laplace transform of the time depen-
dent inputc (t), andR(s) the Laplace transform of the output
r (t). G(s) andH(s) are the forward and feedback transfer
functions respectively. The parameters is the complex vari-
able in the Laplace’s space.

Thus, as it is well known, the closed loop transfer func-
tion can be written as

C (s)
R (s)

=
G (s)

1 + G (s) H (s)
. (1)

Equation (1), represents the closed loop transfer func-
tion as the ratio of the Laplace-transformed integrodifferen-
tial equation describing the output function to the Laplace-
transform of the integrodifferential equation describing the
input function, with all initial conditions equal to zero [7].
Some examples are given in Sec. 3.

The equation that results of equating the denominator in
Eq. (1) to zero is known as the characteristic equation. It is
given by

1 + G (s)H (s) = 0. (2)

The characteristic equation, [Eq. (2)], is used to plot the
system root-locus as described in the next sections.

3. Examples of transfer functions

Some typical examples found in electrical networks, are
shown in Fig. 2. The corresponding transfer function is ex-
pressed for each network. As indicated above, the initial con-
ditions are taken equal to zero. The terms phase-lead and
phase-lag indicates that one is considering steady-state sinu-
soidal excitation and response functions. For example,

FIGURE 1. Basic feedback system.C (s), is the Laplace transform
of the time dependent inputc (t). R(s) is the Laplace transform
of the outputr (t). G(s), andH(s) are the forward and feedback
transfer functions respectively. The parameters is the Laplace’s
complex variable.

Fig. 2A represents a phase-lag network because the phase an-
gle associated with the phasor transfer function is negative
when the substitutions = iω is made, wherei =

√−1,
ω = 2πf , andf is the frequency.

As a second example let us consider a network for con-
trolling the speed of a d-c motor. The devices involved in this
system are composed by an isolation amplifier, a tachome-
ter a power amplifier an amplidyne and a d-c motor. A brief
description for each mechanical device follows.

The tachometer is a fixed field d-c generator and used
as a rotational speed sensor. The transfer function for the
tachometer is given by

Eout (s)
ω (s)

= K
T
,

where K
T

is the tachometer constant with dimensions of
Volts/radian [7].

FIGURE 2. Basic electrical networks and transfer functions. A) In-
tegrating or phase-lag network. B) Differentiating or phase-lead
network. C) Phase-lead network with fixed DC attenuation.

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

558 M. CYWIAK AND M. CASTRO

The d-c motor uses electrical power to generate mechan-
ical torque. The transfer function for the d-c motor is given
by

ω (s)
Ein (s)

=
KM

1 + τ
M

s
=

KM /τM

(s + 1/τ
M

)
,

whereK
M

= 1/Kb, τ
M

= JR
A
/K

T
Kb. Kb is the back

emf, or generator constant, measured in Volts per radian per
second,J is the inertia of the motor shaft and the load mea-
sured in slug-feet2, R

A
is the resistance of the shunt field and

K
T

is the motor-torque constant measured in pound-feet per
Ampere, [7].

The amplidyne is a very rugged electromechanical power
amplifier capable of the controlled transformation of a few
Watts into thousands of Watts. The amplidyne is essentially
a d-c generator with an extra set of brushes, thus it consists of
a control field winding and a quadrature field or QQ brushes
used in much the same way as the elements of a d-c shunt
generator. The transfer function for the amplidyne is given
by

Eout (s)
Ein (s)

=
KA

(1 + τ
Cc

s)
(
1 + τ

Qs
)

=
KA

/τ
C
τ

Q

(s + 1/τ
C
)
(
s + 1/τ

Q

) ,

whereKA
is the amplidyne constant and is dimensionless,

andτC , andτQ are the control and quadrature field time con-
stants [7].

The components described above can be combined to de-
sign a driven d-c motor controlled system as shown in Fig. 3.
Using the transfer function for each component, it can be
shown that for this system

G(s)H(s) =




s + 1/R1C1

s +
R1 + R2

R1R2C1




2

× K1K2(KM
/τ

M
)KAτ

C
τ

Q

(s + 1/τ
C
)
(
s + 1/τ

Q

)
(s + 1/τ

M
)
.

The productG(s)H(s) is known as the open loop transfer
function.

In this application it is considered that the gainK1 is to
be determined for stable working conditions. All other pa-
rameters in the above equation are considered as constants,
except of course, the state variables.

Denoting the gainK1 by the variablek, the above equa-
tion can be written as

G(s)H(s) = k




s + 1/R1C1

s +
R1 + R2

R1R2C1




2

× K2(KM
/τ

M
)K

A
τ

C
τ

Q

(s + 1/τ
C
)
(
s + 1/τ

Q

)
(s + 1/τ

M
)
.

This equation will be used in the next section to attain
some general remarks on the analytical expression of the
closed loop transfer function of a linear feedback system.

4. General remarks on linear system transfer
functions

The results of the above example allows us to summarize
some general remarks on the analytical expression of the
overall transfer function. This approach is similar to the one
found in dedicated texts, [6,7].

It can be seen that a feedback network consists basically
of a forward and a feedback path.

Each path in the network is composed by individual
blocks. Each block represents a set of electrical networks
or/and servo-mechanical-electronic devices each having an
associated rational transfer function which is written as
the quotient of two polynomials with constant coefficients.
Moreover, the rational function is explicitly expressed as
products of well determined poles an zeroes which charac-
terizes the physical behavior of the associated component or
device at least in a functional linear region.

If N blocks, B1, B2, · · · , BN are located in a particu-
lar path, the overall transfer function for the path is given
by the product of the transfer function of each block as
(B1)(B2) · · · (BN).

A global multiplicand parameter, denoted ask, represents
the unknown to be determined for stable working conditions.
This parameter is located in a specific block and it is usu-
ally in the form of a gain.. When parameters other thank
are unknown, they are varied (one at a time), in this case the
corresponding root locus plot is defined as a generalized root
loci.

From the above discussion, it is apparent that the open
loop equationG(s)H(s) can be expressed as

G(s)H(s) = k
(s− z1) (s− z2) ... (s− zm)
(s− p1) (s− p2) ... (s− pn)

, (3)

wherem < n, that is, the number of poles is greater than the
number of zeros. Compare with the example equation at the
end of Sec. 3.

The number of poles in the origin defines the type of sys-
tem under consideration. If 0,1,2,3, and so on, poles are lo-
cated at the origin a type 0,1,2,3, and so on, system is defined.
The open-loop gain factor,k, is usually considered positive.
Equation (3) is the general analytical form that can be stud-
ied by the root locus technique and this is the only case that
is considered in this work.

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

SIMPLE TECHNIQUE FOR ROOT LOCUS PLOTTING 559

FIGURE 3. Block diagram for d-c motor controlling.

Fortunately the vast majority of linear servo-systems can be
modeled by equation (3). When the above conditions are not
fulfilled it is necessary to use partial fraction expansion tech-
niques to intend to describe the system as in Eq. (3).

By using Eq. (3), the characteristic equation, can be writ-
ten as

1 + k
(s− z1) (s− z2) ... (s− zm)
(s− p1) (s− p2) ... (s− pn)

= 0. (4)

From Eq. (4), the root-locus of the system is given by the
set of roots of the equation

(s− p1) (s− p2) ... (s− pn)

+k (s− z1) (s− z2) ... (s− zm) = 0, (5)

where the value of the gain is sampled over the range of in-
terest.

As m < n, Eq. (5) results to be a polynomial of order
n. Let R1, R2, ..., Rn denote then roots of Eq. (5), then, the
root-locus of the system is the plot of the real part against the
imaginary part for each of the roots as the gain varies form
an initial to a final value.

Without lose of generality we will consider the most com-
mon case in which the gaink, varies for positive values, al-
though this is not a restriction for the present technique.

5. Root locus construction, an example

As mentioned above, the technique can be used on any pro-
gramming system or language.

The example discussed in Sec. 3 could be used to de-
scribe our root locus technique. Nevertheless, we consider
advisable to study a more complex system to enhance the de-
scription. For this purpose, let us consider a unitary feedback
control system. Typically, unitary feedback systems are sug-
gested as the starting point in system design [5].

The example selected for this description consists of a
four-pole, type-1 (one pole at the origin) system. Addition-
ally, for completeness, two arbitrary zeroes are also included.
The poles are located at 0, -1, -4 and –6 and the zeroes at
−2− i20and at−2 + i20. Although the example is arbitrar-
ily selected, several servo-systems can easily be studied with

this model by only changing the numerical values assigned to
the poles and zeroes

The programming platform is MathcadR© Plus 6.0 and
was selected due to its powerful graphical environment.

The characteristic equation for this system can then be
written as

(s− p1) (s− p2) (s− p3) (s− p4)

+k (s− z1) (s− z2) = 0 (6)

where

p1 = 0; p2 = −1; p3 = −4; p4 = −6;

z1 = −2− i20; z2 = −2 + i20. (7)

It can be seen that Eq. (6) is a polynomial of fourth degree
on the variables and that the restrictionm < n, is fulfilled.

Explicitly, Eq. (6) can be written as

s4 + 11s3 + (34 + k)s2 + (24 + 4k)s + 404k = 0.

We may express this polynomial as

a4(k)s4 + a3(k)s3 + a2(k)s2 + a1(k)s + a0(k) = 0,

where

a4(k) = 1, a3(k) = 11, a2(k) = 34 + k,

a1(k) = 24 + 4k and a0(k) = 404k.

In order to illustrate the technique we divide the descrip-
tion in the following steps:

Step a)In the first step of the technique the characteris-
tic function is constructed. In MathcadR© the next statements
are used for this particular example:

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

560 M. CYWIAK AND M. CASTRO

a4(k) := 1

a3(k) := 11

a2(k) := 34 + k

a1(k) := 24 + 4k

a0(k) := 404k

f1(s, k) := a4(k) · s4 + a3(k) · s3 + a2(k) · s2

+a1(k) · s + a0(k)

The above directives are statements only for MathcadR©,
the notation must be written accordingly for the programming
language selected. Obviously for each value ofk a different
polynomial must be considered. For example, ifk = 0, the
polynomial to be considered is

s4 + 11s3 + 34s2 + 24s + 0 = 0.

The dependence onk in the above statements will allow
to find a set of roots for each particular value ofk as described
in the next step.

The above statements are valid only for this example
and must be rewritten for the particular system under study.
Notice however, that it is not necessary to calculate by
hand each coefficient of the polynomial. For this task,
MathcadR©provides the built in function “Polynomial Coef-
ficients”.

In the above statements the characteristic function (de-
noted as function one) is introduced only for programming
manipulation.

Step b) In the second step the number of points for dis-
playing the root-locus are chosen. Obviously, the higher the
number of samples the better the resolution of the plot but
the larger the processing time. As it will be apparent in the
simulations shown below, 800 samples give reasonable good
resolution for the selected example. In MathcadR©, the next
statements accomplish for this task

N = 800; n = 0..N ; kn =
n

10400
.

The above statements allow varying the gain parameter
from 0 to 0.077 (800/10400) in 800 equally spaced steps.
Each value is stored in a linear array with 800 entries. This
variation is suitable for the example as it can be seen in
Fig. 2A. The range of interest needs to be adjusted for each
particular case by trial and error by plotting the root-locus
several times.

Step c)The third step is to provide an initial guess value
for initiating the process. A common way to do this is by con-
sidering the three terms of higher degree in the polynomial as

a second-degree polynomial. In the example, the polynomial

a4(k)s4 + a3(k)s3 + a2(k)s2 + a1(k)s + a0(k) = 0 (8)

is considered as

a4(k)s2 + a3(k)s + a2(k) = 0, (9)

for a particular, arbitrary value ofk. One of the roots of
Eq. (9) is used as the guess value.

Although the guess value provided is not critical, it is
possible that some values, especially when the guess value
results real, may cause the calculations to fall into an infinite
loop. This error is easy to detect by introducing a break point
in the loop (described in step d) after a reasonable number of
iterations. MathcadR©gives an out of bounds message when
this error occurs. Experience shows that this error can eas-
ily be fixed by adding a pure imaginary number between one
and two to the guess value. Note that a unique guess value is
proposed for the overall process.

Step d) The next step is to write the loop where the
roots will actually be calculated. The next statements in
MathcadR© will calculate the first root of the characteristic
equation

root1(s, k) :=
m ← 0
sm ← s
while 1

y ← sm

sm+1 ← y − f1 (y, k)
d

dy
f1 (y, k)

break if |f1 (sm, k)| < 10−8

m ← m + 1
break ifm > 200

sm+1

In the above code one root of the characteristic equation
(denoted first function) is calculated. The loop begins by set-
ting the first entry of an array (entry zero) to the guess value
and it is provided at the calling of the loop (next statement
bellow). The loop approaches the actual root according to
a first derivative search. Every value estimated in the loop
is introduced into the function. When the absolute value of
function-one computed in the proposed value results less than
some predetermined error, in this case 10−8, the loop finishes
and returns the estimated root within this very small error. If
200 iterations are not sufficient to find a root within this error,
a break statement finishes the loop and an ”out of bounds”
message is obtained. Note that MathcadR©provides a built in
derivative function.

In this case, the loop described above is executed 800
times by the next statement,

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

SIMPLE TECHNIQUE FOR ROOT LOCUS PLOTTING 561

R1n := root1(s1, kn),

wheres1 is the guess value andkn is then-th sampled gain.
After complete execution, (no ”out of bounds” message

generated), a set of 800 roots within the specified precision
is obtained and stored in an array. Each root in the set cor-
responds to one of the elements in the gain array constructed
in step b). As the characteristic equation for this example is a
polynomial of degree four, this set of roots is denoted as the
first-set of roots. Three more sets remain to be found.

In order to proceed further, the second-set of roots will be
calculated. For this, a second function is defined by using the
next statement

f2(s, k, R1) :=
f1(s, k)
s−R1

.

Notice that the second function has a degree less than the
first function.

Notice that the first function has dependence only ons
and on the gain while the second function shows dependence
also on the first-set of roots previously found. This will allow
to obtain the second-set of roots for each value stored in the
first-set of roots.

The loop statements for calculating the second-set of
roots is then

root2(s, k, R) :=
m ← 0
sm ← s
while 1

y ← sm

sm+1 ← y − f2 (y, k, R)
d

dy
f2 (y, k, R)

break if |f2 (sm, k, R)| ≤ 10−8

m ← m + 1
sm+1

As in the first loop the guess value is provided and stored
in the first entry of an array. Additionally, the corresponding
gain and value stored in the gain-array and in the first-set of
roots are provided for each iteration.

The statement for executing 800 times the above code to
calculate the second-set of roots is

R2n := root2(s1, kn, R1n).

At the end of the loop, the second-set of roots within the
proposed precision is stored in the array. As described, each
calculated root corresponds to a gain stored in the gain array
and at the same time to a root stored in the first-set array.

The technique follows the same sequence up to the fourth
set of roots. For completeness, the statements for calculating
the third and fourth set of roots follow:

f3(s, k,R1, R2) :=
f2(s, k,R1)

s−R2
,

root3(s, k,R1, R2) :=
m ← 0
sm ← s
while 1

y ← sm

sm+1 ← y − f3 (y, k, R1, R2)
d
dy f3 (y, k,R1, R2)

break if |f3 (sm, k, R1, R2)| ≤ 10−8

m ← m + 1
sm+1

R3n := root3(s1, kn, R1n, R2n).

The code for finding the fourth set is

f4(s, k, R1, R2, R3) :=
f3(s, k, R1, R2)

s−R3
,

root4(s, k, R1, R2, R3) :=
m ← 0
sm ← s
while 1

y ← sm

sm+1 ← y − f4 (y, k, R1, R2, R3)
d
dy f4 (y, k, R1, R2, R3)

break if |f4 (sm, k, R1, R2, R3)| ≤ 10−7

m ← m + 1
sm+1

R4n := root4(s1, kn, R1n, R2n, R3n).

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

562 M. CYWIAK AND M. CASTRO

6. Root-locus plotting for the example

Figure 4A shows the root-locus obtained for the four-pole
example of the above section. The dashed line shows the
desired damping ratio. In this case we have chosen the com-
monly used value 0.5. The intersection of the dashed line
with the root-locus corresponds to one of the roots. By ex-
ploiting the graphical capabilities of MathcadR©, which al-
lows expanding portions of the plot, it is possible to estimate
graphically the corresponding root an then to find it precisely
by choosing the corresponding entry in the calculated arrays.
The intersection of the root-locus with the damping ratio line
results−0.363 + i0.612.

Once a root is found, the gain and the remaining roots are
obtained by consulting in the arrays the corresponding val-
ues. For this case,k = 0.033. The corresponding four roots
are

R1 = −4.57; R2 = −5.704;

R3 = −0.363 + i0.612;

R4 = −0.363− i0.612.

For reliability, each calculated root is introduced into the
characteristic equation and its absolute value calculated for
each corresponding gain value. The maximum error found
results in less than 10−10, representing an excellent precision
for most practical applications.

Once the complete set of roots and gain are known the
system performance can be tested. For example, for a
unitary-step input, the overall transfer function can readily
be expanded in partial fractions and the time response can
be plotted by calculating the inverse Laplace transform. Fig-
ure 4B shows the time response for the four-pole system dis-
cussed above. It can be seen, from Fig. 4B, that the maxi-
mum overshoot occurs at approximately five seconds and the
system settles after approximately 14 seconds.

Let us illustrate how the present technique can be used to
improve the performance of the system. For this purpose, let
us consider that it is desired to speed up the time response of

the system just discussed. Several techniques to accomplish
this are possible. Among them, let us choose, a simple
lead compensation network introduced in the forward loop
of the system. Let, the lead network consist of a pole located
at –16.0 and the zero at –1.6 (trial an error is necessary to find
suitable values). Additional amplification is included to de-
crease the error signal, for impedance matching, and to meet
with the gain value that will be obtained after performing the
calculations, Fig. 5. The characteristic equation for the com-
pensated system can be written as

(s− p1) (s− p2) (s− p3) (s− p4) (s− p5)

+k (s− z1) (s− z2) (s− z3) = 0, (10)

wherep1, p2, p3, p4, z1, z2, corresponds to the original sys-
tem, given in Eq. (7), andp5, z3, correspond to the additional
pole and zero introduced by the compensating network (-16.0
and -1.6, respectively).

It will be noticed that Eq. (10) corresponds to a fifth
degree polynomial. The coefficients of the polynomial can
readily be found by using the “polynomial coefficient”, built
in tool provided by MathcadR©. The fifth degree polynomial
for this characteristic function is given by

s5 + 27s4 + (210 + k)s3 + (568 + 5.6k)s2

+(384 + 410.4k)s + 646.4k = 0,

and the corresponding program statement is given by

f1(s, k) := a5(k) · s5 + a4(k) · s4 + a3(k) · s3

+a2(k) · s2 + a1(k) · s + a0(k).

In order to plot the root-locus for the compensated system,
the code for calculating the fifth set of roots must be added to
the overall previous code. For completeness we provide the
code for obtaining the fifth set of roots:

f5(s, k,R1, R2, R3, R4) :=
f4(s, k, R1, R2, R3)

s−R4

root5(s, k, R1, R2, R3, R4) :=
m ← 0
sm ← s
while 1

y ← sm

sm+1 ← y − f5 (y, k, R1, R2, R3, R4)
d

dy
f5 (y, k, R1, R2, R3, R4)

break if |f5 (sm, k, R1, R2, R3, R4)| ≤ 10−7

m ← m + 1
break ifm > 200

sm+1

R5n := root5(s1, kn, R1n, R2n, R3n, R4n).

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

SIMPLE TECHNIQUE FOR ROOT LOCUS PLOTTING 563

FIGURE 4A. Root-locus plot for the example four-order pole sys-
tem. The poles are located at 0, -1., -4 and –6 and the zeroes at
−2− i20and at−2 + i20.

FIGURE 4B. System time response to the unitary step input.

Figure 6A shows the root locus for the compensated sys-
tem and Fig. 6B shows the corresponding time response to
the unitary-step input.

For a 0.5 damping- factor we obtain the following roots,

R1 = −2.39; R2 = −0.70 + i1.18;

R3 = −0.70− i1.18;

R4 = −7.46; R5 = −15.74.

The corresponding gain value, 0.825 results in a gain increase
of approximately 25 times as compared with the gain of the

FIGURE 5. Compensated system for the example. It includes an
amplification module,A,a lead network for compensation and uni-
tary Feedback. The other parameters are as in Fig. 1.

original system (0.033). This represents an additional im-
provement as increasing the gain decreases the error signal.

As it can be seen in Fig. 6B, the system responds
faster. The maximum overshoot now occurs at approximately
2.5 seconds and the system settles at approximately 8.0 sec-
onds, 6.0 seconds faster than the original. Then, an improve-
ment in time response and gain is obtained over the original
system.

Finally, we point out that the simulations were performed
in a personal computer with a 700 Mhz. processor. The max-
imum processing time was about 1.5 minutes. This running
time is comparable with the time of execution of commer-
cially available programs and gives the designer completely
free access to the internal code which is not possible with
built in programs.

7. Conclusions

A technique for calculating and plotting the root-locus of a
linear control system was presented. As in other techniques,
the characteristic equation of the system is analyzed as a
polynomial, which is a function of the gain parameter of the
system. The root locus is found by varying and sampling the
gain parameter in the range of interest. For each value of
the gain, a complete set of roots is obtained by providing a
unique guess value and performing a first derivative search
for calculating the actual values. For reliability, each root so
computed is substituted in the characteristic equation and an
error value is recorded. The maximum error results in less
than 10−10 and can easily be lowered if desired.

(A) (B)

FIGURE 6. A) Root-locus plot for the compensated system. The poles are located at 0, -1, -4, -6, -16 and the zeroes at−2− i20,−2 + i20

and -1.6. B) System time response to the unitary step input.

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

564 M. CYWIAK AND M. CASTRO

To illustrate the simplicity and usefulness of the tech-
nique, a particular four-pole order system was selected. The
root-locus of the system was plotted and the characteristic
roots and gain were found for a desired damping ratio. The
time response of the system to a unitary-step was obtained. A
lead compensation network was proposed for improving the
time response and by trial and error suitable parameters were
found. The root-locus of the compensated system was com-
pared to the uncompensated one to show the improvement in

the time response thus, showing the usefulness of having an
open code root locus visualization technique.

The technique can be implemented in any programming
language and shows to be reliable and time efficient, offering
a versatile tool for the interested designer.

Acknowledgements

We thank to Manuel Servı́n for useful discussion.

1. L. G. Bushnell,IEEE Control Systems21 (2001) 22.

2. E. Detiek and E. Kiker,Experimental techniques25 (2001) 35.

3. E. O. Doebelin,Measurement Systems Application and Design,
(McGraw-Hill Book Co, 1966), p. 345.

4. J. Y. Choi and H. M. Do,IEEE Trans. On Semiconductor Man-
ufacturing14 (2001) 1.

5. P. H. Lewis and C. Yang,Basic Control Systems Engineering,
(Prentice-Hall Inc, 1997), p. 248.

6. W. J. Palm III,Control Systems Engineering, (John Wiley &
Sons Inc. 1986), p. 484.

7. R. E. Lueg,Basic Electronics, (International Textbook Com-
pany 1963), p. 284.

Rev. Mex. F́ıs. 48 (6) (2002) 556–564

