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The depolarization field in polarizable objects of general shape
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The polarization of particles or biological cells is commonly investigated by measuring the impedance of suspensions or by a variety of
single particle methods, that exploit different force effects. For biological cells the most striking frequency-dependent changes in polariz-
ability result from structural (Maxwell-Wagner) polarization phenomena. Explicit solutions of the Laplace equation are available only for
objects with finite surfaces of the second degree. Thus, dielectric models consider the structural properties of cells by assuming spherical
or ellipsoidal geometries, since only in very few cases is the effective local fieldEi(r) in the presence of a dielectric object known. This
concerns dielectric bodies of special shape, which are exposed to a special electric fieldE0(r). In the present paper an approximation
procedure is presented for the general case, allowing to calculate the depolarization fieldEi(r), which is generated in the presence of an
arbitrarily shaped dielectric object, introduced into a field space~E0(~r). Contrary to recent numerical methods (finite element technique),
which require extensive computer resources due to the unavailability of analytical solutions, the here presented approach results in closed
analytical expressions. The applicability of the method is demonstrated for a non-ellipsoidal cylindrical dielectric by measuring its dipole
moment in a microwave field. The accordance with the calculated results is found to be one order of magnitude better than it would be in the
commonly practiced procedure, where the cylinder is substituted by a spheroid of the same axis relation.
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La polarizacíon de part́ıculas o celdas biológicas se estudia coḿunmente a trav́es de la medición de la impedancia de suspensiones, o bien
por una variedad de ḿetodos de partı́culas sencillas, que se basan en efectos diferentes de fuerza. Para celdas biológicas, los cambios en
la polarizacíon más notables dependiendo de la frecuencia, resultan de fenómenos estructurados de polarización (Efecto Maxwell-Wagner).
Modelos dieĺectricos consideran las propiedades estructurales de celdas suponiendo geometrı́as esf́ericas o elipsoidales, puesto que solo en
muy pocos casos se conoce el campo efectivo localEi(r) en presencia de un objeto dieléctrico. Esto se refiere a cuerpos dieléctricos de forma
especial, que están expuestos a un campo eléctrico especialE0(r). En el presente trabajo se muestra un procedimiento de aproximación para
el caso general que permite el cálculo del campo localEi(r) generado en presencia de un objeto dieléctrico de forma arbitraria, introducido
en el espacio de campo~E0(~r). La aplicabilidad del ḿetodo es demostrada para un cilindro dieléctrico no-elipsoidal a través de la medición
de su momento dipolar en un campo de microondas. La correspondencia con los resultados calculados se encuentra un orden de magnitud
mejor que en el procedimiento común de aproximar el cilindro por un esferoide con las mismas relaciones axiales.

Descriptores:Dieléctricos; campo local, polarización, bioelectŕonica.

PACS: 77.22.Ej; 87.10.+e; 87.50.Rr

1. Introduction

Only in very few cases can the electric field~E(~r) in the
presence of matter with dielectric constantκ be calculated.
In such cases an object of special shape is usually brought
into a special electric field~E0(~r). With an intelligent
guess or ansatz is then shown, that the boundary conditions
of the fields on the surface of the dielectric material are
fulfilled [1-5].

Dielectric models applied in diverse areas of research
consider the structural properties of matter by assuming
spherical or general ellipsoidal geometries. This is widely
used, e.g., in the case of the interaction of a.c. electric fields
with colloidal particles and biological cells. A variety of

methods, based on impedance measurements and on different
force effects are employed for the dielectric characterization
of single objects [6-10]. The general Laplace solution for the
polarization of single-shell ellipsoids, a standard model of bi-
ological cells [11, 12], was also derived for the meteorologi-
cal problem of dust particles covered by a water layer [13]. In
the Laplace model, a homogeneous ellipsoid always exhibits
a constant internal local field. Integrating over this field leads
to the induced dipole moment and thus to analytical expres-
sions related to force actions on the particles.

Already in such important cases as a cube or a cylinder is
it difficult to calculate the depolarization factors without as-
suming a spheroid as substituting body shape. But even then
is the best shape of it to be chosen, and the design of the next
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approximation step, not straightforward. Driven by the grow-
ing interest and impact of physical contributions to life sci-
ences [14-16], complex geometries, such as rods and cylin-
ders, need to be considered. Characterized by the unavail-
ability of analytical solutions for the field distribution within
such dielectric bodies, finite element numerical techniques
have been developed recently [17-20], with the compromise
of claiming considerable computer resources, though.

This paper deals with an approximation procedure for
the calculation of the depolarization field~Ei(~r) in a mate-
rial body of general shape with a dielectric constantκ, which
is brought into any given field~E0(~r), yielding an analytical
solution.

2. Depolarization field calculation

The problem, which is treated here, can be formulated as fol-
lows: The internal field~Ei(~r) generates a polarization

This polarization induces on the surface element∆~F of
the dielectric body a polarization charge

∆q = σpol ·∆F = ~P ·∆~F ,

which by virtue of the Coulomb law, together with the unper-
turbed field~E0(~r), generates finally the depolarization field,
such that

~Ei = (~r1) = ~E0(~r1)−
∫∫
© ~r12

4πε0r3
12

(~P (~r2) ·∆~F2). (1)

The integration is carried out over the surface of the di-
electric body;∆~F points outward, and~r12 combines the ori-
gin at~r1 with the integration element at~r2. The relation be-
tween~E0(~r) and ~Ei(~r) is supposed by us to be lineal:

~P (~r) = ε0(κ− 1) ~Ei(~r)

= ε0(κ− 1)α(~r) ~E0(~r) (2)

In general,α(~r) is a tensor, as the directions of~Ei and~E0

are not necessarily parallel. It further depends on the coordi-
nates inside the sample due to the locally different action of
the polarization charges. In order to calculate~P (~r) or ~Ei(~r)
from Eqs. (1, 2), we make the assumption, thatα does not
depend on~r, which of course is exactly fulfilled only in ho-
mogeneous ellipsoids. Here it is an approximation, which
allows us to get to viable solutions which will be tested at the
end by an experimental comparison.

The polarization, established inside the dielectric, is due
to the displacement of electrical charges enforced by the field
~E0(~r). Surface charges are built up and counteract the com-
plete displacement corresponding to the field~E0(~r). We will
suppose here, that the whole set of charges experiences the
same displacement, which means, thatα = constant. We fur-
ther suppose, that the polarization vector~P points more or
less into the direction of~E0(~r), i.e., we will consider the pro-
jection of the field, generated by the polarization charges, on
the direction of~E0(~r):

~P (~r1) = ε0(κ− 1)α1
~E0(~r1)

= ε0(κ− 1)

{
~E0(~r1)−

∫∫
© (κ− 1)α1

4π
·

~E0(~r2) · d~F2

~r3
12

·
~E0(~r1) · ~r12

~E2
0(~r1)

· ~E0(~r1)

}
,

α1 =



1 +

κ− 1
4π

∫∫
©

(
~E0(~r2) · d~F2

)

~r3
12

·

(
~E0(~r1) · r12

)

~E2
0(~r1)





−1

. (3)

This valueα1 allows to consider a first approximation
of the polarization~P1, which on the surface of the dielec-
tric generates charges, and thus an additional field inside the
dielectric. The problem would be completely solved, if the
total field at any place fulfills already the condition

~Ei = ~P1/ε0(κ− 1),

but in general, the polarization~P1 of the first approximation
step will not be sufficient to describe the real situation, and
a field ~E1(~r) keeps acting on the dielectric with the effect of
an additional polarization~P2(~r),

~E1(~r) = ~E0(~r)−
∫∫
© ~r12

4πε0 r3
12

(
~P2(~r2) · d~F2

)

−~P1(~r1)/ε0(κ− 1). (4)

~P2(~r)can be calculated with~E1(~r) in the same way, as~P1(~r)
was calculated with~E0(~r).

The number of approximation steps needed to achieve the
best result depends on the complexity of the shape of the di-
electric body, as well as the allowed error of the result.
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3. The depolarization field in a dielectric cylin-
der

Exact solutions are known for the sphere, the infinitesimal
thin wire, and the infinitesimal extended disk. When our ap-
proach is applied here, already the first approximation step
gives the exact solution, as it should be, when

α(~r) = α1 = constant.

The polarization of a prolate spheroid (Fig. 1) results with
Eq. 2 in

α=

{
1−(κ−1)q2

(
1+

√
q2+1
2

· `n
√

q2+1−1√
q2+1+1

)}−1

, (5)

where q = b2/(a2 + b2).
For an oblate ellipsoid one gets

α =
{

1− (κ− 1)(q2 + 1)(q arc tan
1
q
− 1)

}−1

and consequently with q→ ∞ (or a = b) we have for the
sphere-shaped dielectric

α = 3/(κ + 2),

and thus the known result

~P = 3ε0
κ− 1
κ + 2

· ~E0.

Not so straightforward is the situation in the case of a
cylinder in a homogeneous electric field~E0(~r) (see Fig. 2).
We get

∫∫
©

~E0(~r2) · d~F2

~r3
12

~E0(~r1) · ~r12

~E2
0(~r1)

= 2

R∫

0

2πa da · L
(a2 + L2)3/2

=

(R2+L2)1/2∫

L

r dr

r3
· 4πL

= 4π
[
1−(1+R2/L2)−1/2

]
,

P1 =
ε0(κ− 1) ~E0

1 + (κ− 1)
(
1− (1 + R2/L2)−1/2

) . (6)

FIGURE 1. Prolate ellipsoid.

Such a homogeneous polarization is only the first approx-
imation. Due to the choice of the origin atz = 0, the by P
generated field will be too weak in the transversal plane at
z = 0, but along the z -axis at the limiting faces of the cylin-
der it is too strong. A field~E1(~r) remains as given in Eq. (4),
which delivers the depolarization at the cylinder top and bot-
tom faces in a second approximation step.

The integrations, involved in this step, are quite tedious
and will not be carried out exactly here. We proceed instead
as follows: ~E1(~r) is largest at the center of the plane cylinder
faces, thus we put the origin~r1 at the center of one of this
faces S (see Fig. 2) and concentrate all the chargeσ1 =

∣∣∣~P1

∣∣∣
at this center. (The real~E1 might be slightly larger, but this
effect is compensated by a stronger inclination against the
surface). The charge at the opposite side face acts on~r1 after
the Coulomb law, and providedL/R À 1, like a point charge
πR2σ1/4πε0 ·4L2, but for L/RÀ 1 like an extended charged
disk with σ1/2ε0. A suitable interpolation of this field for
the complete range L/R is about (σ1/2ε0)(1+8L2/R2)−1. The
normal component of the field belonging to the side face,
which contains~r1 isσ1/2ε0, and consequently results the nor-
mal component~E1⊥S at both side faces S to

~E1⊥S = E0 − σ1

2ε0
− σ1

2ε0
(1 + 8L2/R2)−1 − σ1

ε0(κ− 1)
.

The normal component of~E1 at the cylinder cover area C
(see Fig. 2) is approximately

~E1⊥C =
πR2σ1 ·R

4πε0 [R2 + (L− z)2] 3/2

− πR2σ1 ·R
4πε0 [R2 + (L + z)2] 3/2

.

The surface integral ofα2 contains then the follow-
ing contributions: 2π from the side faces containing~r1,
2π [1 − (1 + R2/4L2)1/2] from the opposite side face, and
from the cover areaC
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FIGURE 2. Dielectric cylinder of length 2L and diameter2R.

R3

4

[
ε0

σ1
− 1

2
− 1

2
(
1 + 8L2/R2

)−1 − 1
κ− 1

]−1

×
L∫

−L

2πR (L− z) dz

[R2 + (L− z)2] 3/2

×
{[

R2 + (L− z)2
]−3/2 − [

R2 + (L + z)2
]−3/2

}
.

The first part of the integral results in

(R2+4L2)1/2∫

R

(1/r5)dr,

the second part is approximated after Fig. 3 withL/R À 1
to

2L∫

R

r dr

r3(2L + R− r)3
=

1
8R2L2

−O

(
L

R

)
,

and withL/R ¿ 1 the contribution of the cover area tends
to zero of orderL2/R2.

As a total, the surface integral approaches the value 4π
for L/R ¿ 1, and

9π/4− (11π/32)R2/L2

for L/R À 1, which can be approximated by

4π − 7π/4− (1 + 11R2/56L2)−1.

Thus

α2 =
{

1 + (κ− 1)
[
1− 7

16
(1 + 11R2/56L2)−1

]}−1

.

The surface charge densityσ2 = ε0(κ − 1)α2
~E1⊥ when

added toσ1 has the effect of reducing the charge density of
the side faces, but increasing it on the cover area close to the
side faces.

The dipole moment of the cylinder in a second approxi-
mation yields then

~p = πR2ε0(κ− 1)
{

1 + (κ− 1)
[
1− (1 + R2/L2)−1/2

]}−1
~E0

×
{

2L +
L− 2L (1 + R2/L2)−1/2 − L(1 + 8L2/R2)−1 + (R2 + 2L2) · (R2 + 4L2)−1/2 −R

(κ− 1)−1 + 1− 7/16(1 + 11R2/56L2)

}
(7)

The first part of the equation describes a homogeneous polar-
ization under consideration of only the charge density situ-
ated on the side facesS, and the remaining part considers, as
a second approximation, a slight depolarization contribution
at both ends of the cylinder.

FIGURE 3. Long cylinder.

4. Comparison with experimental results

The dipole moment of a dielectric cylinder with diameter
2R = 1.225 mm and a length of2L = 4.460 mm, made of
corundum withκ = 7.44±1%, can be calculated, following
Eq.(7), to

|~p| /ε0

∣∣∣ ~E0

∣∣∣ = 29.67 mm3 − 2.80 mm3 = 26.87 mm3.

The larger part of the total corresponds to the first approxi-
mation step. The correction due to depolarization effects of
the cylinder top and bottom faces,i.e. the second approxima-
tion step, results in about 10% of the first one, which is quite
remarkable.

This result has been experimentally verified, using a mi-
crowave cavity resonator in the X-band. The resonance fre-
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quency of the empty cavity isυ0 = 9351 MHz. The introduc-
tion of the corundum cylinder into the cavity space of maxi-
mum electric field causes a shift of the resonance frequency
by ∆υ = 19.4 MHz ±1%. In the first order of perturbation
theory, the dipole moment~p of the introduced sample is given
by

|~p| /ε0

∣∣∣ ~E0

∣∣∣ = Vc ·∆υ/2υ0,

whereVc = 2.579 · 104 mm3 is the volume of theH105 -
resonator cavity, applied in this experiment. Thus, a reduced

dipole moment|~p| /ε0

∣∣∣ ~E0

∣∣∣ = 26.75 mm3 ± 1% has been
measured, which agrees quite well with the calculated value
of 26.87 mm3.

Would the cylinder be approximated by a prolate spheroid
of the same volume with an axis relationa/b = R/L,
one gets with a homogeneous polarization along the terms
of Eq. (5) |~p| /ε0

∣∣∣ ~E0

∣∣∣ = 24.1 mm3. This value deviates
strongly from the measured result. Thus, the substitution of
a cylinder by a spheroid is not a good approximation.

1. L. D. Landau, E. M. Lifschitz,Elektrodymanik der Kon-
tinua (Continuum Electrodynamics), Vol. 8 (Akademie-Verlag,
Berlin, 1985).

2. A. Sommerfeld,Vorlesungenüber theoretische Physik (Lec-
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