ENSENANZA REVISTA MEXICANA DE FiSICA 48 (5) 463-474 OCTUBRE 2002

Modos de osciladbn en cuerdas homo§gneas por tercios

G. Rodiiguez Zurita
Benengrita Universidad Autnoma de Puebla
Facultad de Ciencias iBico-Matenaticas
72000, Puebla, Pue. &kico.

Ranbn Alvarado Bustos, Ruim Alvarado Bustos, L. E. Zavala Raerz
Facultad de Fsica e Inteligencia Artificial
Universidad Veracruzana
91000, Xalapa, Ver. Exico.

Recibido el 22 de junio de 2001; aceptado el 14 de marzo de 2002

En este trabajo se estudian algunas soluciones propias de una cuerda, caracterizada por una densidad de masa constante en cada uno d
tres tercios (homagnea por tercios), sujeta por sus dos extremos y sometida a urnteosstante. La solumn buscada admite el uso de
métodos de empalme de soluciones, como los usuales eainacéntica introductoria. Para compar@eicon los resultadosdaecos, se

realizan experimentalmente cuerdas por tercios con segmentos de alambres de cobre de calibres ¢adidmopar soldadura. Este caso

resulta aalogo al del planteamiento de la ecu@atde Scbdinger para una barrera de potencial. Se discuten los resultados encontrados y su
posible utilizacbn con fines de enganza.

DescriptoresVibraciones y ondas meca’nicas; demostraciones experimentales; resonancia, atenuacio’n y estabilidad meca’nica.

Along this work, some solutions for string oscillation modes with constant linear mass density each third (homogeneous in thirds) fixed in
both ends and under constant tension are shown. Solutions are found following well-known methods for piecewise constant potentials in
one dimension as is usual in introductory Quantum Mechanics. The analysis justifies the procedure to construct piecewise homogeneou:
strings from cooper wires of adequate gauges by solding wire pieces together. This case have similarities witidthgeBeguation for a

potential barrier. Experimental results are presented and possibilities of use for pedagogical purposes are discussed.

Keywords:Vibrations and mechanical waves; experimental demonstration; resonance, damping and dynamic stability.
PACS: 46.40.-f; 07.10.-h; 46.40.Ff; 43.75.+a

1. Introducaddn correspondientes a tres regiones con fronteras en los puntos
z=—-L,z=—a,z=ayz= L (Fig. 1). La ecuadn a

En esta comunicagh, en complemento a un trabajo previo .
resolver es una ecudti de onda, de la forma

referente a cuerdas honfaggas por mitades [1], se plantea
la posibilidad de inspeccionar el caso de cuerdas hémeap 0*  p(z) 9%y

por tercios, empleando elétodo de empalme de soluciones, 922 T, o2’

muy usado en mémica c@ntica para la determinaii de 3 i
soluciones a la ecudni de Schdinger cuando el potencial €°N7o la tensén, supuesta constante, a la cuaaestjeta la

es constante por tramos [2, 3]. Como resultado se encuef¥€rda. En general la solaci de la ecuaon debe resultar

tran modos estacionarios de oscitat[4] caracterizados por de la inspecdin de la ecuadin d!ferenC|aI resultante tras la
longitudes de onda diferentes en cada segmento de cuerdyPstitucdn dep(z). Como un ejemplo de ello, en la Ref. 5

En particular se consideran cuerdas consistente en tres sé{t—ede verse el caso en qug:) sea dependiente de. En
mentos (tercios) con densidades diferentes. Se han analiza§bcaso & discutir, sin embargo, la densidad puede expresarse
cuerdas con densidades iguales en sus extremos y diferente@HN0 Una funan de valores constantes por tramos, esto es,

su tercio intermedio; &somo tambén el caso de tres densi- pro—L<z<—a
. oy . b — —
dades diferentes. El alisis se compara con los resultados ex- p(z)={ pi—a<z<a
. . . ’, b — — )
pen_mentalles obtenidos de analizar cuerdas h@meas por prina<z<L
tercios uniendo por soldadura tramos de alambre de cobre de
diferentes calibres. de modo que la soluah puede buscarse como ladmde tres

soluciones, cada una de las cuales es sfude la ecuadin
2. Cuerdas homogéneas en tres tramos sujetas de onda con densidad constante en el tramo correspondiente.

por sus extremos Gran parte del problema se reduce a empalmar las tres so-
luciones con base en las condiciones de frontera. Este-m
2.1 Planteamieni general do es muy bien conocido en néetca cé@ntica al abordar el

caso de potenciales unidimensionales constantes por tramos
Supbngase una cuerda de longitull 2ompuesta de tres seg- empleando la ecuam de Schidinger [2] y es el propuesto
mentos iguales de densidades lineales de mgsar Yy prrr, en este trabajo.
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, . 1 , caso. La continuidad de las soluciones se establece con las
H : ¥(2) : cuatro condiciones de frontera (continuidad de sélugi de
! Il derivada en interfaz) siguientes:

7 Yr(—a) = ¢ri(—a), (3a)

> 1(—a) =¥ (~a), (3b)

Yrr(a) = Yrrr(a), (3c)

Z=L
(@) = Y (a). (3d)
Usando la Ec. (3a) junto con las Ecs (1a) y (1b) primero,
FIGURA 1. Cuerda homdégnea por tercios. y luego usando la Ec. (3b) con las Ecs. (1a) y (1b), se obtiene
Acordemente, la solugn de un modo (de frecuencia _ _ _ _
en las tres regiones) puede escribirse como Ape™ 1% 4 Bret™Me = Appem 114 + Byret e, (4a)
Yr(2) = Are’™1* + Brem® =y, (1a) Are~k1a_peikra :kiI’(A,,e—zkna—B,,elkM).

Gri(z) = Ape’* 17 4 Brre " = gy, (1b) (40)

Wrir(z) = Apre™ 1 4 Brem s = g (1c) Sumando miembro a miembro las Ecs. (4a) y (4b), se en-
cuentra
cumpliéndose las relaciones de dispénsi
2A[6_ik1a = (1 + @)A]](f—ik”a
T, k1
w/k] =V = —, (Za) kII '
o +(1 - ?)Buelk”a; (4)
I
T, . . -
w/kir =v = , (2b) mientras que, restando las mismas y multiplicando por -1, se
pII tiene
T
w/kirr = v = =, (2¢)
/ PIIT 2Bleik‘1a — (1 _ @)Alle_iklla

conw la frecuencia angular del mod; = 27/ \; el nimero krp _

de onda en laregnhj = I,11,111I,v; la velocidad de fase +(1+ k—)Bnelk”“~ (5)
correspondiente a la rdémi j, y Ty la tensén de la cuerda. !

Todas las cantidades involucradas son reales para el presente Despejando las Ecs. (5a) y (5b), se llega a las siguientes
| expresiones para coeficientes

Ar N g (A Y _ 1O+ D1 )e!Frr=kDa (1 — gy e~ (kirthoa Anr (6a)

By )~ "\ B ) 2\ (1= dy)eilhithne (14 gy)emilkii—ka Brr
y, ardlogamente, usando la Ec. (3c) junto con las Ecs. (1b) y (1¢) primero, y luego usando la Ec. (3d) con las Ecs. (1b) y (1c),
se obtiene

Arr Arrr L ([ (14 ds)eiFrrr—hina (1 — ggy)e=ikirrthina Arrr
= To3 =5 i(krrrt+kina —i(krir—kir)a ) (6b)
Brr Brrr 2\ (1 — Ogp)eikrrrthn (14 Ds2)e rr1—krr Brrr
dondedsy = krr/kr y ¥s2 = krrr/krr- A continuacon, se buscan las soluciones de ondas estacionarias para una cuerda
cono ladescrita.

2.2 Cuerda homogénea en tercios sujeta por sus extre-

mos
Yr(—=L) =¢rrr(L) =0, (7)

La condicbn de extremos fijos se expresa con las condiciones

de frontera siguientes: obteniendo para los coeficientes dadices! y Il , que
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B[ = —Ale_iQkIL, (83.)

(8b)

Brrr = —Appretkik,

Por tanto, de las Ecs. (1) se pueden encontrar las formas de

los modos en los terciasy Il como sigue:

Vr(z) = 2iAre”* 1L sen (ki[z + L)),

1/)]]](2) = 2Z'A]]]€ik”IL sen (k[[[[z — LD

(92)
(9b)

Introduciendo ahora la Ec. (8a) en la Ec. (5b), se obtiene

72A167ik:1(2L7a) _ (1 o 1921)A1167ik”a
—‘r(l + ’1921)3116%”(1, (103)
|
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y multiplicando porexp {—i2k;(L —a)} en la Ec. (5a), se
halla que

2A167ik1(2L7a) _ (1+1921)AllefiknaefiZkI(Lfa)

+(1 — ¥91) Brrettiide=2ki(l=a) - (10p)

Sumando las Ecs. (10a) y la (10b), puede despejarse un coe-
ficiente como sigue:

Bip = —Ape” ke

, C08 ki(L —a) — Y91 sen k(L — a)
coskr(L — a) + ida1 senk(L —a)’

(11)

Entonces, incorporando la Ec. (11) en la Ec. (1b) se des-
prende que

Yi1(z) = Anr {eik”z — ¢ ke

de donde, en particular pata= —a,

Yrr(—a) = Ape” e

12991 sen k(L — a)
coskr(L — a) + iva1 senk;(L — a)

= i247e "L senkr(—a + L),

(13)

habiendo empleado la Ec. (3a). De ddtana relacéon puede
despejarsel;; en €rminos ded;. Haciéndolo ag y usando
la Ec. (12), se llega a una exprésiparay;(z):

2iAje kil
V21
+¥91 coskrr(z + a) senkr(L — a)], (14a)

Yir(z)= [senkrr(z+a)coskr(L — a)

mientras que para la correspondiente derivada

2iAre~ikiL

Wi (2)= krr[cos krr(2+a) cos ki (L—a)

coskr(L —a) —i¥a1 sen k(L — a) T
coskr(L — a) +i921 sen k(L — a) ’

(12)

Ljonde la segunda igualdad se obtiene de calcular el inverso
de la derivada logémica en el punta: = —a de;(z) si-
guiendo a la Ec. (9a). Al comprobar esta igualdad, se verifica
la equivalencia de las condiciones de frontera, [Ecs. (3)], con
la igualdad de las derivadas logaricas.

Usando otra vez la Ec. (14a) para ahora sustélvalor
dez = a, se encuentran las siguientes relaciones:

2iAr o—ikiL

Yrr(a) = Ion

[sen 2krracoskr(L — a)

+ Y91 cos 2kyra sen k(L — a)]
= QiAjjjeikI”L senk;HI(a — L) = ¢[[[(a), (16)

donde se ha empleado la Ec. (3b) de continuidad y el resul-
tado de establecido en la Ec. (9b). De esta rélacpuede
despejarsel;r; en €rminos ded;, encontrando

2ZAI e_ikIL

Yrrr(z) = Ior

[sen 2krracoskr(L — a)

P21 9 o io(L, — ] senkrrr(z — L) (17a)
—V91 senkrr(z + a) senkr(L — a)]. (14b) + 021 cos 2kya senkr (L — a) senkri(a—L)
La derivada logdtmica dew;(z) valuada ere = —a 'y de- Wi (2) = kit 2iAr e~ *1 L [sen 2k acos ki (L — a)
terminada por las Ecs. (14a) y (14b), conduce a la siguiente V21
igualdad: Ccos k[]](z — L)
32 L— —_—. (17
+ 91 cos 2krra sen ky( a)] senrr(a—1) (17b)
¢f1(2) _ itan(k; IL—a]) = 1/1,1(2:) , (15) Estasiltimas igualdades, comgardolas con el cociente de
V(2| , k1 V()] g las Ecs. (14a) y (14b), deben satisfacer la igualdad de las de-

rivadas logatmicas dey;;(2)y ¥rr1(z) enz = a, esto es,
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Yrrr(2) _ 1
Vi (2)' e krgr

1 [sen?k;lacosk[(L— a) + ¥o1 cos 2krra sen k(L —a)] ~ Yrr(2)
~ kyr cos2krjacoskr(L — a) — ¥a1 sen2krrasenkr(L —a) V(%)

tan(kju [a — L])

; (18)
a
identidad que proporciona los valores posibles de ([oser  la seccbn transversall, usando la relaéin
ros de onda. Las Ecs. (9a), (14a) y (17a) son entonces las

soluciones buscadas para cada tramo. Debido a las relacio-

nes de dispersn [Ecs. (2)] cuando resulte posible la exis- pe = puAs. (20)
tencia de un modo con frecuencia angulaparak; # kjy,

krr # krr1, kirr # ki se debex de cumplir adeds, consi- 2.3 Determinadon de soluciones

derando la misma tertsi en los tres segmentos, las siguien-

tes condiciones para las densidades lineales: Para determinar los valores posibles de losaros de onda,

o o 5 se impone la condién de continuidad, [Ec. (18)]. Con las
JEE =9y, P =gy, JEL =9, (19)  definiciones siguientes:
pI PI PII

La densidad de una cuerda real es una densidad edfiam

cap,. En el caso de homogeneidad voktmica, éstadltima kra = a, krra =991, krrra = 9510, 931 = krrr/kr,
puede relacionarse con la densidad lineal "efectiva’mediante

| laEc. (18) se rescribe como

tan(Vs1a[1 — L/a]) 1 sen2dsaccosa(L/a— 1) 4 121 cos20s1asena(L/a — 1)
V3100 910 cos 209 accos a(L/a — 1) — Yoy sen 2091 sena(Lja — 1)

(21)

La bisqueda de las soluciones= «,, puede orientarse con-
siderando las @ficas de la Ec. (21), mostradas en la Fig. 2
para algunos casos. En particular, en la Fig. 2a se ha grafic
do el casads; = 2,93, = 1, mientras que en la Fig. 2b, se
ha graficado el casé,; = 1/2,493; = 1, que es el intercam-
bio de los valores del caso anterior. De ambas situaciones !
mostraan algunos modos experimentalesswadelante. En la
Fig. 2c, se muestra la gfica de la Ec. (21) correspondiente
al casovy; = 1/640/159,93; = 1/1020/159, que corres-
ponde a una cuerda formada por tres segmentos de aIamt%
de calibres 28, 22 y 20 de acuerdo ala Ec. (21) y a los valore® 1
deareas encontrados en la literatura [5]. 5 ’ :

2 4 6 8 10 12

Q(821xa)

|
)’_—--—
v

0.56
0.2

J 49
|| 8
\“ ‘
4

-2.298

)

(931xa),

x b) e21=1/2 . c) ©21=+/2537/159  ©31=+/1020/ 159
2 n e 2x K 3
! 4 1048
g ". R -
— H i . 3 T 7414‘.4
Q2 ! i Yt S ] : 1
2 i [ 0.2 4 6 8 10 12 % M
a’ 2.252, T 2.252 = - ‘2
1 ) o X I .
. i ! of L
— Y ~ 0 12
8 0.9 / H i 0,992 Py 2 4 6 8 101
L A \ [ ! ' 8 0.786
x
5‘ 0.295 /\\ \\ / “‘/ \ 0.295 — \ i
2 N s S ~< ol o s ! | !
< o N < S SN 14 1 [ Y ] |‘ ‘I e
g ~0.622 h \| b -0.622 U \ \J |‘/ | e
© Y 1 a \/ . il
B s /"‘ / f / ". { 1 a3 S S S - i gooss
' | | - . + - -0.145
LUl [ BT : 1K i 3
z n
7 S o 7 o . 7

FIGURA 2. Gréficas de la Ec. (20) como furiei de« para diferentes valores dg; y deds;. Se denota por Tané§1 x «) al primer miem-
bro de la Ec. (21) (trazo segmentado) y pot@X x «) al segundo miembro (trazo grueso). Las soluciones a la Ec.21 son las intersecciones,
algunas de las cuales se indican con puntdglaedo tami&n algunos valores verticales. Cada recuaﬂ;o muestréﬁafgdecb como fun-

cion del orden del moda. Se ilustran tres casos: &)1 = 2,931 = 1, b) Y21 = 1/2,931 = 1,¢) P21 = 253/159,931 = = 1020/159.
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FIGURA 3. Modos de osciladn calculados para los valores= 1, 2, ...8 correspondientes a la Fig. 2a (26-20-26). Las soluciones del modo
n en las regiones Il y Il se denotan popnl(z;),¥n2(z;),¥n3(z;) respectivamente, siendan valor nunérico de la coordenada

Yo = 2.

2.4. Modos de la cuerda homogénea por tercios sujeta

por sus extremos

TABLA .

Utilizando las Ecs. (9a), (14a) y (17a), pueden encontrarse las_" @ Ke Kir tan(do)/da
graficas de los modos de una cuerda hoemzg por tercios 1 0.308 0.308 0.616 -2.298
sujeta por sus extremos para un valor determinadd.gde 2 0.79 0.79 1.58 137.531
d_e _k,IH una vez conocide,,. Para} encontrar con mayor pre- 3 1263 1263 2596 056
cision los valores dey,,, se resoh el sistema planteado por 0
la Ec. (21) por iteradin basada en el valor inicial conjeturado 4 15711 1571 3.142 2.593x1
en base a las gficas (ver, por ejemplo, las funcion&sven 5 1.879 1.879 3.758 -0.337
y Find, [6]). En las Tablas |, Il, se muestran las primeras 13 ¢ 2.355 2.355 4.71 -177.744
soluciones para p05|t[va_\ encontrad_as para los dos primeros 7 2834 2834 5,668 0.249
casos de la Fig. 2, as@cidoles elndicen a cada una.

8 3.142 3.142 6.284 1.593x16
2.4.1. Caso sigtrico 9 3.449 3.449 6.898 -0.205
A 4o 1 . Lori 10 3.9 3.9 7.8 -4.745

parece cuandds; =1y son sinétricos respecto al origen.

Para el casd,; =2, L=3ya=1, la Fig. 3 muestra ocho de los 11 4.405 4.405 8.81 0.16
modos permitidos sém los valores de losinmeros de onda 12 4.712 4.712 9.424 1.651x10
obtenidos a partir de la Tabla I, cén = o, ki =20, Y 13 5.02 5.02 10.04 -0.141
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FIGURA 4. Modos de osciladin calculados para los valores= 1, 2, ...
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8 correspondientes a la Fig. 2b (20-26-20). Las soluciones del modo

n en las regiones 1l y Il se denotan popnl(z;),¥n2(z;),¥n3(z;) respectivamente, siendan valor nunérico de la coordenada

Vo1 = 1/2.
TABLA II.
n «a kr Krr tan(Va)/Jda
1 0.696 0.696 0.348 -7.95
2 1.122 1.122 0.561 1.118
3 2.02 2.02 1.01 -0.622
4 2.446 2.446 1.223 2.252
5 3.142 3.142 1.571 -2.593x16
6 3.837 3.837 1.919 -1.432
7 4.263 4.263 2.132 0.295
8 5.162 5.162 2.581 -0.244
9 5.587 5.587 2.793 0.992
10 6.283 6.283 3.142 5.899x10
11 6.979 6.979 3.485 -0.791
12 7.405 7.405 3.703 0.169
13 8.303 8.303 4.152 -0.151

krrr = k. Puesto que los valores dg, dependen, dentro
de nuestras estimaciones, linealmente con el ord@omo
lo muestra una @fica de los valores de,, versusn toma-
dos de la Tabla I, recuadro en Fig. 2a), es de esperarse que
las frecuencias,, asociadas seandttiplos (cuando menos,
aproximadamente) de una frecuencia fundamental dada por

T T T
Zkl\/i:knwfo:kuf =2 (22
pPr PII pPIIT

donde elindice de la frecuencia angular se asocian al orden

del modo. La Fig. 4 muestra el cagg, =1/2, el cual resul-

ta semejante al anterior, pero con los valores intercambiados.
Se destaca como diferencia que algunos nodos(smndiiera

del tercio intermedio, o dentro d& (comparar, por ejemplo,

las Figs. 3c y 3d con 4c y 4d). En la Fig. 5 se muestran los

ocho primeros modos de otro caso éinto por compararse

con un experimentaje; = +/159/404).
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FIGURA 5. Modos de osciladn calculados para los valores= 1, 2, ...8 correspondientes a la Fig. 2c (24-28-24). Las soluciones del modo
nen IaBregione!s Il 'y Il se denotan popnl(z;),¥n2(z;),¥n3(z;) respectivamente, siendgun valor nunérico de la coordenada

091 = 159/404.

2.4.2. Caso asigtrico

Surge cuandals; #1, perdéndose la siméi, par o im-
par, respecto al origen que caracteriza al caso previo. Un
ejemplo puede verse en la Fig. 6 donde se tiene el caso

P91 = 4/640/159, ¥3; = +/1020/159,

ponde con la combinaan de alambres de calibres 28-22-20,
como se detalla &s adelante. En la Tabla Il se han enlistado
los valores de losimeros de onda correspondientes. Otros
casos se muestran en la Fig. 7, donde puede apreciarse el
cambio de los modos=1yn = 2 al variar la densidad lineal
(area transversal) del tramo central. Se muestran los casos

7.921 = 253/159, 1921 = 404/1591 y 1921

todos con el mismo valor anterior dg;: el

ser mas singétrico progresivamente cuando las densidades li-
neales de los tercios medio y derecho tienden a semejarse. En ¢
los modos com= 1 (incisos a, b y c), el @&ximo se translada

del tercio a la derecha rumbo al central.
n
tercio derecho al central.

2 (incisos d, e y f), el nodo intermedio se recorre del

TABLA Il
n Ky Krr Krrr tan(da)/da
1 0.259 0.522 0.66 -5.807
que Se corres- 2 0.539 1.081 1.368 +0.314
3 0.864 1.733 2.193 -1.344
4 1.154 2.315 2.929 +0.155
5 1.446 2.901 3.67 -0.482
6 1.673 3.357 4.246 +0.318
~ /61015, 1.963 3.938 4.982 -0.12
modo tiende a 8 2.249 4512 5.707 +0.393
9 2.577 5.17 6.54 -0.086
2.856 5.73 7.248 +0.368
En los modos co 3.123 6.266 7.925 -0.018
12 3.334 6.769 8.562 -0.753
13 3.655 7.333 9.276 +0.033
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FIGURA 6. Modos bajos de una cuerda hordoga por tercios. Calibres # 28 (izquierda), #22 (centro) y # 20 (deretha)- 2,006,
Y31 = 2,538.

En cuanto a las frecuencias, usando las Ecs. (22) y las
Ecs. (15) pueden hallarse los cocientes corespondientes a di-
ferentes casos. Por ejemplo, comparando los casér&os
Una cuerda homdinea por tramos puede construirse a par,; =1/2 yd,; =2, denotando pQD§1/2) wa) alas respec-
tir de alambres de igual densidad voletmica de masa, pero tivas frecuencias fundamentales, suponiendo igualdansi
de diferentes secciones transversales [1]. Entonces, la con@iensidad volurétrica de masa se llega a
cion de densidades lineales [Ec. (19)] puede simplificarse en
una reladbn entre las secciones transversales de dos segmen-
tos de cuerdasds;, Asrr Y Asrrr, Si poseen igual densidad
volumétrica de masg, cada uno, resultando en

[Asir [Astrr
. = Va1, K—ﬁsy

3. Determinadon deladensidad volumétrica a
partir de la densidad lineal

2 2
W§ : kgl)

172 (24)

Wy

dondekf,l/?) es el rimero de onda del tercib para la rela-
cibnvy; =1/2 yk%)es el rumero de onda del terclbpara la
relacbn ¥,; =2. Cocientes semejantes se deternéingrara
Para determinar un valor d& debe acudirse a lareléci de  algunos de los valores experimentales encontrados. Aunque
calibres comerciales en furici de lasareas de seamn trans-  en la Ec. (24) se tienen a las frecuencias fundamentales, silas
versal [5]. La reladn empleada en este trabajo se grafica emle los arndnicos son al menos aproximadamente proporcio-
la Fig. 8. nales, sus cocientes respectivos se esperan semejantes.

(23)
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FIGURA 7. Cambios de los modos 1y 2 para diferentes calibres en tercio intermedio. Se calculan las cuerdas con calibres 28-26-20 (inciso:

ayd), 28-24-20 (incisos b y e) y 28-22-20 (incisos c y f).
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FIGURA 8. Grafica de calibres como furam delarea en Cmils.
Valores nas precisos en referencia [5].

4. Modos experimentales en cuerdas de cobre
homogeneas por tercios

a los valores comercialmente asequibles de denominaciones
26y 20, respectivamente. Tras soldar tres segmentos de me-
dio metro de diferente calibre con soldadura convencional
(2L =1.5m, 2 = 0.5 m), se tertsel alambre resultante con
pesas y una polea por un extremo, mientras que el otro ex-
tremo se fip convenientemente. Buscando la exciacte

los modos mediante una bocina acoplada al alambre con un
caiman soldado apropiadamente, se alinddérsta con Seales
provenientes de un generador de funciones.

4.1 Casosimétrico

Las Figs. 9,10 y 11 muestran los modos experimentalmen-
te encontrados &s bajos sdfn las condiciones descritas
en la secdn anterior uniendo calibres 26-20-26, 20-26-20
y 24-28-24. Estos tres casos se correspondenjgpon= 1.
Los dos primeros son casos compementarios uno del otro
y, de acuerdo a la Fig. 8, aproximan a las relaciones
Y91 = 2,1 / 2 respectivamente. El tercer caso, resulta ser
determinado por la rela@n ¥, = 1/159/404. Al compa-
rarlos con los modos calculados (Figs. 3, 4 y 5), primero se
puede observar un acuerdo cualitativo, si bien no se ha inclui-
do al modo ras bajo.

La Fig. 9a puede identificarse como el mods2
(Fig. 3b). La Fig. 9b séa el modon =3 (Fig. 3c), la Fig. 9c,
el modon =4 (Fig. 3d) y la Fig. 9d correspondaral modo

Se eligieron los calibres de alambre de cobre consideram =5 (Fig. 3e). Las frecuencias encontradas respectivas de
do la relacbn 1:2, que fue una relam posible de acuerdo cada modo son, 44 Hz, 69 Hz, 89 Hzy 108 Hz. La tensi
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20-26-20

FIGURA 10. Modos experimentales de cuerda con tercios 20-26-
20. a) 35 Hz, b) 57 Hz, ) 71 Hz.

del tercio central (Fig. 5e). Las frecuencias encontradas res-
pectivas de cada modo son, 34 Hz, 51 Hz, 64 Hzy 80 Hz. La
tensbn fue estimada e ~3.2 Nt.

4.2 Caso asimétrico

La Fig. 12 muestra los modos experimentalmente encontra-
dos nas bajos uniendo calibres 28-22-20, correspemdibse
condsy = 4/1020/159y 991 = 1/640/159 y con la Fig. 6.
FIGURA 9. Modos experimentales de cuerda con tercios 26-20-26. Fi LaGbFlgc.j 1za lpuedg Jdaentlflcarsel comLo el ”}gdgzd |
a) 44 Hz, b) 69 Hz, c) 89 Hz, d) 108 Hz. (, ig. 6b), londe la asime#r es muy clara. La amplitud de
I6bulo a la izquierda es mayor. El nodo intermedio se encuen-
aplicada se estimenT; ~8.1 Nt. La Fig. 10a puede identifi- {13 dentro de tercio medio (33 Hz). La Fig. 12biaesl modo
carse como el modo=2 (Fig. 4b). La Fig. 10b sex el modo  ;, =3 (52 Hz), donde un nodo se halla dentro del tercio me-
n =3 (Fig. 4c) y la Fig. 10c, el modo =4 (Fig. 3d). Las fre-  djio y otro afuera (Fig. 6c). La Fig. 12c, corresponde al modo
cuencias encontradas respectivas de cada modo son, 35 Kz, 4 (68 Hz), con un nodo en el tercio intermedio (Fig. 6d),
57 Hz y 71 Hz bajo la misma terisi que el caso anterior. |5 Fig. 12d correspondir al modon =6 (103 Hz), con un
Notese que en la Fig. 9b, los nodos del modo 3 se encuentrayado en el tercio izquierdo y dos en el intermedio (Fig. 6f).
dentro del tercio intermedio, mientras que en la Fig. 10b, s¢4 Fig. 12e correspondieral modon =7 (120 Hz), con un
hallan fuera del mismo tercio, de acuerdo con las Fig. 3¢ Ynaximo cerca de la uah izquierda y dos nodos en el tercio
4c. medio (Fig. 6g). La tenéh fue estimada eff, ~ 6.1\t

La Fig. 11a (24-28-24) puede identificarse como el modddara este caso.
n=2 (Fig. 5b). La Fig. 11b s@& el modon =3 mostrando
sus nodos fuera del tercio intermedio, aunque cerca de l& Comentariosfinales
uniones (como en la Fig. 5¢), la Fig. 11c, el mode-4 con
dos nmaximos muy cercanos a los puntos deamn({Fig. 5d)  Siguiendo los ratodos de Me&nica Cintica introductoria
y la Fig. 11d correspondir al modon =5 con amplitud del  para resolver la ecudm de Scbdinger independiente del
[6bulo central as alta y con los @ximos adyascentes fuera tiempo en potenciales constantes por tramos, se hallaron los
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24-28-24
(@) n=2

 ——"

FIGURA 12. Modos experimentales de cuerda con tercios 28-22-

FIGURA 11. Modos experimentales de cuerda con tercios 24-28-20. a) 33 Hz, b) 52 Hz, ¢) 68 Hz, d) 103 Hz, €) 120 Hz.

24. a) 34 Hz, b) 51 Hz, c) 64 Hz, d) 84 Hz, e) 114 Hz, f) 130 Hz.

modos de osciladin de una cuerda homegea por tercios, funcion de onda de la pacula.

habiendo realizado la comparaoi experimental y encon- Entonces el ratodo de empalme de soluciones para los
trando acuerdo cualitativo con la té@mras como algunas casos de potenciales esmal[1] y barrera, puede ejercitarse
discrepancias en valores cuyo significado demadadd un  en elambito de las ondasasicas previamente a los cursos
analisis experimental @s detallado. El caso analizado tiene introductorios de memica ciéntica. En particular, se ejem-

su correspondencia mecandaatica unidimensional con un plifica la necesidad de resolver ecuacionediga y nunéri-
potencial en forma de barrera con discontinuidades situadasmente. La soluciones pueden buscarse empleando paquetes
enz = +ay de altural’y; pero dentro de "paredes”de poten- comerciales paraatculo avanzado [6]. La comprobaai ex-

cial infinito, localizadas en los puntas= —L y z = L res-  perimental, por otra parte, puede realizarse con los recursos
pectivamente. Las tres densidades vditnoas de masa de tradicionales de un laboratorio de ondas empleando cuerdas
la cuerda en cada tercio, equivalen entonces a los tres valoresgmentadas como se ha descrito. Un posible enfoque del ca-
del potencial dentro de las "paredes”(por ejempld@). so mas general sugiere el empleo de algumnica como el

La tenson constante en la cuerda, corresponde a la masa método WKB, que poda aplicarse a una cuerda de densidad
de una misma pdrdula atrapada dentro de las mismas "pare-continuamente variable sujeta a témstonstante. Alternati-
des”. Asimismo, las soluciones halladas corresponden al ca#amente, la cuerda pddrtener densidad constante, variando
so de que la partula posea una enéegls finita y mayor que  la tensén, situacbn realizable, por citar un ejemplo plausi-
Vb, caso caracterizado potimeros de onda reales. Todo lo ble, con una cuerda pendiendo verticalmente de un extremo
anterior establece ondas estacionarias en cada tercio para fija.
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