
ENSEÑANZA REVISTA MEXICANA DE FÍSICA 48 (5) 463–474 OCTUBRE 2002
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En este trabajo se estudian algunas soluciones propias de una cuerda, caracterizada por una densidad de masa constante en cada uno de sus
tres tercios (homoǵenea por tercios), sujeta por sus dos extremos y sometida a una tensión constante. La solución buscada admite el uso de
métodos de empalme de soluciones, como los usuales en mecánica cúantica introductoria. Para comparación con los resultados teóricos, se
realizan experimentalmente cuerdas por tercios con segmentos de alambres de cobre de calibres conocidos añadidos por soldadura. Este caso
resulta ańalogo al del planteamiento de la ecuación de Scḧodinger para una barrera de potencial. Se discuten los resultados encontrados y su
posible utilizacíon con fines de enseñanza.

Descriptores:Vibraciones y ondas meca’nicas; demostraciones experimentales; resonancia, atenuacio’n y estabilidad meca’nica.

Along this work, some solutions for string oscillation modes with constant linear mass density each third (homogeneous in thirds) fixed in
both ends and under constant tension are shown. Solutions are found following well-known methods for piecewise constant potentials in
one dimension as is usual in introductory Quantum Mechanics. The analysis justifies the procedure to construct piecewise homogeneous
strings from cooper wires of adequate gauges by solding wire pieces together. This case have similarities with the Schödinger equation for a
potential barrier. Experimental results are presented and possibilities of use for pedagogical purposes are discussed.
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1. Int roducción

En esta comunicación, en complemento a un trabajo previo
referente a cuerdas homogéneas por mitades [1], se plantea
la posibilidad de inspeccionar el caso de cuerdas homogéneas
por tercios, empleando el ḿetodo de empalme de soluciones,
muy usado en mecánica cúantica para la determinación de
soluciones a la ecuación de Scḧodinger cuando el potencial
es constante por tramos [2, 3]. Como resultado se encuen-
tran modos estacionarios de oscilación [4] caracterizados por
longitudes de onda diferentes en cada segmento de cuerda.
En particular se consideran cuerdas consistente en tres seg-
mentos (tercios) con densidades diferentes. Se han analizado
cuerdas con densidades iguales en sus extremos y diferente en
su tercio intermedio; ası́ como tambíen el caso de tres densi-
dades diferentes. El análisis se compara con los resultados ex-
perimentales obtenidos de analizar cuerdas homogéneas por
tercios uniendo por soldadura tramos de alambre de cobre de
diferentes calibres.

2. Cuerdas homogéneas en tres tramos sujetas
por sus extremos

2.1. Planteamiento general

Suṕongase una cuerda de longitud 2L compuesta de tres seg-
mentos iguales de densidades lineales de masaρI , ρII y ρIII ,

correspondientes a tres regiones con fronteras en los puntos
z = −L , z = −a, z = a y z = L (Fig. 1). La ecuacíon a
resolver es una ecuación de onda, de la forma

∂2ψ

∂z2
=

ρ(z)
T0

∂2ψ

∂t2
,

conT0 la tensíon, supuesta constante, a la cual está sujeta la
cuerda. En general la solución de la ecuación debe resultar
de la inspeccíon de la ecuación diferencial resultante tras la
substitucíon deρ(z). Como un ejemplo de ello, en la Ref. 5
puede verse el caso en queρ(z) sea dependiente dez2. En
el caso a discutir, sin embargo, la densidad puede expresarse
como una funcíon de valores constantes por tramos, esto es,

ρ(z) =





ρI ,−L ≤ z ≤ −a
ρII ,− a ≤ z ≤ a
ρIII , a ≤ z ≤ L

,

de modo que la solución puede buscarse como la unión de tres
soluciones, cada una de las cuales es solución de la ecuación
de onda con densidad constante en el tramo correspondiente.
Gran parte del problema se reduce a empalmar las tres so-
luciones con base en las condiciones de frontera. Este méto-
do es muy bien conocido en mecánica cúantica al abordar el
caso de potenciales unidimensionales constantes por tramos
empleando la ecuación de Schr̈odinger [2] y es el propuesto
en este trabajo.
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FIGURA 1. Cuerda homoǵenea por tercios.

Acordemente, la solución de un modo (de frecuenciaω
en las tres regiones) puede escribirse como

ψI(z) = AIe
ikIz + BIe

−ikIz ≡ ψI , (1a)

ψII(z) = AIIe
ikIIz + BIIe

−ikIIz ≡ ψII , (1b)

ψIII(z) = AIIIe
ikIIIz + BIIIe

−ikIIIz ≡ ψIII ; (1c)

cumplíendose las relaciones de dispersión

ω/kI = vI =

√
To

ρI
, (2a)

ω/kII = vII =

√
To

ρII
, (2b)

ω/kIII = vIII =

√
To

ρIII
, (2c)

conω la frecuencia angular del modo,kj = 2π/λj el número
de onda en la región j = I, II, III, vj la velocidad de fase
correspondiente a la región j, y T0 la tensíon de la cuerda.
Todas las cantidades involucradas son reales para el presente

caso. La continuidad de las soluciones se establece con las
cuatro condiciones de frontera (continuidad de solución y de
derivada en interfaz) siguientes:

ψI(−a) = ψII(−a), (3a)

ψ′I(−a) = ψ′II(−a), (3b)

ψII(a) = ψIII(a), (3c)

ψ′II(a) = ψ′III(a). (3d)

Usando la Ec. (3a) junto con las Ecs (1a) y (1b) primero,
y luego usando la Ec. (3b) con las Ecs. (1a) y (1b), se obtiene

AIe
−ikIa + BIe

ikIa = AIIe
−ikIIa + BIIe

ikIIa, (4a)

AIe
−ikIa−BIe

ikIa =
kII

kI
(AIIe

−ikIIa−BIIe
ikIIa).

(4b)

Sumando miembro a miembro las Ecs. (4a) y (4b), se en-
cuentra

2AIe
−ikIa = (1 +

kII

kI
)AIIe

−ikIIa

+(1− kII

kI
)BIIe

ikIIa; (4)

mientras que, restando las mismas y multiplicando por -1, se
tiene

2BIe
ikIa = (1− kII

kI
)AIIe

−ikIIa

+(1 +
kII

kI
)BIIe

ikIIa. (5)

Despejando las Ecs. (5a) y (5b), se llega a las siguientes
expresiones para coeficientes

(
AI

BI

)
= T12

(
AII

BII

)
=

1
2

(
(1 + ϑ21)ei(kII−kI)a (1− ϑ21)e−i(kII+kI)a

(1− ϑ21)ei(kII+kI)a (1 + ϑ21)e−i(kII−kI)a

) (
AII

BII

)
(6a)

y, ańalogamente, usando la Ec. (3c) junto con las Ecs. (1b) y (1c) primero, y luego usando la Ec. (3d) con las Ecs. (1b) y (1c),
se obtiene(

AII

BII

)
= T23

(
AIII

BIII

)
=

1
2

(
(1 + ϑ32)ei(kIII−kII)a (1− ϑ32)e−i(kIII+kII)a

(1− ϑ32)ei(kIII+kII)a (1 + ϑ32)e−i(kIII−kII)a

)(
AIII

BIII

)
, (6b)

dondeϑ21 ≡ kII/kI y ϑ32 ≡ kIII/kII . A continuacíon, se buscarán las soluciones de ondas estacionarias para una cuerda
como ladescrita.

2.2. Cuerda homogénea en tercios sujeta por sus extre-
mos

La condicíon de extremos fijos se expresa con las condiciones
de frontera siguientes:

ψI(−L) = ψIII(L) = 0, (7)

obteniendo para los coeficientes conı́ndicesI y III , que
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BI = −AIe
−i2kIL, (8a)

BIII = −AIIIe
i2kIIIL. (8b)

Por tanto, de las Ecs. (1) se pueden encontrar las formas de
los modos en los terciosI y III como sigue:

ψI(z) = 2iAIe
−ikIL sen (kI [z + L]), (9a)

ψIII(z) = 2iAIIIe
ikIIIL sen (kIII [z − L]). (9b)

Introduciendo ahora la Ec. (8a) en la Ec. (5b), se obtiene

−2AIe
−ikI(2L−a) = (1− ϑ21)AIIe

−ikIIa

+(1 + ϑ21)BIIe
ikIIa, (10a)

y multiplicando porexp {−i2kI(L− a)} en la Ec. (5a), se
halla que

2AIe
−ikI(2L−a) = (1+ϑ21)AIIe

−ikIIae−i2kI(L−a)

+(1− ϑ21)BIIe
ikIIae−i2kI(L−a). (10b)

Sumando las Ecs. (10a) y la (10b), puede despejarse un coe-
ficiente como sigue:

BII = −AIIe
−i2kIIa

×cos kI(L− a)− iϑ21 sen kI(L− a)
cos kI(L− a) + iϑ21 sen kI(L− a)

. (11)

Entonces, incorporando la Ec. (11) en la Ec. (1b) se des-
prende que

ψII(z) = AII

{
eikIIz − e−i2kIIa cos kI(L− a)− iϑ21 sen kI(L− a)

cos kI(L− a) + iϑ21 sen kI(L− a)
e−ikIIz

}
, (12)

de donde, en particular paraz = −a,

ψII(−a) = AIIe
−ikIIa

×
{

i2ϑ21 sen kI(L− a)
cos kI(L− a) + iϑ21 sen kI(L− a)

}

= i2AIe
−ikIL sen kI(−a + L), (13)

habiendo empleado la Ec. (3a). De estaúltima relacíon puede
despejarseAII en t́erminos deAI . Hacíendolo aśı, y usando
la Ec. (12), se llega a una expresión paraψII(z):

ψII(z)=
2iAIe

−ikIL

ϑ21
[ sen kII(z+a) cos kI(L− a)

+ϑ21 cos kII(z + a) sen kI(L− a)] , (14a)

mientras que para la correspondiente derivada

ψ′II(z)=
2iAIe

−ikIL

ϑ21
kII[cos kII(z+a) cos kI(L−a)

−ϑ21 sen kII(z + a) sen kI(L− a)] . (14b)

La derivada logarı́tmica deψII(z) valuada enz = −a y de-
terminada por las Ecs. (14a) y (14b), conduce a la siguiente
igualdad:

ψII(z)
ψ′II(z)

∣∣∣∣
−a

=
1
kI

tan(kI [L− a]) =
ψI(z)
ψ′I(z)

∣∣∣∣
−a

, (15)

donde la segunda igualdad se obtiene de calcular el inverso
de la derivada logarı́tmica en el puntoz = −a deψI(z) si-
guiendo a la Ec. (9a). Al comprobar esta igualdad, se verifica
la equivalencia de las condiciones de frontera, [Ecs. (3)], con
la igualdad de las derivadas logarı́tmicas.

Usando otra vez la Ec. (14a) para ahora sustituı́r el valor
dez = a, se encuentran las siguientes relaciones:

ψII(a) =
2iAI

ϑ21
e−ikIL

[
sen 2kIIa cos kI(L− a)

+ ϑ21 cos 2kIIa sen kI(L− a)
]

= 2iAIIIe
ikIIIL sen kIII(a− L) = ψIII(a), (16)

donde se ha empleado la Ec. (3b) de continuidad y el resul-
tado de establecido en la Ec. (9b). De esta relación, puede
despejarseAIII en t́erminos deAI , encontrando

ψIII(z) =
2iAI

ϑ21
e−ikIL

[
sen 2kIIa cos kI(L− a)

+ ϑ21 cos 2kIIa sen kI(L− a)
] sen kIII(z − L)

sen kIII(a− L)
, (17a)

ψ′III(z) = kIII
2iAI

ϑ21
e−ikIL

[
sen 2kIIa cos kI(L− a)

+ ϑ21 cos 2kIIa sen kI(L− a)
] cos kIII(z − L)

sen kIII(a− L)
. (17b)

Estasúltimas igualdades, comparándolas con el cociente de
las Ecs. (14a) y (14b), deben satisfacer la igualdad de las de-
rivadas logaŕıtmicas deψII(z)y ψIII(z) enz = a, esto es,

Rev. Mex. F́ıs. 48 (5) (2002) 463–474
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ψIII(z)
ψ′III(z)

∣∣
a

=
1

kIII
tan

(
kIII

[
a− L

])

=
1

kII

[
sen 2kIIa cos kI(L− a) + ϑ21 cos 2kIIa sen kI(L− a)

]

cos 2kIIa cos kI(L− a)− ϑ21 sen 2kIIa sen kI(L− a)
=

ψII(z)
ψ′II(z)

∣∣∣∣∣
a

; (18)

identidad que proporciona los valores posibles de los núme-
ros de onda. Las Ecs. (9a), (14a) y (17a) son entonces las
soluciones buscadas para cada tramo. Debido a las relacio-
nes de dispersión [Ecs. (2)] cuando resulte posible la exis-
tencia de un modo con frecuencia angularω parakI 6= kII ,
kII 6= kIII , kIII 6= kI se debeŕa de cumplir adeḿas, consi-
derando la misma tensión en los tres segmentos, las siguien-
tes condiciones para las densidades lineales:

√
ρII

ρI
= ϑ21,

√
ρIII

ρI
= ϑ31,

√
ρIII

ρII
= ϑ32. (19)

La densidad de una cuerda real es una densidad volumétri-
caρv. En el caso de homogeneidad volumétrica,éstaúltima
puede relacionarse con la densidad lineal ”efectiva”mediante

la seccíon transversalAs usando la relación

ρ` = ρvAs. (20)

2.3. Determinación desoluciones

Para determinar los valores posibles de los números de onda,
se impone la condición de continuidad, [Ec. (18)]. Con las
definiciones siguientes:

kIa = α, kIIa = ϑ21α, kIIIa = ϑ31α, ϑ31 ≡ kIII/kI ,

la Ec. (18) se rescribe como

tan(ϑ31α [1− L/a])
ϑ31α

=
1

ϑ21α

sen 2ϑ21α cos α(L/a− 1) + ϑ21 cos 2ϑ21α sen α(L/a− 1)
cos 2ϑ21α cos α(L/a− 1)− ϑ21 sen 2ϑ21α sen α(L/a− 1)

. (21)

La búsqueda de las solucionesα = αn puede orientarse con-
siderando las gráficas de la Ec. (21), mostradas en la Fig. 2
para algunos casos. En particular, en la Fig. 2a se ha grafica-
do el casoϑ21 = 2, ϑ31 = 1, mientras que en la Fig. 2b, se
ha graficado el casoϑ21 = 1/2, ϑ31 = 1, que es el intercam-
bio de los valores del caso anterior. De ambas situaciones se
mostraŕan algunos modos experimentales más adelante. En la
Fig. 2c, se muestra la gráfica de la Ec. (21) correspondiente
al casoϑ21 =

√
640/159, ϑ31 =

√
1020/159, que corres-

ponde a una cuerda formada por tres segmentos de alambre
de calibres 28, 22 y 20 de acuerdo a la Ec. (21) y a los valores
deáreas encontrados en la literatura [5].

FIGURA 2. Gŕaficas de la Ec. (20) como función deα para diferentes valores deϑ21 y deϑ31. Se denota por Tanc(ϑ31×α) al primer miem-
bro de la Ec. (21) (trazo segmentado) y por Q(ϑ21×α) al segundo miembro (trazo grueso). Las soluciones a la Ec.21 son las intersecciones,
algunas de las cuales se indican con puntos, señalando tambíen algunos valores verticales. Cada recuadro muestra la gráfica deαn como fun-
ción del orden del modon. Se ilustran tres casos: a)ϑ21 = 2, ϑ31 = 1, b) ϑ21 = 1/2, ϑ31 = 1, c) ϑ21 =

p
253/159, ϑ31 =

p
1020/159.
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FIGURA 3. Modos de oscilación calculados para los valoresn = 1, 2, ...8 correspondientes a la Fig. 2a (26-20-26). Las soluciones del modo
n en las regionesI, II y III se denotan porψn1(zj), ψn2(zj), ψn3(zj) respectivamente, siendozjun valor nuḿerico de la coordenadaz.
ϑ21 = 2.

2.4. Modos de la cuerda homogénea por tercios sujeta
por sus extremos

Utilizando las Ecs. (9a), (14a) y (17a), pueden encontrarse las
gráficas de los modos de una cuerda homogénea por tercios
sujeta por sus extremos para un valor determinado deϑ21 y
dekIII una vez conocidoαn. Para encontrar con mayor pre-
cisión los valores deαn, se resolvío el sistema planteado por
la Ec. (21) por iteracíon basada en el valor inicial conjeturado
en base a las gráficas (ver, por ejemplo, las funcionesGiven
y Find, [6]). En las Tablas I, II, se muestran las primeras 13
soluciones paraα positiva encontradas para los dos primeros
casos de la Fig. 2, asociándoles eĺındicen a cada una.

2.4.1.. Caso siḿetrico

Aparece cuandoϑ31 =1 y son siḿetricos respecto al origen.
Para el casoϑ21 =2,L= 3 y a=1, la Fig. 3 muestra ocho de los
modos permitidos según los valores de los números de onda
obtenidos a partir de la Tabla I, conkI = αn, kII = 2αn y

TABLA I.

n α kI kII tan(ϑα)/ϑα

1 0.308 0.308 0.616 -2.298

2 0.79 0.79 1.58 137.531

3 1.263 1.263 2.526 0.56

4 1.571 1.571 3.142 2.593x10−4

5 1.879 1.879 3.758 -0.337

6 2.355 2.355 4.71 -177.744

7 2.834 2.834 5.668 0.249

8 3.142 3.142 6.284 1.593x10−4

9 3.449 3.449 6.898 -0.205

10 3.9 3.9 7.8 -4.745

11 4.405 4.405 8.81 0.16

12 4.712 4.712 9.424 1.651x10−4

13 5.02 5.02 10.04 -0.141
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FIGURA 4. Modos de oscilación calculados para los valoresn = 1, 2, ...8 correspondientes a la Fig. 2b (20-26-20). Las soluciones del modo
n en las regionesI, II y III se denotan porψn1(zj), ψn2(zj), ψn3(zj) respectivamente, siendozjun valor nuḿerico de la coordenadaz.
ϑ21 = 1/2.

TABLA II.

n α kI kII tan(ϑα)/ϑα

1 0.696 0.696 0.348 -7.95

2 1.122 1.122 0.561 1.118

3 2.02 2.02 1.01 -0.622

4 2.446 2.446 1.223 2.252

5 3.142 3.142 1.571 -2.593x10−4

6 3.837 3.837 1.919 -1.432

7 4.263 4.263 2.132 0.295

8 5.162 5.162 2.581 -0.244

9 5.587 5.587 2.793 0.992

10 6.283 6.283 3.142 5.899x10−5

11 6.979 6.979 3.485 -0.791

12 7.405 7.405 3.703 0.169

13 8.303 8.303 4.152 -0.151

kIII = kI . Puesto que los valores deαn dependen, dentro
de nuestras estimaciones, linealmente con el ordenn (como
lo muestra una gráfica de los valores deαn versusn toma-
dos de la Tabla I, recuadro en Fig. 2a), es de esperarse que
las frecuenciasωn asociadas sean ḿultiplos (cuando menos,
aproximadamente) de una frecuencia fundamental dada por

ω1 = kI

√
T0

ρI
= kII

√
T0

ρII
= kIII

√
T0

ρIII
, (22)

donde eĺındice de la frecuencia angular se asocian al orden
del modo. La Fig. 4 muestra el casoϑ21 =1/2, el cual resul-
ta semejante al anterior, pero con los valores intercambiados.
Se destaca como diferencia que algunos nodos se sitúan fuera
del tercio intermedio, o dentro deél (comparar, por ejemplo,
las Figs. 3c y 3d con 4c y 4d). En la Fig. 5 se muestran los
ocho primeros modos de otro caso simétrico por compararse
con un experimento (ϑ21 =

√
159/404).
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FIGURA 5. Modos de oscilación calculados para los valoresn = 1, 2, ...8 correspondientes a la Fig. 2c (24-28-24). Las soluciones del modo
n en las regionesI, II y III se denotan porψn1(zj), ψn2(zj), ψn3(zj) respectivamente, siendozjun valor nuḿerico de la coordenadaz.
ϑ21 =

p
159/404.

2.4.2.. Caso asiḿetrico

Surge cuandoϑ31 6=1, perdíendose la simetrı́a, par o im-
par, respecto al origen que caracteriza al caso previo. Un
ejemplo puede verse en la Fig. 6 donde se tiene el caso
ϑ21 =

√
640/159, ϑ31 =

√
1020/159, que se corres-

ponde con la combinación de alambres de calibres 28-22-20,
como se detalla ḿas adelante. En la Tabla III se han enlistado
los valores de los ńumeros de onda correspondientes. Otros
casos se muestran en la Fig. 7, donde puede apreciarse el
cambio de los modosn = 1 yn = 2 al variar la densidad lineal
(área transversal) del tramo central. Se muestran los casos
ϑ21 =

√
253/159, ϑ21 =

√
404/159, y ϑ21 =

√
640/159,

todos con el mismo valor anterior deϑ31: el modo tiende a
ser ḿas siḿetrico progresivamente cuando las densidades li-
neales de los tercios medio y derecho tienden a semejarse. En
los modos conn= 1 (incisos a, b y c), el ḿaximo se translada
del tercio a la derecha rumbo al central. En los modos con
n = 2 (incisos d, e y f), el nodo intermedio se recorre del
tercio derecho al central.

TABLA III.

n kI kII kIII tan(ϑα)/ϑα

1 0.259 0.522 0.66 -5.807

2 0.539 1.081 1.368 +0.314

3 0.864 1.733 2.193 -1.344

4 1.154 2.315 2.929 +0.155

5 1.446 2.901 3.67 -0.482

6 1.673 3.357 4.246 +0.318

7 1.963 3.938 4.982 -0.12

8 2.249 4.512 5.707 +0.393

9 2.577 5.17 6.54 -0.086

10 2.856 5.73 7.248 +0.368

11 3.123 6.266 7.925 -0.018

12 3.334 6.769 8.562 -0.753

13 3.655 7.333 9.276 +0.033
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FIGURA 6. Modos bajos de una cuerda homogénea por tercios. Calibres # 28 (izquierda), #22 (centro) y # 20 (derecha).ϑ21 = 2,006,
ϑ31 = 2,538.

3. Determinación de la densidad volumétrica a
partir de la densidad lineal

Una cuerda homoǵenea por tramos puede construirse a par-
tir de alambres de igual densidad volumétrica de masa, pero
de diferentes secciones transversales [1]. Entonces, la condi-
ción de densidades lineales [Ec. (19)] puede simplificarse en
una relacíon entre las secciones transversales de dos segmen-
tos de cuerdas,AsI , AsII y AsIII , si poseen igual densidad
volumétrica de masaρv cada uno, resultando en

√
AsII

AsI
= ϑ21,

√
AsIII

AsI
= ϑ31. (23)

Para determinar un valor deϑ, debe acudirse a la relación de
calibres comerciales en función de laśareas de sección trans-
versal [5]. La relacíon empleada en este trabajo se grafica en
la Fig. 8.

En cuanto a las frecuencias, usando las Ecs. (22) y las
Ecs. (15) pueden hallarse los cocientes corespondientes a di-
ferentes casos. Por ejemplo, comparando los casos simétricos
ϑ21 =1/2 yϑ21 =2, denotando porω(1/2)

1 y ω
(2)
1 a las respec-

tivas frecuencias fundamentales, suponiendo igual tensión y
densidad voluḿetrica de masa se llega a

ω
(2)
1

ω
(1/2)
1

=
k

(2)
II

k
(1/2)
I

, (24)

dondek
(1/2)
I es el ńumero de onda del tercioI para la rela-

ciónϑ21 =1/2 yk
(2)
II es el ńumero de onda del tercioII para la

relacíon ϑ21 =2. Cocientes semejantes se determinarán para
algunos de los valores experimentales encontrados. Aunque
en la Ec. (24) se tienen a las frecuencias fundamentales, si las
de los arḿonicos son al menos aproximadamente proporcio-
nales, sus cocientes respectivos se esperan semejantes.
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FIGURA 7. Cambios de los modos 1 y 2 para diferentes calibres en tercio intermedio. Se calculan las cuerdas con calibres 28-26-20 (incisos
a y d), 28-24-20 (incisos b y e) y 28-22-20 (incisos c y f).

FIGURA 8. Gŕafica de calibres como función del área en Cmils.
Valores ḿas precisos en referencia [5].

4. Modos experimentales en cuerdas de cobre
homoǵeneas por tercios

Se eligieron los calibres de alambre de cobre consideran-
do la relacíon 1:2, que fue una relación posible de acuerdo

a los valores comercialmente asequibles de denominaciones
26 y 20, respectivamente. Tras soldar tres segmentos de me-
dio metro de diferente calibre con soldadura convencional
(2L = 1.5 m, 2a = 0.5 m), se tenśo el alambre resultante con
pesas y una polea por un extremo, mientras que el otro ex-
tremo se fij́o convenientemente. Buscando la excitación de
los modos mediante una bocina acoplada al alambre con un
caimán soldado apropiadamente, se alimentó ésta con sẽnales
provenientes de un generador de funciones.

4.1. Caso simétrico

Las Figs. 9,10 y 11 muestran los modos experimentalmen-
te encontrados ḿas bajos seǵun las condiciones descritas
en la seccíon anterior uniendo calibres 26-20-26, 20-26-20
y 24-28-24. Estos tres casos se corresponden conϑ31 = 1.
Los dos primeros son casos compementarios uno del otro
y, de acuerdo a la Fig. 8, aproximan a las relaciones
ϑ21 = 2, 1 / 2 respectivamente. El tercer caso, resulta ser
determinado por la relación ϑ21 =

√
159/404. Al compa-

rarlos con los modos calculados (Figs. 3, 4 y 5), primero se
puede observar un acuerdo cualitativo, si bien no se ha inclui-
do al modo ḿas bajo.

La Fig. 9a puede identificarse como el modon=2
(Fig. 3b). La Fig. 9b serı́a el modon =3 (Fig. 3c), la Fig. 9c,
el modon =4 (Fig. 3d) y la Fig. 9d corresponderı́a al modo
n =5 (Fig. 3e). Las frecuencias encontradas respectivas de
cada modo son, 44 Hz, 69 Hz, 89 Hz y 108 Hz. La tensión

Rev. Mex. F́ıs. 48 (5) (2002) 463–474
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FIGURA 9. Modos experimentales de cuerda con tercios 26-20-26.
a) 44 Hz, b) 69 Hz, c) 89 Hz, d) 108 Hz.

aplicada se estiḿo enT0 ≈8.1 Nt. La Fig. 10a puede identifi-
carse como el modon=2 (Fig. 4b). La Fig. 10b serı́a el modo
n =3 (Fig. 4c) y la Fig. 10c, el modon =4 (Fig. 3d). Las fre-
cuencias encontradas respectivas de cada modo son, 35 Hz,
57 Hz y 71 Hz bajo la misma tensión que el caso anterior.
Nótese que en la Fig. 9b, los nodos del modo 3 se encuentran
dentro del tercio intermedio, mientras que en la Fig. 10b, se
hallan fuera del mismo tercio, de acuerdo con las Fig. 3c y
4c.

La Fig. 11a (24-28-24) puede identificarse como el modo
n=2 (Fig. 5b). La Fig. 11b serı́a el modon =3 mostrando
sus nodos fuera del tercio intermedio, aunque cerca de las
uniones (como en la Fig. 5c), la Fig. 11c, el modon =4 con
dos ḿaximos muy cercanos a los puntos de unión (Fig. 5d)
y la Fig. 11d corresponderı́a al modon =5 con amplitud del
lóbulo central ḿas alta y con los ḿaximos adyascentes fuera

FIGURA 10. Modos experimentales de cuerda con tercios 20-26-
20. a) 35 Hz, b) 57 Hz, c) 71 Hz.

del tercio central (Fig. 5e). Las frecuencias encontradas res-
pectivas de cada modo son, 34 Hz, 51 Hz, 64 Hz y 80 Hz. La
tensíon fue estimada enT0 ≈3.2 Nt.

4.2. Caso asimétrico

La Fig. 12 muestra los modos experimentalmente encontra-
dos ḿas bajos uniendo calibres 28-22-20, correspondiéndose
conϑ31 =

√
1020/159 y ϑ21 =

√
640/159 y con la Fig. 6.

La Fig. 12a puede identificarse como el modon=2
(Fig. 6b), donde la asimetrı́a es muy clara. La amplitud del
lóbulo a la izquierda es mayor. El nodo intermedio se encuen-
tra dentro de tercio medio (33 Hz). La Fig. 12b serı́a el modo
n =3 (52 Hz), donde un nodo se halla dentro del tercio me-
dio y otro afuera (Fig. 6c). La Fig. 12c, corresponde al modo
n =4 (68 Hz), con un nodo en el tercio intermedio (Fig. 6d),
la Fig. 12d corresponderı́a al modon =6 (103 Hz), con un
nodo en el tercio izquierdo y dos en el intermedio (Fig. 6f).
La Fig. 12e corresponderı́a al modon =7 (120 Hz), con un
máximo cerca de la unión izquierda y dos nodos en el tercio
medio (Fig. 6g). La tensión fue estimada enT0 ≈ 6.1Ñt
para este caso.

5. Comentarios finales

Siguiendo los ḿetodos de Mećanica Cúantica introductoria
para resolver la ecuación de Scḧodinger independiente del
tiempo en potenciales constantes por tramos, se hallaron los
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FIGURA 11. Modos experimentales de cuerda con tercios 24-28-
24. a) 34 Hz, b) 51 Hz, c) 64 Hz, d) 84 Hz, e) 114 Hz, f) 130 Hz.

modos de oscilación de una cuerda homogénea por tercios,
habiendo realizado la comparación experimental y encon-
trando acuerdo cualitativo con la teorı́a, aśı como algunas
discrepancias en valores cuyo significado demandarı́a de un
ańalisis experimental ḿas detallado. El caso analizado tiene
su correspondencia mecano-cuántica unidimensional con un
potencial en forma de barrera con discontinuidades situadas
enz = ±a y de alturaV0; pero dentro de ”paredes”de poten-
cial infinito, localizadas en los puntosz = −L y z = L res-
pectivamente. Las tres densidades volumétricas de masa de
la cuerda en cada tercio, equivalen entonces a los tres valores
del potencial dentro de las ”paredes”(por ejemplo, 0,V0,0).
La tensíon constante en la cuerda, corresponde a la masam
de una misma partı́cula atrapada dentro de las mismas ”pare-
des”. Asimismo, las soluciones halladas corresponden al ca-
so de que la partı́cula posea una energı́aE finita y mayor que
V0, caso caracterizado por números de onda reales. Todo lo
anterior establece ondas estacionarias en cada tercio para la

FIGURA 12. Modos experimentales de cuerda con tercios 28-22-
20. a) 33 Hz, b) 52 Hz, c) 68 Hz, d) 103 Hz, e) 120 Hz.

función de onda de la partı́cula.
Entonces el ḿetodo de empalme de soluciones para los

casos de potenciales escalón [1] y barrera, puede ejercitarse
en el ámbito de las ondas clásicas previamente a los cursos
introductorios de mećanica cúantica. En particular, se ejem-
plifica la necesidad de resolver ecuaciones gráfica y nuḿeri-
camente. La soluciones pueden buscarse empleando paquetes
comerciales para cálculo avanzado [6]. La comprobación ex-
perimental, por otra parte, puede realizarse con los recursos
tradicionales de un laboratorio de ondas empleando cuerdas
segmentadas como se ha descrito. Un posible enfoque del ca-
so ḿas general sugiere el empleo de alguna técnica como el
método WKB, que podrı́a aplicarse a una cuerda de densidad
continuamente variable sujeta a tensión constante. Alternati-
vamente, la cuerda podrı́a tener densidad constante, variando
la tensíon, situacíon realizable, por citar un ejemplo plausi-
ble, con una cuerda pendiendo verticalmente de un extremo
fijo.
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