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Quantum bits and superposition of displaced Fock states of the cavity field
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We study the effects of counter rotating terms in the interaction of quantized light with a two-level atom, by using the method of small
rotations. We give an expression for the wave function of the composed system atom plus field and point out one initial wave function that
generates a quantum bit of the electromagnetic field with arbitrary amplitudes.
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Estudiamos los efectos de los términos contra-rotantes en la interacción entre un campo electromagnético cuantizado y uńatomo de dos
niveles, usando el ḿetodo de pequẽnas rotaciones. Obtenemos una expresión para la funcíon de onda del sistema compuestoátomo-campo
y elegimos un estado inicial de la función de onda que genera unbit cuántico del campo electromagnético.

Descriptores:Bits cúanticos; aproximación de onda rotante; modelo de Jaynes y Cummings.
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1. Introduction

The Jaynes-Cummings model (JCM) [1] is a very simpli-
fied version of a much more complex problem, the interac-
tion between electromagnetic radiation and atoms. It mod-
els this interaction using the rotating wave approximation
(RWA) that allows it to be fully solvable. Its simplicity al-
lows physicists to apply the fundamental laws of quantum
electrodynamics to it and still be able to solve it analytically.
In the early days of its existence, the JCM was regarded as
a theoretical curiosity because of the inherent difficulties in
its experimental realization. Over the past few years, how-
ever, there have been a number of experiments [2] that can
be modeled by the Jaynes-Cummings Hamiltonian or gen-
eralizations of it [3]. Therefore, the JCM has been a sub-
ject of great interest because it enables one to study, in a
realistic way, not only the coherent properties of the quan-
tized field, but also its influence on atoms. Collapses and
revivals [4], squeezing [5], generation of Scḧodinger cat
states [6], etc. have been predicted with this model, and re-
cent developments in Cavity QED techniques have made it
possible to observe those phenomena [2]. Moreover, there
has been arevivalof the JCM because its Hamiltonian can be
used to model some other systems, such as the interaction of
a trapped ion with a laser field. On this topic, multiphonon
and anti JCM may be produced [7–11], giving rise to a vari-
ety of phenomena thought technologically difficult to realize
in cavity QED. Recent advances in quantum information pro-
cessing have given importance to quantum state engineering,
as one needs to produce and control quantum bits or qubits
(superposition of the ground and first excited level) of the
system (see for instance [10]). However, quantum noise,

that destroys quantum coherences very fast, can be very dif-
ficult to overcome, and ways of protecting states have been
published [12]. Here we would like to treat the problem of
a two-level atom interacting with a quantized field but not
considering the RWA, because a state produced by the JCM
(with RWA) could be thought as if it had some noise (because
a small correction with a further evolution can mislead a de-
sired result). Therefore, it is important to give the most exact
possible solution to the problem of interaction of a two-level
atom with a quantized field. Recently some eigenstates for
the complete Hamiltonian have been found [13]. However,
as they do not form a complete basis, exact solutions may
be found only for those (eigen) states (that of course may be
regarded as trapping states).

Former studies on the effects of counter rotating [15, 14]
terms have used the path integral technique in coherent
state representation (the coherent state propagator) and have
shown that even under conditions in which the RWA is con-
sidered to be justified, there is significant contribution to the
atomic inversion due to counter rotating terms [14]. They
obtained results to first order for the atomic inversion [14]
and the average number of photons [15]; however, there is
no explicit result for the wave function. We believe that it
is important to have expressions that are easy to manipulate,
specifically of the wave function, because of the possibility
of generating non-classical states of light, which in the past
has open the field of quantum state engineering. Therefore,
we reconsider the problem in this manuscript, and show that
non-classical states, namely, qubits and superposition of dis-
placed number states [16] of the quantized electromagnetic
field may be produced.

We study the problem from the point of view of the small
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rotations method proposed recently by Klimov and Sánchez-
Soto [17], to obtain a first order correction to the wave func-
tion. The RWA breaks down as the atomic frequency and the
field frequency are detuned, and we consider this (detuned)
case. With the expression for the evolved wave function, we
show what initial state has to be used in order to obtain a qubit
of the quantized field with arbitrary amplitudes. In Sec. 2 we
transform the Hamiltonian for the atom-filed interaction by
applying the method of small rotations to have an effective
Hamiltonian that can be fully solved. In Sec. 3 we apply it
to an initial wave function in order to obtain qubits, and dis-
placed superposition of Fock states and Sec. 4 is devoted to
conclusions.

2. Method of small rotations

The Hamiltoninan for the system of a single two-level atom
interacting with a single-mode quantized field in the dipole
approximation is given by (we have set~ = 1) [1]

Ĥ = ωn̂ +
ω0

2
σ̂z + λ(σ̂+ + σ̂−)(â + â†), (1)

whereâ† andâ are the creation and annihilation operators for
the field mode, respectively, obeying[â, â†] = 1, n̂ = â†â
andσ̂+ = |e〉〈g| andσ̂− = |g〉〈e| are the raising and lower-
ing atomic operators, respectively,|e〉 being the excited state
and |g〉 the ground state of the two-level atom. The atomic
operators obey the commutation relation[σ̂+, σ̂−] = σ̂z. ω
is the field frequency,ω0 the atomic frequency andλ is the
interaction constant.

We apply the transformation

T̂ = e−δ(â−â†)(σ̂++σ̂−), (2)

to Eq. (1) to obtain

Ĥ = ω(n̂− δ(â + â†)(σ̂− + σ̂+) + δ2)

+
ω0

2
(
σz cosh[2δ(â− â†)]

−(σ− − σ+) sinh[2δ(â− â†)]
)

+λ(â + â†)(σ̂− + σ̂+)− 2λδ. (3)

By considering the quantityδ much smaller than one, we can
approximate (3) to first order

Ĥ ≈ ω
(
n̂− δ(â + â†)(σ̂− + σ̂+)

)

+
ω0

2
(
σz + 2δ(σ+ − σ−)(â− â†)

)

+λ(â + â†)(σ̂− + σ̂+), (4)

where we dropped constant terms that contribute to a shift of
the overall energy. By setting

δ =
λ

ω + ω0
, (5)

we finally obtain a Hamiltonian similar to the one obtained
when the RWA is applied:

Ĥ = ωn̂ +
ω0

2
σ̂z + ε(σ̂+â + â†σ̂−). (6)

However it should be noticed that thenew interaction con-
stantε has changed from the initial one (λ), something that
does not occur when the RWA is applied. The new interaction
constant is now

ε = λ
2ω0

ω0 + ω
. (7)

The expression forδ is exactly equal to the expression for the
first order approximation used in Refs. 14 and 15 using path
integral approach to the problem in theω = ω0. Note that
both methods give first order approximations and the expan-
sion parameter here agrees with reference Refs. 14 and 15.
We would like however to stress that the present method al-
lows visualization of the form for the evolved wave function
that allows the generation of some non-classical states.

The evolved wave function may be found now by apply-
ing the transformed unitary evolution operator to an initial
wave function

|Ψ(t)〉 = T̂ †Û T̂ |Ψ(0)〉, (8)

whereÛ is given by

Û = e−it(ωn̂+ 1
2 ω0σ̂z)e−it[∆2 σ̂z+ε(âσ̂++â†σ̂−)], (9)

where∆ = ω0 − ω. Equation (9) may be re-written as

Û = e−it(ωn̂+ 1
2 ω0σ̂z)

(
1
2
[Û11 + Û22]Î

+
1
2
[Û11 − Û22]σ̂z + Û21σ− + Û12σ+

)
, (10)

where

Û11(t; n̂) = cos Ω̂n̂+1t− i
∆
2

sin Ω̂n̂+1t

Ω̂n̂+1

, (11)

Û12(t; n̂) = −iεâ
sin Ω̂n̂t

Ω̂n̂

, (12)

Û21(t; n̂) = −iεâ†
sin Ω̂n̂+1t

Ω̂n̂+1

, (13)

and

Û22(t; n̂) = cos Ω̂n̂t + i
∆
2

sin Ω̂n̂t

Ω̂n̂

, (14)

with

Ω̂n̂ =

√
∆2

4
+ ε2n̂. (15)
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3. Qubits of the quantized field

If the cavity field is initially prepared in the coherent state
| − δ〉

| − δ〉 = D̂(−δ)|0〉 = e−
δ2
2

∞∑
n=0

(−δ)n

√
n!

|n〉, (16)

whereD̂(−δ) = exp[−δ(â†−â)] and|n〉 is the Fock number
state of the cavity field, and the atom is prepared in a super-
position of the excited and ground states, the initial (total)
wave function may be written as

|Ψ(0)〉 =
1√
2
(|g〉+ |e〉)| − δ〉. (17)

By inserting (17) in (8) we obtain the entangled state

|Ψ(t)〉 =
1√
2
(|ψe〉|e〉+ |ψg〉|g〉), (18)

with

|ψe〉 = (U11(t; 0)e
−i

ω0t

2 cosh[δ(â− â†)]

+U22(t; 0)e
i
ω0t

2 sinh[δ(â− â†)])|0〉

+Ũ21(t; 0)e
−i(ω−

ω0

2
)t

sinh[δ(â− â†)]|1〉, (19)

and

|ψg〉 = (U11(t; 0)e
−i

ω0t

2 sinh[δ(â− â†)]

+U22(t; 0)e
i
ω0t

2 cosh[δ(â− â†)])|0〉

+Ũ21(t; 0)e
−i(ω−

ω0

2
)t

cosh[δ(â− â†)]|1〉, (20)

and where theU’s are defined as the (vacuum) expectation
values

Uij(t; 0) = 〈0|Ûij(t; n̂)|0〉, i = j = 1, 2, (21)

and

Ũ21(t; 0) = −iε〈0| sin Ω̂n̂+1t

Ω̂n̂+1

|0〉. (22)

By measuring the atom when it leaves the cavity in the state

|Ψatom〉 =
1√
2
(|g〉+ |e〉), (23)

we end up with a wave function describing the cavity field
that reads

|Ψfield〉 = [U11(t; 0)e
−i

ω0t

2 + U22(t; 0)e
i
ω0t

2 ]|δ〉

+Ũ21(t; 0)e
−i(ω−

ω0

2
)t|δ, 1〉, (24)

where |δ, k〉 = D̂(δ)|k〉 is a displaced number state [18].
Therefore, we have constructed a superposition of displaced
number states [16] and by displacing the cavity field by−δ,
i.e. by injecting a field that displaces the cavity field by that
effective amplitude, we can generate a qubit (in reconstruc-
tion processes is a common technique the displacement of a
given wave function [19]).

4. Conclusions

We have studied the first order contributions of the counter
rotating terms present in the interaction between a two-level
atom and a cavity field by using a technique recently intro-
duced in Ref. 17. We have been able to write down the wave
function in this case, and to point out an initial state of the
atom and the field that would lead to the generation of a quan-
tum bit and superposition of displaced number states of the
electromagnetic field.

Besides the solution given here, that allows manipulation
of parameters to engineer a given state, we have looked for
the initial states to construct superposition of displaced num-
ber states and qubits of the electromagnetic field which are
considered highly non-classical.

It is worth to note that the qubit generated (after displace-
ment of the cavity field) has arbitrary amplitudes, as the co-
efficients for the ground and first excited states can be varied
arbitrarily. The final qubit state reads

|Ψdis〉 = [U11(t; 0)e
−i

ω0t

2 + U22(t; 0)e
i
ω0t

2 ]|0〉

+Ũ21(t; 0)e
−i(ω−

ω0

2
)t|1〉). (25)

In Ref. 15 it was considered a ratioλ/ω ≈ 0.1. There have
been efforts to obtain experimentally such ratios (that would
allow the interaction with environments to be negligible [2]),
considering the same ratio here, and not considering the cor-
rection we have found would indeed mislead the final result.
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