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Periodic orbits for the elliptic case of the Sun-Earth-Moon problem in new
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We present a set of periodic and quasi-periodic orbits for the bidimensional case of the Sun-Earth-Moon problem using the coordinates
recently introduced by Piña and Jiḿenez-Lara. Eliminating the restriction we used in a previous work that Earth-Moon system describes a
circular orbit around the Sun, we recover the periodic orbits we have found, and we find periodic orbits for the elliptic case. We also find
quasi-periodic orbits closer to the real case.

Keywords: Three body problem; Moon theory; celestial mechanics.

Presentamos un conjunto deórbitas períodicas y cuasi-periódicas para el caso bidimensional del problema Sol-Tierra-Luna, utilizando las
coordenadas recientemente propuestas por E. Piña y L. Jiḿenez-Lara. Eliminando la restricción que hab́ıamos utilizado en un trabajo anterior,
de que el sistema Tierra-Luna describe unaórbita circular en torno al Sol, recuperamos las soluciones periódicas que habı́amos encontrado y
encontramos soluciones periódicas para el caso elı́ptico; adeḿas deórbitas cuasi-periódicas cercanas al caso real.

Descriptores: Problema de tres cuerpos; teorı́a lunar; mećanica celeste.

PACS: 46.10.-z; 95.10.Ce; 96.20.-n

1. Introduction
In Ref. 1 we shown a first approach to the Sun-Earth-Moon
problem. We imposed the restriction that the Earth-Moon
subsystem performs a uniform circular motion around the
Sun. With that simplification, the problem is reduced into a
system with two degrees of freedom. This allowed to use the
technique of the symmetry lines to search for periodic orbits.

For this work we have removed that restriction. The sys-
tem has three degrees of freedom, so the symmetry lines tech-
nique is not applicable. However, we can use some of the
symmetry properties of the system to help us in the search for
periodic orbits. Perturbing these periodic orbits, we search
for solutions whose behavior resemble, under the bidimen-
sional approximation, the real orbit.

We present a classification of the solutions in accordance
with the trajectory of the Earth-Moon subsystem around the
Sun, and with the trajectory of the Moon around the Earth.
Finally, we make qualitative comparing between our numeri-
cal solutions and the astronomical data.

2. System of coordinates
Let m1,m2,m3 be the masses of Sun, Earth and Moon, re-
spectively. The new set of coordinates is defined in a non-
inertial reference system, parallel to the directions of the prin-
cipal inertia axes of the triangle described by the three bodies,
with the origin at the barycenter [2, 3]. Let s1, s2, s3 be the
positions of Sun, Earth and Moon respectively in this rotat-
ing frame, andr1, r2, r3 be the corresponding positions in an
inertial system; the transformation from one frame into the
other is made by a rotation matrix,ri = Gsi. The problem
is restricted to the bidimensional case, so we need just one
Euler angleψ.

The selection of the reference system makes the matrix
of inertia to be diagonal; because three particles conform a
plane, just two of the moments of inertia are independent:
I3 = I1 + I2. Piña and Jiḿenez-Lara define two coordinates
R1, R2 with dimensions of length related to these moments
of inertia [3]:

I1 = µR2
1, (1)

I2 = µR2
2, (2)

where

µ =
√

m1m2m3

m1 + m2 + m3
. (3)

There is another coordinate, an angleσ related to the ge-
ometry of the system. The details of the development ofσ are
presented in Refs. 2 and 3. Letp, q, r be the distances Earth-
Moon, Sun-Moon, and Sun-Earth respectively. The relation
for the new coordinates and the distances is
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where matrixB depends on the masses of the particles only.
We presented a redefinition ofσ in [1] making use of the

properties of the Sun-Earth-Moon case:m1 À m2 > m3,
q ∼= r À p. The only change takes place in the explicit form
of B.
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+O(1/m1). (5)
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This newσ describes small oscillations around zero.
From Eq. (4), is easy to make estimations of the order of

magnitude of the three variables: The amplitude of the oscil-
lations forσ are very small, less than one minute of arc.R1

andR2 can be estimated by

R2
1 ≤

√
m2m3

m2 + m3
p2, (6)

R2
2 + R2

1
∼= m2 + m3√

m2m3
r2. (7)

2.1. Astronomical data

Figures 1a and 1b show successive values forR1 andσ cal-
culated from the astronomical data of July, 2001 [4, 5], ig-
noring the angle between the Moon’s orbit and the ecliptic.
We can see that there is a phase locking betweenR1 andσ:

• The zeroes ofR1 match with the extreme values of
σ when the three particles are collinear. Restricted to
the bidimensional case, a collinear configuration takes
place at full moon and new moon; the5th and 20th

days, respectively.

• The zeroes ofσ and the extreme values ofR1 occurs
when the Moon is at first and third quarter,13th and
27th days respectively, when the system describes an
isosceles triangle.

The evolution ofR2 is very slow, in the same interval it
starts in 3.07095 AU, reaches a maximum in 3.07100 and
decreases monotonously to 3.06610. As we can see from
Eq. (7), the behavior ofR2 is dominated by the Sun-Earth
distance, so its period is close to the sidereal year. The period
for R1 is the lunar month, that is the time between consecu-
tive full moons, so the system is quasi-periodic. The quotient
of these periods is 12.368, it is the basis for the division of
the year in 12 months of 28 to 31 days of the Jewish calendar
[6].

FIGURE 1a. R1. Astronomical data.

3. Hamiltonian formalism

As we shown in Ref. 1, the Hamiltonian function of the sys-
tem is given by

H =
1
2µ

[P 2
1 + P 2

2 +
R2

1 + R2
2

(R2
1 −R2

2)2
(P 2

σ + P 2
ψ)

+4
R1R2

(R2
1 −R2

2)2
PσPψ] + V, (8)

where

V = −Gm1m2m3(
1

m1p
+

1
m2q

+
1

m3r
).

By Hamilton equations, the relationship of the canonical mo-
ments with the canonical coordinates and their derivatives is
given by

P1 = µṘ1, (9)

P2 = µṘ2, (10)

Pσ = µ(R2
1 + R2

2)σ̇ − 2µR1R2ψ̇, (11)

Pψ = µ(R2
1 + R2

2)ψ̇ − 2µR1R2σ̇. (12)

Is easy to verify thatPψ is a constant of motion, the angu-
lar momentum, so we handle it as a parameter of the system
rather that a canonical variable. The system is conservative,
so the energyE = H(R1, R2, σ, P1, P2, Pσ) is also a con-
stant of motion.

4. Symmetries

Analogously as we did in Ref. 1 with the technique of the
symmetry lines, we make use of the symmetry properties of
the system to search for periodic orbits.

Let be a Poincaré section defined byR1 = 0, i.e.,
collinear configuration; on this surface,P1 can be written in
terms of the other variables:

FIGURE 1b. σ. Astronomical data.
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P 2
1 = 2µ(E − V )− P 2

2 −
P 2

σ + P 2
ψ

R2
2

. (13)

There is an ambiguity in the sign ofP1, so let be:

• Σ+, the surface of section defined byR1 = 0, P1 > 0.

• Σ−, the surface of section defined byR1 = 0, P1 < 0.

We have choose, arbitrarily, associate the full moon configu-
ration withP1 > 0, and the new moon withP1 < 0 .

This is a reversible system, the Hamiltonian function is
invariant under the transformation

I0
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
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R2

σ
P1

P2

Pσ


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=
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−R1

R2

σ
P1

−P2

−Pσ




. (14)

This transformation is an involution,i.e., I0I0 = 1.
On the surfaces of sectionΣ, let beΓ0 the set of points

invariant underI0, this meansΓ0 = I0Γ0:

Γ+
0 = {χ ∈ Σ+|P2 = 0, Pσ = 0}, (15)

Γ−0 = {χ ∈ Σ−|P2 = 0, Pσ = 0}. (16)

Let beφt the flow defined by the integration of the equa-
tions of motion,φtχ(t0) = χ(t0 + t). It is a canonical trans-
formation, other properties ofφt are

φs+t = φsφt, (17)

φtφ−t = 1. (18)

Because of the reversibility of the system we can write [7]

φ−t = I0φtI0. (19)

The last equation is valid for any time interval, finite or
infinitesimal. Let beT : Σ+ → Σ+ a Poincaŕe mapping;
written in terms of the flow:

Tχ = φτχ = χ′′, (20)

for some time intervalτ , andχ, χ′′ ∈ Σ+.
Let beT = R S a factorization in two semimappings [8]

such that

S : Σ+ → Σ−, (21)

R : Σ− → Σ+. (22)

In this wayS χ = φτ1χ = χ′, R χ′ = φτ2χ
′ = χ′′; where

χ, χ′′ ∈ Σ+, χ′ ∈ Σ−, andτ = τ1 + τ2.
By Eq. (19),

I0φτ1I0χ
′ = φ−τ1χ

′ = χ, (23)

φτ1I0χ
′ = I0χ. (24)

Since I0χ
′ ∈ Σ− and I0χ ∈ Σ+, by definition of the

semimappingR, the last equation can be written as

RI0χ
′ = I0χ. (25)

So we getI0RI0Sχ = χ, which means

I0RI0 = S−1. (26)

Analogously

I0SI0 = R−1. (27)

Let χ ∈ Γ+
0 be an initial condition that evolves into a

pointχ′ ∈ Γ−0 , by Eq. (26) we can write

RI0χ
′ = I0S−1χ′ = I0χ. (28)

Sinceχ andχ′ are invariant underI0 we finally get

Rχ′ = χ = Tχ. (29)

Therefore, the orbit is periodic.
By Eq. (11) the border conditionsR1 = 0, Pσ = 0 im-

plies σ̇ = 0, i.e. there is phase locking betweenR1 andσ.
TheΓ0 are defined in collinear configuration and the extreme
values ofR2; as is suggested by (7), the maximum and mini-
mum ofR2 take place at aphelion and perihelion respectively.
.

5. Circular case

In Ref. 1 we shown a first approach to the problem: We found
a relation between the distance from the barycenter of the
Earth-Moon subsystem to the Sun,R, and our coordinates:

R2
1 sin2 σ + R2

2 cos2 σ =
m2 + m3√

m2m3
R2. (30)

Because the eccentricity of Earth’s orbit around the Sun
is small, we added the hypothesis that

R = constant.

This is the same hypothesis used by Hill [6, 9, 10]. Imposed
as a restriction, it reduces the behavior ofR2 to small oscil-
lations around a constant value, the amplitude of the oscilla-
tions is smaller than1.1× 10−7 AU.

When the restriction onR is removed, but keeping the
same initial conditions,R remains constant along the numer-
ical integration, so we recover the same periodic orbits. Fig-
ures 2a and 2b show the values ofR1 andσ respectively for
a solution with a period of 27.465 days. The horizontal axis
indicates the number of integration steps,h = 1/4096 sidereal
years.
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FIGURE 2a. R1. Circular case.

6. Elliptic case

For initial conditions different from those of the circular case
there are no simple periodic solutions. We used the astro-
nomical data of July5th, 2001 to make estimations of initial
conditions; the configuration of that date is very close to the
configuration of full moon and aphelion.

As we expected,R1 andσ perform more than 12 oscil-
lations as long asR2 performs one slow oscillation. Along
the numerical integration, the phase locking betweenR1 and
σ in one lunar cycle is not exact,σ̇ 6= 0 whenR1 = 0. For
some initial conditions, the phase shift is related with the be-
havior ofR2, it is negative whenR2 decreases and positive
whenR2 increases.

As we have shown in Sec. 4, an orbit that reaches
a collinear configuration in an extreme value ofR2 with
Pσ = 0, having started from theoppositecollinear config-
uration in an extreme value ofR2 and with Pσ = 0, is a
periodic orbit. Consequently, we have to search for an orbit
that starts in full moon and aphelion, and reaches new moon
in perihelion, with phase locking orbit will have exactly 13
lunar cycles in one sidereal year.

We call this solution: P-13. The Figs. 3a and 3b show the
phase planesR2, P2 andσ, Pσ respectively of this orbit. Each
point represents an intersection of the orbit with the surface
Σ+.

FIGURE 3a. Phase planeR2, P2. Elliptic case. Orbit P-13.

FIGURE 2b. σ. Circular case.

Making small changes in the energy of the system we can
make variations on the period ofR1, this way we find an or-
bit with an average lunar period of 29.133 days. We call this
solution: R-0. Figures (4a) and (4b) show the phase planes
R2, P2 andσ, Pσ respectively for 39 lunar cycles.

7. Qualitative results

We classified the solutions above mentioned in two cate-
gories:

• Quasi-circular orbits. The periodic orbits for the cir-
cular and for the elliptic case, show a similar behav-
ior: the Moon describes an oval trajectory centered
on Earth, with the maximum distance at first and third
quarter. These orbits are very similar to the Hill’s pe-
riodic solution [6, 9, 10], however we have two differ-
ent local minima, the higher takes place at full moon,
and the lower at new moon. Figure 5 shows the Earth-
Moon distancep in a lunar cycle for the orbit P-13.

In these solutions the Moon orbit around Earth is basi-
cally a circular trajectory perturbed by the Sun.

FIGURE 3b. Phase planeσ, Pσ. Elliptic case. Orbit P-13.
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FIGURE 4a. Phase planeR2, P2. Elliptic case. Orbit R-0.

• Quasi-elliptical orbits. Perturbing the quasi-circular
orbits changing the initial value ofσ, but keeping the
same energy, we can find solutions with the same pe-
riod for R1, in which the Earth-Moon distance has just
one maximum and one minimum in a lunar cycle, as it
should happen in an elliptical orbit. The amplitude of
the oscillations in this case is wider than the amplitude
in the quasi-circular case. The extreme values ofp are
not coupled with the extreme values ofR1 andσ. The
orbit R-0 belongs to this category (See Fig. 6).

In these solutions the Earth-Moon orbit has an own dy-
namics, independent of the relative position of the Sun.

7.1. Quasi-elliptical orbits

We need to justify this terminus. In an elliptical orbit the
Earth-Moon distancep, and the true anomalyθ, must be re-
lated by Kepler equation

1
p

=
1
α

(1 + ε cos θ), (31)

FIGURE 5. p Quasi-circular orbit P-13.

FIGURE 4b. Phase planeσ, Pσ. Elliptic case. Orbit R-0.

where the latus rectumα, and the eccentricityε, related to
the energy an angular momentum, are sufficient to character-
ize the orbit.

Figure 7 shows a graphic of1/p vs. cos θ in one lunar
cycle for the orbit R-0. Instead of a straight line we have a
narrow ”tongue” showing that neither the eccentricity nor the
latus rectum are constants; in fact, the graphic is different for
each lunar cycle. As a qualitative comparing, Fig. 8 shows a
similar graphic for the astronomical data of July, 2001; again,
we have not a straight line, and we have a different graphic
for each month.

In order to compare out numerical solutions with the as-
tronomical data, we make use of the model of rotating Kepler
ellipse: Using (31) we can estimate successive values ofε and
α from the successive extreme values ofp:

ε =
pmax − pmin

pmax + pmin
, (32)

α =
2pmaxpmin

pmax + pmin
. (33)

FIGURE 6. p Quasi-elliptical orbit R-0.
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FIGURE 7. Kepler equation. Orbit R-0.

FIGURE 9. ε vsα in 13 lunar cycles. Orbit R-0.

Figure 9 shows a graphic ofε againstα for thirteen lunar
cycles the of the orbit R-0. Other parameters for this orbit
are: The average period forθ, the sidereal month, is 26.943
days. The average time between consecutive minima ofp,
the anomalistic month, is 27.054 days.

Figure 10 shows a similar graphic for the astronomical
data from July, 2001 to June, 2002. We can see that both
graphics show basically the same behavior:α andε perform
approximately two oscillations in a year; one oscillate in op-
position to the other, as longα increases,ε decreases.

8. Conclusions

The proposed coordinate system seems to be suitable for the
study of the Sun-Earth-Moon problem. We made a few ap-

FIGURE 8. Kepler equation. July, 2001.

FIGURE 10 ε vsα in one year. Astronomical data.

proximations in order to simplify the calculus, but they are no
essential, so they can be removed. The initial conditions we
used are calculated on rough estimations, so we need to get
more accurate data in order to adjust or results to the well-
known periods of the Moon.

There are other periods of the Moon that we can not
get because of the simplification that the system is bidimen-
sional. In future works, we will eliminate this restriction.
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