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The depolarization field in polarizable objects of general shape
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The polarization of particles or biological cells is commonly investigated by measuring the impedance of suspensions or by a variety of
single particle methods, that exploit different force effects. For biological cells the most striking frequency-dependent changes in polariz-
ability result from structural (Maxwell-Wagner) polarization phenomena. Explicit solutions of the Laplace equation are available only for
objects with finite surfaces of the second degree. Thus, dielectric models consider the structural properties of cells by assuming spherica
or ellipsoidal geometries, since only in very few cases is the effective localfigld) in the presence of a dielectric object known. This
concerns dielectric bodies of special shape, which are exposed to a special electrit,field In the present paper an approximation
procedure is presented for the general case, allowing to calculate the depolarizatidn figldwhich is generated in the presence of an
arbitrarily shaped dielectric object, introduced into a field spéger*). Contrary to recent numerical methods (finite element technique),
which require extensive computer resources due to the unavailability of analytical solutions, the here presented approach results in close
analytical expressions. The applicability of the method is demonstrated for a non-ellipsoidal cylindrical dielectric by measuring its dipole
moment in a microwave field. The accordance with the calculated results is found to be one order of magnitude better than it would be in the
commonly practiced procedure, where the cylinder is substituted by a spheroid of the same axis relation.
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La polarizacbn de paiiculas o celdas bidhicas se estudia cammente a trags de la mediéin de la impedancia de suspensiones, o bien

por una variedad de @odos de paitulas sencillas, que se basan en efectos diferentes de fuerza. Para ceftasasiolos cambios en

la polarizacbn mas notables dependiendo de la frecuencia, resultan denfamos estructurados de polarizac{Efecto Maxwell-Wagner).

Modelos diegctricos consideran las propiedades estructurales de celdas suponiendoigeasiticas o elipsoidales, puesto que solo en

muy pocos casos se conoce el campo efectivo [Bg@l) en presencia de un objeto déetrico. Esto se refiere a cuerpos @alicos de forma

especial, que edh expuestos a un campeéelrico especialio (). En el presente trabajo se muestra un procedimiento de aproginraeia

el caso general que permite élculo del campo local; (r) generado en presencia de un objetoétiico de forma arbitraria, introducido

en el espacio de camg, (7). La aplicabilidad del rétodo es demostrada para un cilindro @ggtico no-elipsoidal a trés de la mediéin

de su momento dipolar en un campo de microondas. La correspondencia con los resultados calculados se encuentra un orden de magnit
mejor que en el procedimiento cmde aproximar el cilindro por un esferoide con las mismas relaciones axiales.

Descriptores:Dieléctricos; campo local, polarizani, bioelectbnica.

PACS: 77.22.Ej; 87.10.+e; 87.50.Rr

1. Introduction methods, based on impedance measurements and on different
force effects are employed for the dielectric characterization

Only in very few cases can the electric field(7) in the of sin.gle_objects. [6-10]. The gene_ral Laplace solution forthg
presence of matter with dielectric constanbe calculated. polar|zat|on of single-shell eII|p50|d§, a standard model of b.l-
In such cases an object of special shape is usually brougodical cells [11, 12], was also derived for the meteorologi-
into a special electric fieldZy (7). With an intelligent cal problem of dust particles covered by a water layer [13]. In

guess or ansatz is then shown, that the boundary conditiorl@€ Laplace model, a homogeneous ellipsoid always exhibits
of the fields on the surface of the dielectric material are? constantinternal local field. Integrating over this field leads

fulfilled [1-5]. to the induced dipole moment and thus to analytical expres-

. . o sions related to force actions on the particles.
Dielectric models applied in diverse areas of research

consider the structural properties of matter by assuming Already in such important cases as a cube or a cylinder is
spherical or general ellipsoidal geometries. This is widelyit difficult to calculate the depolarization factors without as-

used, e.g., in the case of the interaction of a.c. electric fieldsuming a spheroid as substituting body shape. But even then
with colloidal particles and biological cells. A variety of isthe best shape of it to be chosen, and the design of the next
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approximation step, not straightforward. Driven by the grow-  The integration is carried out over the surface of the di-
ing interest and impact of physical contributions to life sci- electric body;A F' points outward, and;, combines the ori-
ences [14-16], complex geometries, such as rods and cylirgin at+; with the integration element @a. The relation be-
ders, need to be considered. Characterized by the unavatiweenEj(7) andE; (7) is supposed by us to be lineal:

ability of analytical solutions for the field distribution within

such dielectric bodies, finite element numerical techniques

have been developed recently [17-20], with the compromise ﬁ(f‘) =¢eo(k — 1)51.(77)
of claiming considerable computer resources, though. .
This paper deals with an approximation procedure for = go(k — 1)a(r) Eo(7) (2
the calculation of the depolarization fielg(7) in a mate-
rial body of general shape With a dielectric constanwhich In generalp(7) is a tensor, as the directionsﬁt andﬁo
is brought into any given field, (), yielding an analytical  are not necessarily parallel. It further depends on the coordi-
solution. nates inside the sample due to the locally different action of
the polarization charges. In order to calcul&tg?) or Ei(7)
2. Depolarization field calculation from Egs. (1, 2), we make the assumption, thatoes not

depend orr, which of course is exactly fulfilled only in ho-
The problem, which is treated here, can be formulated as folmogeneous ellipsoids. Here it is an approximation, which

lows: The internal fieldE; () generates a polarization allows us to get to viable solutions which will be tested at the
This polarization induces on the surface elemadt of  end by an experimental comparison.
the dielectric body a polarization charge The polarization, established inside the dielectric, is due
. . to the displacement of electrical charges enforced by the field
Aq = 0po - AF = P - AF, Eo(ﬁ. Surface charges are built up and counteract the com-

which by virtue of the Coulomb law, together with the unper- Plete displacement corresponding to the figlgl#). We will

turbed fieldE, (%), generates finally the depolarization field, Suppose here, that the whole set of charges experiences the
such that same displacement, which means, that constant. We fur-

|  ther suppose, that the Polarization vecﬁ)rpoints more or
less into the direction of (), i.e., we will consider the pro-
. ) # o Lo ) A ) jection of the field, generated by the polarization charges, on
- 2

(1) the direction ofEy (7):

—1 Eo(7) - dFy Eo(7) 712 = .
— 80(K _ 1) {EO(""I) _ #(H 471—)041 0( ;%2 2 0_’7;1()7?1;12 Eo(?‘l>} 7
_ o . -1
k—1 (Eo(_)z)'d 2) ( 0(_'1)'7”12)
o=l 4 # 0 . AOQ(Fl) ' ®)

This value«; allows to consider a first approximation
of the polarization?,;, which on the surface of the dielec-
tric generates charges, and thus an additional field inside the
dielectric. The problem would be completely solved, if the .
total field at any place fulfills already the condition Er(7) = By(7) — ﬁﬁ (132(7?2) .dﬁQ)

0"12

—

—Pl(Fl)/E()(KJ — 1). (4)
E_:i = ﬁl/EQ(H — 1),

P, (7)can be calculated with; (7) in the same way, aB) (7)

but in general, the polarizatiof; of the first approximation as calculated witti ().

step will not be sufficient to describe the real situation, and ~ The number of approximation steps needed to achieve the
a field £, (7) keeps acting on the dielectric with the effect of best result depends on the complexity of the shape of the di-
an additional polarizatiods (), electric body, as well as the allowed error of the result.
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3. The depolarization field in a dielectric cylin-
der

Exact solutions are known for the sphere, the infinitesimal
thin wire, and the infinitesimal extended disk. When our ap-

proach is applied here, already the first approximation step
gives the exact solution, as it should be, when

a(F) = ay = constant.

The polarization of a prolate spheroid (Fig. 1) results with

429

&

Eq.2in

B VE+1 P +1-1 -
Oé—{l—(ﬁ‘,—l)(]Q <1+ 5 -fn\/m_’_l , (5)

where ¢ = b?/(a® + b?).
For an oblate ellipsoid one gets
1 —1
a= {1 — (k= 1)(¢* + 1) (qarctan= — 1)}
q

and consequently with ¢~ oo (or a = b) we have for the
sphere-shaped dielectric

o =3/(x+2),

and thus the known result

FIGURE 1. Prolate ellipsoid.

Such a homogeneous polarization is only the first approx-
imation. Due to the choice of the origin at= 0, the by P
generated field will be too weak in the transversal plane at
z = 0, but along the z -axis at the limiting faces of the cylin-
der itis too strong. A fielcﬁl(f') remains as given in Eq. (4),
which delivers the depolarization at the cylinder top and bot-
tom faces in a second approximation step.

The integrations, involved in this step, are quite tedious
and will not be carried out exactly here. We proceed instead
as foIIows:El(F) is largest at the center of the plane cylinder
faces, thus we put the origifi at the center of one of this

faces S (see Fig. 2) and concentrate all the charge ‘131‘

at this center. (The redl; might be slightly larger, but this
effect is compensated by a stronger inclination against the
surface). The charge at the opposite side face acfs after

the Coulomb law, and provided/ R > 1, like a point charge
nR%0y /Ameq-4L2, but for L/R>> 1 like an extended charged
disk with o1/2¢¢. A suitable interpolation of this field for
the complete range L/R is about;(2¢,)(1+8L%/R?)~L. The
normal component of the field belonging to the side face,
which containg? is o1/2¢4, and consequently results the nor-
mal componenﬁus at both side faces S to

Not so straightforward is the situation in the case of a

cylinder in a homogeneous electric fieE!)(f') (see Fig. 2).
We get

=3 R
R R i
EP E2(7) (a2 + L2)3/2
(R24+12)'/2
d
= / 4
.
L

— 4r [1—(1+R2/L2)—1/2] :

go(k — 1)50

e Y (R T S T

(6)

o 01 01 2/ p2y—1
E =Fy— — — —(1+8L°/R -
118 Ly 250( + /R%)

S S
Eo(lﬁl — 1)

The normal component d?l at the cylinder cover area C
(see Fig. 2) is approximately

’/TR20'1 -R
dmeg [R2 + (L — 2)2] 372
_ mR%01 - R
dmeg [R% + (L + 2)?] 3/2°

Eiic=

The surface integral ofv, contains then the follow-
ing contributions: 2 from the side faces containing,
2 [1 — (1 + R%/4L?*)'/?] from the opposite side face, and
from the cover are@’

Rev. Mex. Fs. 48 (5) (2002) 427-431



430 A.ZEHE AND A. RAMIREZ

— 2L # the second part is approximated after Fig. 3 wWithR > 1
to

e}

— 2R ——

and withL/R < 1 the contribution of the cover area tends

2 2L
/ rdr B 1 _0 £
r3(2L + R—7r)3  8R2L? R)’
S R
‘\C

—_ to zero of orded.? / R?.
A As a total, the surface integral approaches the value 4
FIGURE 2. Dielectric cylinder of length 2L and diamet2R. for L/R < 1, and
X 97 /4 — (117/32)R?/L?
3 _
RPle 1 1 (1 + 8L2/R2)71 1 for L/R > 1, which can be approximated by
4 oz 2 2 k—1

4 —Tr/4 — (1 +11R?*/56L%) " .

L
2rR (L — 2z)dz
x [R2 + (L — 2)?] 3/2 Thus

X {[32 +(L=2)) 7~ [R 4 (L + Z>2]_3/2} ‘ az = {1 + (k- 1) {1 - %(1 + 11R2/56L2)1} }_1 '

The first part of the integral results in .
The surface charge density = ¢o(k — 1)asFE1, when

(R*+4L?)/? added too; has the effect of reducing the charge density of
/ (1/r5)dr the side faces, but increasing it on the cover area close to the
J ’ side faces.

The dipole moment of the cylinder in a second approxi-
| mation yields then

F=mReo(n— 1) {1+ (s — 1) [L = (1+ R2/12)71/2] }*1 Ey

. 2/72\-1/2 _ 2/ p2\—1 2 2\ . 2 2\—1/2 _
x{2L+L 2L (14 R*/L7) L(1+8L*/R*)"" 4+ (R*+2L%) - (R*+4L?) R} @

(k—1)"1 41— 7/16(1 + 11R2/56L2)

The first part of the equation describes a homogeneous polar-

ization under consideration of only the charge density situ*

ated on the side f.acééi and th_e remaining .par_t con5|de.rs, as, Comparison with experimental results

a second approximation, a slight depolarization contribution

at both ends of the cylinder. The dipole moment of a dielectric cylinder with diameter
2R = 1.225 mm and a length 02 = 4.460 mm, made of
corundum withx = 7.44+1%, can be calculated, following

L Eq.(7), to

151 /<0 ‘EO‘ — 29.67 mm® — 2.80 mn? = 26.87 mn.
~2L+R-r
The larger part of the total corresponds to the first approxi-
mation step. The correction due to depolarization effects of
the cylinder top and bottom face. the second approxima-
tion step, results in about 10% of the first one, which is quite
remarkable.

This result has been experimentally verified, using a mi-
FIGURE 3. Long cylinder. crowave cavity resonator in the X-band. The resonance fre-
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guency of the empty cavity igy = 9351 MHz. The introduc-

dipole momentf] /eo |Ey| = 26.75 mm? + 1% has been

tion of the corundum cylinder into the cavity space of maxi- measured, which agrees quite well with the calculated value
mum electric field causes a shift of the resonance frequencys 26.87 mn.

by Av = 19.4 MHz £1%. In the first order of perturbation
theory, the dipole momentof the introduced sample is given
by

71 /20 [ Bo| = Ve Av/209,

whereV, = 2.579 - 10* mn? is the volume of the o5 -

Would the cylinder be approximated by a prolate spheroid
of the same volume with an axis relatiaryb = R/L,
one gets with a homogeneous polarization along the terms
of Eq. (5) 7] /<o ‘EO’ = 24.1 mm?. This value deviates
strongly from the measured result. Thus, the substitution of

resonator cavity, applied in this experiment. Thus, a reduced cylinder by a spheroid is not a good approximation.
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