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Periodic orbits for the elliptic case of the Sun-Earth-Moon problem in new
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We present a set of periodic and quasi-periodic orbits for the bidimensional case of the Sun-Earth-Moon problem using the coordinates
recently introduced by Ra and Jirenez-Lara. Eliminating the restriction we used in a previous work that Earth-Moon system describes a
circular orbit around the Sun, we recover the periodic orbits we have found, and we find periodic orbits for the elliptic case. We also find
guasi-periodic orbits closer to the real case.

Keywords: Three body problem; Moon theory; celestial mechanics.

Presentamos un conjunto debitas perddicas y cuasi-pediicas para el caso bidimensional del problema Sol-Tierra-Luna, utilizando las
coordenadas recientemente propuestas porfifa.yAi. Jimenez-Lara. Eliminando la restriéei que halamos utilizado en un trabajo anterior,

de que el sistema Tierra-Luna describe ariaita circular en torno al Sol, recuperamos las solucioneégieds que hdbmos encontrado y
encontramos soluciones padicas para el casoiptico; adenas debrbitas cuasi-peddicas cercanas al caso real.

Descriptores: Problema de tres cuerpos; teolunar; meanica celeste.

PACS: 46.10.-z; 95.10.Ce; 96.20.-n

1. Introduction The selection of the reference system makes the matrix

In Ref. 1 we shown a first approach to the Sun-Earth-MoonO:c Inertia to be d|fgr:)nal; becauseft_hree_ partlcl_ez confc;rm "_:1
problem. We imposed the restriction that the Earth-Moor?'@n€, Just two of the moments of inertia are independent:

subsystem performs a uniform circular motion around the/3 = 11 + {fa,Pma and J|rf:r:ez—Lre]1ra ldefl(r;e twﬁ coordinates
Sun. With that simplification, the problem is reduced into a’tt; £tz With dimensions of length related to these moments

system with two degrees of freedom. This allowed to use thé'*)'c inertia [3]:

2
technique of the symmetry lines to search for periodic orbits. L= phy, @)
For this work we have removed that restriction. The sys- I, = pR3, (2)
tem has three degrees of freedom, so the symmetry lines tecljnere
nigue is not applicable. However, we can use some of the e
symmetry properties of the system to help us in the search for w=/ _ T 3)
miq + mo + ms

periodic orbits. Perturbing these periodic orbits, we search
for solutions whose behavior resemble, under the bidimen- There is another coordinate, an angleelated to the ge-
sional approximation, the real orbit. ometry of the system. The details of the developmentafe

We present a classification of the solutions in accordanceresented in Refs. 2 and 3. Letg, r be the distances Earth-
with the trajectory of the Earth-Moon subsystem around thé"loon, Sun-Moon, and Sun-Earth respectively. The relation
Sun, and with the trajectory of the Moon around the Earthfor the new coordinates and the distances is

Finally, we make qualitative comparing between our numeri- P2 R?sin® 0 4+ R cos® o
cal solutions and the astronomical data. ¢® | =B| Ricos’c+ R3sin’c |, (4)
r? 2(R3 — R?)sino coso

2. System of coordinates
Let my.my. ms be the masses of Sun, Earth and Moon re_where matrixB depends on the masses of the particles only.

spectively. The new set of coordinates is defined in a non- ; W(itipres?r::]edg rﬁdsf'gg'iﬂn @f:]n [ n_1ak|ng use of the
inertial reference system, parallel to the directions of the prin-p 2pe es c;'h © n|u -h 6:1 -t cl)(o C?g&lirﬁhm2x>liniﬂ;3fl rm
cipal inertia axes of the triangle described by the three bodied, 7 > P+ ' N€ only change takes piace in the explicitio

with the origin at the barycenter2[3]. Let sy, s, s3 be the df B.

positions of Sun, Earth and Moon respectively in this rotat- 0 (matms)®
ing frame, and-1, ro, r3 be the corresponding positions in an B 1 m2

inertial system; the transformation from one frame into the = m, + mg mams Vmams ma2
other is made by a rotation matrix, = Gs;. The problem Mams \/% —ms

is restricted to the bidimensional case, so we need just one
Euler angley. +0(1/ma). (5)
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This newo describes small oscillations around zero. 3. Hamiltonian formalism
From Eg. (4), is easy to make estimations of the order of
magnitude of the three variables: The amplitude of the oscilAs we shown in Ref. 1, the Hamiltonian function of the sys-
lations foro are very small, less than one minute of aR;. ~ tem is given by
and R, can be estimated by

1 R? + R?

H=—[P}+ P} + —g——25 (P2 + P2)

2 R} —R32V 7Y
R% < MPQ’ (6) K (R 3)
2 s e p by (8
RE4 R = M2EMs.o 7) (RR—R32 7" 0
moms
where
2.1. Astronomical data 1 1 1

V = —Gmymams( + + .
mip maq mar

Figures 1a and 1b show successive valuesfpando cal-
culated from the astronomical data of July, 2004 5], ig- By Hamilton equations, the relationship of the canonical mo-
noring the angle between the Moon’s orbit and the eclipticments with the canonical coordinates and their derivatives is

We can see that there is a phase locking betweeando: given by

e The zeroes ofR; match with the extreme values of P, = puR, (9)
o when the three particles are collinear. Restricted to .
the bidimensional case, a collinear configuration takes Py, = pRs, (10)
place at full moon and new moon; tte" and 20" P, = u(R?+ R2)6 — 2uRiRad, (11)
days, respectively. .

Py = p(R?+ R3)Y — 2uRi Ry (12)

e The zeroes of and the extreme values &; occurs
when the Moon is at first and third quartég*® and Is easy to verify thaP,, is a constant of motion, the angu-
27t days respectively, when the system describes atar momentum, so we handle it as a parameter of the system
isosceles triangle. rather that a canonical variable. The system is conservative,

so the energyy = H(Ry, Ry, 0, P, P2, P,) is also a con-

The evolution ofR; is very slow, in the same interval it stant of motion.
starts in 3.07095 AU, reaches a maximum in 3.07100 and
decreases monotonously to 3.06610. As we can see from, Symmetries
Eq. (7), the behavior oR, is dominated by the Sun-Earth
distance, so its period is close to the sidereal year. The perioinalogously as we did in Ref. 1 with the technique of the
for R, is the lunar month, that is the time between consecusymmetry lines, we make use of the symmetry properties of
tive full moons, so the system is quasi-periodic. The quotienthe system to search for periodic orbits.

of these periods is 12.368, it is the basis for the division of | et be a Poinca@ section defined by, = 0, ie,
the year in 12 months of 28 to 31 days of the Jewish calendajollinear configuration; on this surfacg; can be written in
[6]. terms of the other variables:
Ry (AU)
0ont )
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FIGURE la. R;. Astronomical data. FIGURE 1b. 0. Astronomical data.
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SinceIpx’ € ¥_ andIpxy € X, by definition of the

2 2 semimappindR, the last equation can be written as
P;+ P
R3

There is an ambiguity in the sign %, so let be:

P} = ou(E—V) - P} - (13)

RIpx = Iox. (25)

. ) So we gefl, RISy = x, which means
e X, the surface of section defined B = 0, P, > 0. gelottloSx = X

e 3_, the surface of section defined B = 0, P, < 0. L RIp=S"" (26)

We have choose, arbitrarily, associate the full moon Conﬁg“Analogoust
ration with P, > 0, and the new moon witl?; < 0. .
This is a reversible system, the Hamiltonian function is ISIp =R (27)

invariant under the transformation o » )
Let y € I'y be an initial condition that evolves into a

Ry —Ry pointx’ € Ty, by Eq. (26) we can write
Ro Ro
r_ 1.7 _
I, ;1 = ;1 : (14) RIpx" =1oS™ ' x" = Iox. (28)
1132 _1};2 Sincey andy’ are invariant undek, we finally get
This transformation is an involutiong., I,I, = 1. Ry =x=Tx. (29)
On the surfaces of section, let beT'y the set of points
invariant unded,, this meang, = IyLy: Therefore, the orbit is periodic.
N By Eqg. (11) the border condition®; = 0, P, = 0 im-
Iy ={x €X4[P=0,F =0}, (15) pliess = 0, i.e. there is phase locking betwe&j ando.
Iy ={xeX_|P,=0,P, =0}. (16) TheTy are defined in collinear configuration and the extreme

values ofR,; as is suggested by (7), the maximum and mini-
Let beg, the flow defined by the integration of the equa- mum of R, take place at aphelion and perihelion respectively.
tions of motion,¢, x(to) = x(to + t). Itis a canonical trans-
formation, other properties af; are

Gst =  PsOis (A7) 5. Circular case

G-y = L (18) .
In Ref. 1 we shown a first approach to the problem: We found
Because of the reversibility of the system we canwrit¢ [  a relation between the distance from the barycenter of the
Earth-Moon subsystem to the SuR, and our coordinates:
-t = LogIo. (19)
2 mo + mg3

The last equation is valid for any time interval, finite or RZsin® 0 4+ R2cos? o0 = WRQ. (30)
infinitesimal. Let beT : ¥, — X, a Poincagé mapping; 213

written in terms of the flow. Because the eccentricity of Earth’s orbit around the Sun

Ty = ¢,y = ¥, (20)  is small, we added the hypothesis that
for some time intervat, andy, x” € ... R = constant.
Let beT = R Sa factorization in two semimappingss][
such that This is the same hypothesis used by Hifl, , 10]. Imposed

S Y., o % 21) as a restriction, it reduces the behaviod@fto small oscil- _
Tt - lations around a constant value, the amplitude of the oscilla-
R:Y. — X,. (22)  tions is smaller tham.1 x 10~7 AU.
] When the restriction oRR is removed, but keeping the
In this wayS x = ¢, x = X, RX' = érx" = x"; where  ggme initial conditionsk remains constant along the numer-

Xo X" €2y, X' € X, andr =71 + 7. ical integration, so we recover the same periodic orbits. Fig-
By Eq. (19), ures 2a and 2b show the valuesif ando respectively for
Lot Tox = ¢y = 23 _asplu'uon with a period pf 27.465 days. The honz_ontal axis
o¢r Tox P-nX =X (23) indicates the number of integration steps; 1/4096 sidereal
onlox’ = Iox. (24)  vyears.
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FIGURE 2a. R,. Circular case. ]
FIGURE 2b. ¢. Circular case.

6. Elliptic case

Making small changes in the energy of the system we can

For initial conditions different from those of the circular case 2 : : .
make variations on the period &f;, this way we find an or-

there are no simple periodic solutions. We used the aStrqBit with an average lunar period of 29.133 days. We call this

nomical data of July'", 2001 to make estimations of initial . >
conditions; the configuration of that date is very close to thesolutlon. R-0. Figures (4a) and (4b) show the phase planes

configuration of full moon and aphelion. Ry, P, ando, P respectively for 39 lunar cycles.

As we expectedR; ando perform more than 12 oscil-
lations as long agt, performs one slow oscillation. Along 7. Qualitative results
the numerical integration, the phase locking betwggrand
o in one lunar cycle is not exact, # 0 whenR; = 0. For We classified the solutions above mentioned in two cate-
some initial conditions, the phase shift is related with the begories:
havior of R,, it is negative wherR, decreases and positive
whenR; increases.

As we have shown in Sec. 4, an orbit that reaches
a collinear configuration in an extreme value Bf with
P, = 0, having started from theppositecollinear config-
uration in an extreme value d®; and withP, = 0, is a
periodic orbit. Consequently, we have to search for an orbit
that starts in full moon and aphelion, and reaches new moon
in perihelion, with phase locking orbit will have exactly 13
lunar cycles in one sidereal year.

e Quasi-circular orbits. The periodic orbits for the cir-
cular and for the elliptic case, show a similar behav-
ior: the Moon describes an oval trajectory centered
on Earth, with the maximum distance at first and third
guarter. These orbits are very similar to the Hill's pe-
riodic solution B, 9, 10], however we have two differ-
ent local minima, the higher takes place at full moon,
and the lower at new moon. Figure 5 shows the Earth-
Moon distance in a lunar cycle for the orbit P-13.

We call this solution: P-13. The Figs. 3a and 3b show the In these solutions the Moon orbit around Earth is basi-
phase planeR,, P» ando, P, respectively of this orbit. Each cally a circular trajectory perturbed by the Sun.
point represents an intersection of the orbit with the surface
..
P
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0.n0075 [ \
- /ﬁ\\\\
o { ) \\\
E } o
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FIGURE 3a. Phase plan®;, P». Elliptic case. Orbit P-13. FIGURE 3b. Phase plane, P,. Elliptic case. Orbit P-13.
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FIGURE 4a. Phase plangs, P». Elliptic case. Orbit R-0. FIGURE 4b. Phase plane, P, . Elliptic case. Orbit R-0.

e Quasi-elliptical orbits. Perturbing the quasi-circular where the latus rectum, and the eccentricity, related to
orbits changing the initial value of, but keeping the the energy an angular momentum, are sufficient to character-
same energy, we can find solutions with the same peize the orbit.
riod for Ry, in which the Earth-Moon distance has just
one maximum and one minimum in a lunar cycle, asit  Figure 7 shows a graphic df/p vs. cos @ in one lunar
should happen in an elliptical orbit. The amplitude of cycle for the orbit R-0. Instead of a straight line we have a
the oscillations in this case is wider than the amplitudenarrow "tongue” showing that neither the eccentricity nor the
in the quasi-circular case. The extreme values afe  latus rectum are constants; in fact, the graphic is different for
not coupled with the extreme valuesBf ando. The  each lunar cycle. As a qualitative comparing, Fig. 8 shows a
orbit R-0 belongs to this category (See Fig. 6). similar graphic for the astronomical data of July, 2001; again,

, ) we have not a straight line, and we have a different graphic
In these solutions the Earth-Moon orbit has an own dy+qr each month.

namics, independent of the relative position of the Sun. | 0 4ar 1o compare out numerical solutions with the as-

tronomical data, we make use of the model of rotating Kepler
7.1. Quasi-elliptical orbits ellipse: Using (31) we can estimate successive valueaod

« from the successive extreme valuegpof
We need to justify this terminus. In an elliptical orbit the
Earth-Moon distance, and the true anomal§, must be re-

lated by Kepler equation e — ZM’ (32)
Pmax + Pmin
1 1 )
~ = —(1L+ecosh), (31) o — PmazPmin_ (33)
P @ Pmax +pm1n
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FIGURE 5. p Quasi-circular orbit P-13. FIGURE 6. p Quasi-elliptical orbit R-0.
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FIGURE 7. Kepler equation. Orbit R-0. FIGURE 8. Kepler equation. July, 2001.
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FIGURE 9. e vs« in 13 lunar cycles. Orbit R-0.
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FIGURE 10 € vs« in one year. Astronomical data.

Figure 9 shows a graphic ef againsta for thirteen lunar  proximations in order to simplify the calculus, but they are no
cycles the of the orbit R-0. Other parameters for this orbitessential, so they can be removed. The initial conditions we
are: The average period fér the sidereal month, is 26.943 used are calculated on rough estimations, so we need to get
days. The average time between consecutive minima of more accurate data in order to adjust or results to the well-
the anomalistic month, is 27.054 days. known periods of the Moon.

Figure 10 shows a similar graphic for the astronomical
data from July, 2001 to June, 2002. We can see that both There are other periods of the Moon that we can not
graphics show basically the same behavioande perform  get because of the simplification that the system is bidimen-
approximately two oscillations in a year; one oscillate in op-sional. In future works, we will eliminate this restriction.
position to the other, as longincreasess decreases.
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