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Stationary processes and equilibrium states in non-symmetric neural networks

A. Castellanos
Departamento de F́ısica, Universidad de Sonora

Apdo. Post. 1626, Hermosillo 83000, Son. México.
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Stationary processes and equilibrium states are discussed in finite separable recurrent neural networks with sequential dynamics and away
from saturation. We describe thermal fluctuations of the dynamical order parameters originated as finite size effects of orderO

�
N−1/2

�
by

means of their corresponding Fokker-Planck equation, and find their time dependent probability distribution. We introduce the concept of
extended entropy of fluctuations in order to find a general condition to characterize stationary states in Neural Networks with non symmetric
interactions. Divergence and rotational of the probability current in the space of fluctuations are also used to differentiate between stationary
and equilibrium states. Besides, algebraic conditions are found to know when stationary states can exist. The results are illustrated by
analyzing a neural network with a macroscopic dynamical fixed point but not satisfying detailed balance at microscopic level.

Keywords: Statistical physics; thermodynamics and nonlinear dynamical systems; neural networks; fuzzy logic; artificial intelligence;
stochastic processes; probability theory; stochastic processes and statistics.

Se discuten los procesos estacionarios y los estados de equilibrio en redes neuronales recurrentes, finitas y separables, con dinámica se-
cuencial y muy lejos de la saturación. Por medio de la correspondiente ecuación de Fokker-Planck, describimos las fluctuaciones térmicas
de la dińamica de los parámetros de orden, originadas como efectos de tamaño finito de orden (N−1/2) y encontramos la distribución de
probabilidad dependiente del tiempo. Introducimos el concepto de entropı́a extendida de las fluctuaciones para encontrar una condición gen-
eral que caracterice los estados estacionarios en Redes Neuronales con interacciones no simétricas. Tambíen se utilizan la divergencia y el
rotacional de la corriente de probabilidad en el espacio de fluctuaciones para diferenciar entre estados estacionarios y de equilibrio. Además,
se encuentran las condiciones algebraicas para saber cuando pueden existir los estados estacionarios. Los resultados son ilustrados mediante
el ańalisis de una red neuronal con un punto fijo en la dinámica macrosćopica pero que no satisface el balance detallado a nivel microscópico.

Descriptores:Fı́sica estad́ıstica; termodińamica y sistemas dinámicos no lineales; redes neuronales; lógica difusa; inteligencia artificial;
procesos estocásticos; teoŕıa de la probabilidad; procesos estocásticos y estadı́stica.
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1. Introduction
Early works in statistical physics of Neural Networks (NN)
were concentrated in the mean field study of equilibrium
properties of infinite systems with symmetric interactions
(for a review see Ref. 1). However, one of the basic char-
acteristics of NN is their high number of barriers and valleys
in the ’energy space’, which makes the study of the dynamics
essential. In the case of NN with non symmetric interactions,
dynamical techniques are in fact the only tool available, as in
this kind of systems detailed balance does not hold and the
usual statistical concepts such as free energy cannot even be
defined.

On the other hand, models of the mean field type, have
predictions valid for infinitely large systems (N →∞). Tak-
ing the thermodynamical limit has proved to be a useful ap-
proximation to study gases, liquids and solids, where the
number of elements is of the order of1023; however, the in-
clusion of finite size effects is clearly important when consid-
ering finite systems like the brain having1010 neurons work-
ing in small groups whose size ranges from a few thousands

to 105 neurons. These finite size effects have been shown to
play an important role in both symmetric and non symmet-
ric NN [2, 3], even affecting, in some particular cases, the
macroscopic behaviour of some systems [4].

Although considering finite size effects and non symmet-
ric interactions is not enough to obtain a good description of
biological NN, it is clearly a first and important step in this
direction; other characteristics should be included into the
models (see Ref. 5 for a good review) such as spatial struc-
ture [6–9, 5], as well as short and long-range connectivity
[10, 11]. However these considerations are out of the scope
of this paper.

Until now, most work in asymmetric neural networks has
been concentrated in the study of sequential retrieval of em-
bedded patterns [12], and in the storage capacity of those
networks [13], for infinite systems. We believe the study of
the stochastic behaviour resulting as a finite size effect in both
symmetric and non symmetric NN will contribute towards a
better understanding of different aspects of the dynamics of
NN and therefore it deserves special attention.



STATIONARY PROCESSESAND EQUILIBRIU M STATESIN NON-SYMMETRIC NEURAL NETWORKS 311

The objective of this work is to study the difference be-
tween stationary and equilibrium states from the analysis of
the fluctuations originated as finite size effects. Our formal-
ism describes the dynamics of NN to first non trivial order
in the system size [15, 16], by separating systematically the
N = ∞ from the finite N contributions in the Kramers-
Moyal expansion [17] and keeping the first non trivial order
in (1/N ). In this way it is obtained a Fokker-Planck Equation
(FPE) which can be written in terms of the fluctuations of
the dynamical order parameters, from whose solution it can
be constructed the probability distribution for these fluctua-
tions. This formalism does not require symmetry of the inter-
action matrix, as opposed to other methods [14]; so dynami-
cal flow diagrams for either symmetric or non-symmetric in-
teractions can be obtained by solving numerically the deter-
ministic mean field equations for the fluctuation moments. In
the particular case of symmetric interactions the approach to
equilibrium is warranted by knowing Lyapunov functions.

We know that any system in thermodynamical equilib-
rium must obey detailed balance. However, NN with non
symmetric interactions can never obey detailed balance; this
is reflected on the NN behaviour as the lack of compensa-
tion between positive and negative random fluctuations in the
order parameters, in a way that induces a rotation of the prob-
ability current in the space of the fluctuation variables. In this
sense, the divergence and rotational of the probability current
are useful tools to characterize the stationary and equilibrium
states. In addition to this geometric picture, we obtain the
algebraic conditions under which stationary states can exist.
We also introduce the concept of ’extended entropy’à la
Boltzmann, for asymmetric NN, to characterize the station-
ary states. The limiting (maximum) value of this function
allows us to obtain a condition that has to be satisfied by a
NN in a stationary state; we find out that this condition is
met, in particular, by any symmetric NN in equilibrium, so
we can see the equilibrium state as a particular case of a sta-
tionary process. These results are illustrated by considering
a peculiar system previously analyzed: a NN with a macro-
scopic fixed point but unable to satisfy detailed balance at the
microscopic level [16].

The paper is organized as follows: in Sec. 2, it is pre-
sented an overview of the general formalism (for details see
Refs. 15, 16); in Sec. 3, it is introduced the concept of ex-
tended entropy in order to discuss statistical equilibrium and
stationary processes; in Sec. 4, the lack of detailed balance
and its relation to the rotation of the probability current are
examined to obtain a geometric picture of this phenomenon
and the algebraic conditions for the existence of stationary
states; finally, in Sec. 5, it is discussed a NN with a fixed
point but without detailed balance as an example to illustrate
the previous sections.

Our work can be applied to study finite size effects in
any kind of finite, separable recurrent NN with sequential
dynamics and away from saturation, provided that transfer-
ence functions are sigmoidal. This includes models with ei-
ther symmetric or asymmetric interactions, and even models

where synapses are state dependent [18, 19]. The analysis of
NN with synchronous updating [19, 20] is outside the limits
of this theory.

2. Finite size effects. General formalism

Let us consider a system composed by a large, but finite,
numberN of interconnected neuronsσ ∈ {−1, 1}N , so the
vectorσ(t) = (σ1(t), σ2(t), . . . , σN (t)) describes the state
of the system at a given time. Each variableσi(t) evolves
in time by describing sequential stochastic alignment of the
spins under the action of an external field given by

hi(σ) =
∑

j

Jijσj +θi,

with

Jij =
1
N

p∑
µν=1

ξµ
i Aµν ξν

j (1− δij),

Jij is the (separable) synaptic strength of the connection
going from neuronj to neuroni, θi is a response thresh-
old, and the auto interactionsJii are excluded. These in-
teractions store a finite numberp ¿ N of quenched bi-
nary patterns{ξµ

i } chosen at random withµ = 1, . . . , p and
the notationξi = (ξ1

i , . . . , ξp
i ) ∈ {−1, 1}p, or alternatively,

ξµ = (ξµ
1 , . . . , ξµ

N ) ∈ {−1, 1}N . And, as we can see, interac-
tions do not need to be symmetrical. The micro-dynamics of
the system is defined by a master equation for the probability
densitypt(σ), given by

d

dt
pt(σ) =

∑

i

{wi(Fiσ)pt(Fiσ)−wi(σ)pt(σ)} , (1)

with
wi(σ) =

1
2
[1−σi tanh(βhi(σ))],

wherewi(σ) is the temperature (T = β−1) dependent tran-
sition probabilityσi(t) →−σi(t), andFi is an operator that
flips the i−th spin. If we define the probability density for
the pattern overlapsm asPt(m) ≡ ∑

σ pt(σ) δ [m−m(σ)]
with the usual definition for the overlaps

m(σ) = (m1(σ), . . . , mp(σ)), mµ =
1
N

N∑

i

ξµ
i σi

the master Eq. (1) can be rewritten in terms of the macro-
scopic dynamical variablesm(σ) by insertingδ[m−m(σ)]
into Eq. (1), and making a Taylor expansion in powers of the
vector2σiξi/N . If we expand the resulting Kramers-Moyal
equation in powers of(1/N) and keep the two leading or-
ders [23], we obtain a FPE valid on finite time-scales (i.e.
not scaling withN ) for the stochastic vectorm(σ). We can
now write m(σ) as the sum of a deterministic partm∗(t)
which corresponds to the infinite system, and the leading or-
der stochastic contributionq(t)/

√
N vanishing asN →∞

m = m∗(t) +
1√
N

q(t) + . . .
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we can now separate the dynamical equations for these two
order parameters. In this way,m∗(t) is the deterministic so-
lution to the Liouville equation given by

d

dt
m∗(t) = 〈ξ tanh β [ξ ·Am∗(t)+θ]〉ξ,θ

−m∗(t), (2)

where we defined〈· · · 〉ξ,θ
as an average over an ensemble

of NN characterized by different realizations of patterns. We
can now obtain a FPE for the remaining stochastic partq(σ)
resulting from the finite size effects as follows:

d

dt
Pt(q) =

∑
µ

∂

∂qµ
{Pt(q)Fµ[q; t]}

+
∑
µν

∂2

∂qµ∂qν
{Pt(q) Dµν [q; t]} . (3)

In this equation the flow termFµ[q; t] is given by

Fµ[q; t] = Kµ[m∗(t)] +
∑

ν

Lµν [m∗(t)]qν(t), (4)

with

Kµ[x] = lim
N→∞

√
N

{
〈ξµ tanh β[ξ ·Ax+θ]〉ξ,θ

− 1
N

∑

i

ξµ
i tanh β [ξi ·Ax+θi]

}
, (5)

Lµν [x] = δµν−β
∑

λ

〈ξµξλ

× [
1−tanh2 β[ξ ·Ax+θ]

]〉ξ,θ Aλν . (6)

It is important to notice thatKµ(t) makes a ’frozen’ correc-
tion to the flux, that persists even atT = 0 and depends on
the specific pattern configuration{ξµ}. On the other hand,
the diffusion termDµν [t] of the FPE, Eq. (3), is found to be
symmetric, and given by

Dµν [t] = δµν − e−t lim
N→∞

1
N

∑

i

ξµ
i ξν

i σi(0) tanh β[ξi ·Am(t)+θi]

−
∫ t

0

ds es−t 〈ξµξν tanh β[ξ ·Am∗(s)+θ] tanh β[ξ ·Am∗(t)+θ]〉ξ,θ
. (7)

It is important to notice that the flux is linear inq(t) and the
diffusion term is independent fromq(t), therefore the process
can be identified as a time dependent Ornstein-Uhlenbeck
process, whose formal solution is Gaussian:

Pt (q) =
exp

{− 1
2 [q − 〈q〉t] ·Ξ−1 (t) [q − 〈q〉t]

}

(2π)
p
2

√
detΞ (t)

(8)

with Ξ, the time dependent correlation matrix for the fluctu-
ationsΞµν = 〈qµqν〉t − 〈qµ〉t〈qν〉t, where< · · · >t is the
average at timet over different evolutions, for a given pat-
tern configuration{ξµ

i }. Therefore, the process can be fully
characterized by its two first statistical moments, which are
found to evolve in time according to the following determin-
istic equations

d

dt
〈q〉t + 〈Fµ[q; t]〉t = 0 (9)

d

dt
Ξ(t) = −L(t)Ξ(t)−Ξ(t)LT (t) + 2D(t). (10)

In order to arrive to explicit expressions for the flux in Eq. (4)
and difussion in Eq. (7) terms, for any particular system con-
sidered, we need to choose independently drawn unbiased
pattern componentsξµ

i ∈ {−1, 1} (with equal probabilities)
and independently drawn thresholdsθi (from some probabil-
ity distributionW (θ)). Afterwards, by solving equations (9)
and (10)

in terms of the flow and difussion we can construct the prob-
ability distribution for the fluctuations of the dynamical or-
der parameters (8) around mean field trajectories given by
Eq. (2). These stochastic fluctuations depend on the actual
realization of stored patterns, through the frozen correction
term in Eq. (5) and their size is of orderO (

N−1/2
)
.

3. Statistical equilibrium and stationary pro-
cesses

A physical system is said to be in a stationary state when the
correlations of the stochastic moments ofqµ, become inde-
pendent of time translations, that is if

〈qµ (t1 + τ) qµ (t2 + τ) ...qµ (tn + τ)〉
= 〈qµ (t1) qµ (t2) ...qµ (tn)〉

for any timeτ > 0, andµ = 1, ...p [21]; this condition is sat-
isfied in particular by any system in thermodynamical equi-
librium. However, thermodynamical equilibrium requires ad-
ditionally the presence of detailed balance, which means that
at microscopical level the probability for a ‘direct’ process
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is equal to the probability of the ‘reverse’ process, so there
is no net probability current between any two microscopic
states of the system. The equilibrium state has strong sta-
bility properties: any perturbation acting on it will die out
fast; this behaviour is reflected in the second law of thermo-
dynamics, according to which equilibrium is reached in an
irreversible fashion and corresponds to a maximum entropy
at constant energy, or minimum free energy at constant tem-
perature. However, all this scheme is no longer useful for
systems with non-symmetric interactions, as in this case it is
not possible to define an energy function and detailed bal-
ance no longer holds, so it is not possible to talk about equi-
librium. However, it is observed that these kind of systems
still evolves from less probable to more probable states, and
this evolution leads them towards more privileged parts of the
‘space of states’. Therefore, for a system not satisfying de-
tailed balance we can define an “extended entropy” [21] as
follows:

S(t) = −H(t) with H(t) ≡
∫

dqPt(q) lnPt(q) (11)

(with Boltzmann’s constantkB ≡ 1). This extended entropy
is an extensive quantity, which, according to the H-theorem,
increases monotonically until it reaches its maximum value,
provided it exists a stationary state; and this result is valid for
any system satisfying, or not, detailed balance. The contri-
bution to the extended entropy, due to finite size fluctuations,
at timet is obtained by substituting (8) into the previous ex-
pression (11). In this way we find

Sq (t) = −〈lnPt (q)〉q;t =
1
2

ln {det [Ξ (t)]}+ C,

where C is a constant. Therefore, the increase in entropy be-
tween two instantst1 andt2 such thatt1 < t2, is given by

∆S = ln
{

det [Ξ (t2)]
det [Ξ (t1)]

} 1
2

≥ 0,

which impliesdet [Ξ (t2)] ≥ det [Ξ (t1)]. If we combine the
Wronski identity d

dt ln {det [B]} = Tr
[
B−1 d

dtB
]

with Eq.
(10) describing the time evolution of the second moments, we
find

d

dt
{ln [det Ξ (t)]} = 2 Tr

[
D Ξ−1 −L

]
,

which implies that in any relaxation process it is satisfied

Tr
[
D Ξ−1

] ≥ Tr [L] ,

where the equal sign applies when the system reaches a sta-
tionary state. Therefore, Boltzmann’s H-theorem tells us
that if a stationary state exists, it satisfies the expression
Tr

[
D Ξ−1

]
= Tr [L]. We can compare this result to the

stronger conditionD Ξ−1 = L, satisfied by symmetric sys-
tems in an equilibrium state (therefore, satisfying detailed
balance) [16].

4. Non detailed balance, rotating probability
current and the existence of stationary states

In this section it is given another way to characterize the
difference between stationary and equilibrium states, in the
framework of NN. We also find the conditions needed for the
existence of a stationary state. The first objective is reached
if we analyze the probability current in the space of fluctua-
tion variables by rewriting the FPE as a continuity equation
for the probability fluxJ t(q) as follows:

∂

∂t
Pt(q) +∇ · J t(q) = 0,

with

J t(q) = Jmec
t (q) + Jdis

t (q), (12)

where we have separated the probability flux in two terms,
one related to the flux, and the other to the diffusion; for an
Ornstein-Uhlenbeck process, like this one, these are given by

Jmec
t (q) = −Pt(q)〈F [q, t]〉,

Jdis
t (q) = Pt(q)DΞ−1 [q(t)− 〈q(t)〉] . (13)

Van Kampen [22] has noted that the first term, resulting from
the presence of an external field, can be called ‘purely me-
chanical’ as it has the characteristics of a Liouville flux, while
the second term is ‘purely diffusive’ as it is related to an irre-
versible diffusive process.

From expression in Eq. (12), it should be clear
that when the divergence of the total probability current
J t(q) = Jmec

t (q) + Jdis
t (q) is zero the system is in a

stationary state. If we maked〈q〉/dt = 0, dΞ/dt = 0 in
Eqs. (9-10) for long times, we obtain

〈F [q]〉 = 0 =⇒ 〈q〉∞ = −L−1
∞ K∞ (14)

L∞Ξ∞ + Ξ∞L†∞ = 2D∞ (15)

The first of Eqs. (14) shows that, in general, the mechan-
ical probability current vanishes. On the other hand, Eq.
(15) is known as the fluctuation-dissipation theorem (FDT),
and it shows that the correlationΞµν may be in a stationary
state as a consequence of the compensation between damp-
ing, represented by the convection matrixL (6) and dif-
fusion, represented byD (7). In this limit, we also have
L∞ = I − β D∞A.

This state is an equilibrium state if, additionally, the prob-
ability current is irrotational, that is, if∂Jµ/∂qν = ∂Jν/∂qµ,
for all µ, ν. But this happens only forAµν = Aνµ, which
implies symmetric interactions, as expected. On the contrary,
rotational probability current is present when asymmetric in-
teractions appear and detailed balance cannot exist. Besides,
∂
∂tP∞ (q) = 0 implies that∇ · J t (q) = 0, so that, for NN
with symmetricA, there will be detailed balance in the prob-
ability current whenever there is a compensation between the
mechanical and the dissipative currents, that is:

∂

∂qµ
Jµ =

∂

∂qµ

(
Jmec

µ + Jdis
µ

)
= 0.
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In particular, the conditionAµν = Aνµ is satisfied by the
use of the Hebb rule or a variation of it where each pattern
{ξµ} is given a different weight in the learning prescription
[24]. Therefore, divergence and rotational operating on the
probability current,J t(q), give us two conditions to charac-
terize stationary and equilibrium states, respectively, in the
framework of NN.

To complete this discussion from the formal point of
view, we need to present the algebraic conditions for the exis-
tence of stationary states. Obviously, the first condition is that
the convection matrix should be nonsingular. But in addition,
we need to find the formal solution to the autocorrelation ma-
trix Ξ. We start from the FDT:L∞ Ξ∞+Ξ∞ L†∞ = 2 D∞
and by choosing the eigenvectors{| λn〉} of the matrix
L†∞L∞ as the basis to represent our matrixes. Then we get
L†∞L∞ = λn | λn〉, and multiplying (15) byL†∞ on the left,
and byL∞ on the right, we obtain

〈λn|L†∞ L∞ Ξ∞ L∞|λm〉+ 〈λn|L†∞ Ξ∞ L†∞L∞|λm〉
= 〈λn|2 L†∞D∞ L∞|λm〉.

From Eq. (6) we know that if the interaction matrix satisfies
Aµν = ±Aνµ, then the convection matrixL is also symmet-
ric or antisymmetric, respectively. In this case we can use that
〈λn | L†∞ L∞ = ±λn 〈λn |, rearranging and multiplying by
L−1
∞ from the right we arrive to the solution

Ξ∞n,n′ = 〈λn | L†∞D∞ L∞Gn L−1
∞ | λn′〉

with

Gn = 2
p∑

m=1

| λm〉 〈λn |
±λn + λm

.

Then we find, as expected, that if the interaction matrixAµν

is symmetric, then the solution exists. On the other hand,
for an antisymmetric interaction matrix it is a condition for
having a stationary state that all eigenvalues{λn} should be
different. For other types of interactions it is not possible to
know, in general, if the solution to the FDT exists (15), so
each particular problem must be analyzed separately, as we
will do it in the next section by analyzing a system previously
studied [16].

5. Study of a system with a fixed point but with-
out detailed balance

In this section we will study the dynamics of a particular
NN that, even though due to its structure it is unable to
satisfy detailed balance, it has a stable fixed point in the
limit: N → ∞. In this neural network,p binary patterns
{ξµ

i } = {+1,−1}N , randomly chosen with equal probabil-
ity for each of their two values, have been stored accord-
ing to a (p × p) asymmetric interaction matrix given by
Aµν = δµν +ε δµ1δν2, soε can be seen as a parameter break-
ing the symmetry. As we will corroborate later, in the infi-
nite version it only matters the probability distributionP (ξµ

i ),

while in the finite case it is also relevant the particular pattern
realization{ξµ

i } (measured by the overlap between pairs of
patterns). As we mentioned before, the time evolution of the
deterministic part of the dynamical order parameter,m∗

µ(t),
can be obtained by numerical solution of the Liouville equa-
tion, Eq. (2).

If ε = 0 the characteristics of the system are as follows:
there is complete symmetry between all the Liouville equa-
tions for the parametersm∗

µ (2), the infinite system has2p
fixed points related to pure states (only one order parameter
is different to zero) given bym∗

µ = ±mβ , with µ = 1, . . . , p
whose values are temperature dependent and are given by the
solution ofmβ = tanh (βmβ). Besides, there are other un-
desirable stable states related to mixtures of the order param-
eters (more than one of them are simultaneously different to
zero), with smaller basins of attraction [25]. The system
evolves towards one or another of the fixed points, depending
on the initial conditions.

In the caseε 6= 0 the symmetry between patterns is lost,
and the shape of the basins and the placing of the attractors
depend on the value ofε. The convection matrix is given by

Lµν = δµν − β 〈ξµξν

[
1− tanh2 β (ξ ·Am + θ)

]〉ξ,θ

+β ε δν2 〈ξµξ1

[
1− tanh2 β (ξ ·Am + θ)

]〉ξ,θ

and its determinant is different from zero, so the solution to
〈q〉∞ = −L−1

∞ K∞ exists. For simplicity, we will analyze
the stationary states forp = 2; as generalization to other
values ofp is straightforward and does not add new insight
into the physics of the problem. In this case, atT = 0 for
0 <| ε |< 1 there exist four attractors, two of them related to
pattern{ξ1} and two others having a big overlap with pattern
{ξ2} and a small, but still macroscopic overlap with pattern
{ξ1}; for | ε |> 1 there exist only the two attractors related
to pattern ’1’. For higher temperatures an analytical expres-
sion has been found forεc(T ) [16], the critical value ofε
where stability is lost. The FDT (15) can be summarized
into three relevant equations to be written asSΦ = Λ,
with Φ = (Ξ11, Ξ12,Ξ22) andΛ = (D11, D12, D22).
For the NN under consideration,S is nonsingular whenever
(L11)

2 = (L22)
2 6= √

L12L21. Since this condition is met,
we can conclude that the stationary state exists. Then the
FPE can be written as∇ · J = 0 to establish that compensa-
tion between damping and diffusion occurs according to the
analysis written before.

It is just a matter of algebra to study the final size effects
close to the stationary statem∗

∞ = mβ (1, 0). According
to Eq. (9), at the stationary state,m∗

µ = mβ δµ1, the aver-
age flux〈F 〉∞ is equal to zero and the value of the average
fluctuations〈q〉∞ depends on the explicit configuration of
patterns and it is weighted by the overlap between patterns:
R12 = (1/

√
N)

∑
i ξ1

i ξ2
i .

The fixed pointm∗
∞ is an stable attractor when the over-

lap between patterns is non negative (R12 ≥ 0), while for the
caseR12 < 0, the state of the system escapes from this basin
of attraction and evolves towardsm∗ = mβ(−1, 0) [4]; this
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is an important finite size effect, since escaping is impossible
in the infinite case (R ≡ 0). The autocorrelation matrix is
given by the next expression

Ξµν = Hm (T )
{

δµν

[
1 + δµ1δν1

1
2
β2ε2H2

m (T )
]

+
1
2

βεHm (T ) [δµ1δν2 + δµ2δν1]
}

,

in which

Hm(T ) =
1− (m∗)2

1− β[1− (m∗)2]
,

Hm(0) = 0, Hm(1) = ∞,

so the contribution to the extended entropy, due to finite size
fluctuations, is given by

Sq (∞) =
1
2

ln {det [Ξ∞]}

+C = Hm (T )
[
1 +

1
4
β2ε2H2

m (T )
]

.

This expression allows to see that the entropy associated to
the stationary state of the system not satisfying detailed bal-
ance,Sest, can be written as follows

Sest = Seq +
1
2

ln
[
1 +

1
4
β2ε2H2

m (T )
]

,

whereSeq = (1/2) ln [Hm (t)]+C. The rotation of the prob-

ability current:∇×J∞ (q) =−P∞ (q) βε
(
1−m2

β

)
, pro-

duces this additional entropy.

6. Discussion and conclusions

In general terms, in the scientific literature there exists some
confusion about the terms ”stationarity” and ”equilibrium”
and sometimes they are even treated as synonymous. In
this work we discussed the conceptual differences between
these two terms from a formal point of view and provided
a set of tools that can be used to illustrate this difference
in terms of the analysis of finite size effects. For this pur-
pose it was introduced the concept of Extended Entropyà

la Boltzmann, and it was shown that in any process lead-
ing towards a stationary state it is satisfied the relationship
Tr

[
D Ξ−1

] ≥ Tr [L]. This condition is less restrictive than
the condition satisfied by a process leading to an equilib-
rium state, namelyD Ξ−1 ≥ L, which can only be reached
by symmetric systems satisfying detailed balance. We also
showed how the lack of detailed balance is related to the ro-
tation of the probability current for the finite size fluctuations
q(t). For the case of antisymmetric NN, which are often used
to retrieve patterns sequentially [12], we demonstrated that
they can reach a stationary state only if its convection matrix
is nonsingular and the eigenvalues of{| λn〉} are all different.

We demonstrated our results by examining the behaviour
of a peculiar system whose infinite version has fixed points
even though these states do not satisfy detailed balance, and
therefore, it cannot reach an equilibrium state. We demon-
strated how, if we consider finite size effects, these ”fixed
points” transform into the wider category of ”attractors” of
the dynamics which keep the system moving around but
never reaching them, as the probability distribution of the fi-
nite size fluctuations has a rotational different from zero.

Our theory describes finite size effects around the order
parameter values which are exact in the thermodynamical
limit, and therefore help us to find out how the finite size
of the sample modifies the macroscopic behaviour of the sys-
tem. These fluctuations, originated by the finite size of the
system, are specific for each particular system and depend on
the specific set of stored patterns.

As we mentioned before, this theory can be applied in
principle, to study finite size effects in any kind of finite, sep-
arable recurrent NN with sequential dynamics and away from
saturation. However, we should keep in mind that this theory
is correct only in the low storage regime as in the derivation
of the theory it is essential the assumption that the overlap
between any pair of stored patterns (chosen at random) goes
to zero in the thermodynamical limit. In the case of systems
with parallel updating a theory to describe finite size effects
has not yet been developed.
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