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Stationary processes and equilibrium states are discussed in finite separable recurrent neural networks with sequential dynamics and away
from saturation. We describe thermal fluctuations of the dynamical order parameters originated as finite size effect®of Srde by

means of their corresponding Fokker-Planck equation, and find their time dependent probability distribution. We introduce the concept of
extended entropy of fluctuations in order to find a general condition to characterize stationary states in Neural Networks with non symmetric
interactions. Divergence and rotational of the probability current in the space of fluctuations are also used to differentiate between stationary
and equilibrium states. Besides, algebraic conditions are found to know when stationary states can exist. The results are illustrated by
analyzing a neural network with a macroscopic dynamical fixed point but not satisfying detailed balance at microscopic level.

Keywords: Statistical physics; thermodynamics and nonlinear dynamical systems; neural networks; fuzzy logic; artificial intelligence;
stochastic processes; probability theory; stochastic processes and statistics.

Se discuten los procesos estacionarios y los estados de equilibrio en redes neuronales recurrentes, finitas y separabiegacse-din

cuencial y muy lejos de la saturaai. Por medio de la correspondiente ecaaae Fokker-Planck, describimos las fluctuacioesiicas

de la diramica de los pa@metros de orden, originadas como efectos de ftanfiaito de orden (N'*/2?) y encontramos la distribuan de

probabilidad dependiente del tiempo. Introducimos el concepto de @narigndida de las fluctuaciones para encontrar una céndjein-

eral que caracterice los estados estacionarios en Redes Neuronales con interaccionesicassifamtén se utilizan la divergencia y el

rotacional de la corriente de probabilidad en el espacio de fluctuaciones para diferenciar entre estados estacionarios y de equitirio. Adem

se encuentran las condiciones algebraicas para saber cuando pueden existir los estados estacionarios. Los resultados son ilustrados mediante
el aralisis de una red neuronal con un punto fijo en ladiica macrosipica pero que no satisface el balance detallado a nivel migpasc

Descriptores: Fisica estatstica; termodiamica y sistemas damicos no lineales; redes neuronalégyita difusa; inteligencia artificial;
procesos estasticos; teda de la probabilidad; procesos esisticos y estddtica.

PACS: 05.; 07.05.Mh; 02.50.Ey; 02.50.-r

1. Introduction to 10° neurons. These finite size effects have been shown to

Early works in statistical physics of Neural Networks (NN) P'ay an important role in .b Oth. symmetric qnd non symmet-
were concentrated in the mean field study of equilibriumrIC NN [2"?’]’ even _affectlng, in some particular cases, the
properties of infinite systems with symmetric interactionsMacroscopic behaviour of some systerd§ [

(for a review see Ref. 1). However, one of the basic char- Although considering finite size effects and non symmet-
acteristics of NN is their high number of barriers and valleysfiC interactions is not enough to obtain a good description of
in the "energy space’, which makes the study of the dynamic#iological NN, it is clearly a first and important step in this
essential. In the case of NN with non Symmetric interactions’direction; other characteristics should be included into the
dynamical techniques are in fact the only tool available, as innodels (see Ref. 5 for a good review) such as spatial struc-
this kind of systems detailed balance does not hold and théire [6-9,5], as well as short and long-range connectivity
usual statistical concepts such as free energy cannot even b, 11]. However these considerations are out of the scope
defined. of this paper.

On the other hand, models of the mean field type, have Until now, most work in asymmetric neural networks has
predictions valid for infinitely large system&/(— oo). Tak-  been concentrated in the study of sequential retrieval of em-
ing the thermodynamical limit has proved to be a useful apbedded patterns 1], and in the storage capacity of those
proximation to study gases, liquids and solids, where thenetworks [3], for infinite systems. We believe the study of
number of elements is of the order 1f?3; however, the in-  the stochastic behaviour resulting as a finite size effect in both
clusion of finite size effects is clearly important when consid-symmetric and non symmetric NN will contribute towards a
ering finite systems like the brain having'® neurons work-  better understanding of different aspects of the dynamics of
ing in small groups whose size ranges from a few thousandsIN and therefore it deserves special attention.



STATIONARY PROCESSE AND EQUILIBRIUM STATES IN NON-SYMMETRIC NEURAL NETWORKS 311

The objective of this work is to study the difference be-where synapses are state dependéft 19]. The analysis of
tween stationary and equilibrium states from the analysis oNN with synchronous updatingl9, 20] is outside the limits
the fluctuations originated as finite size effects. Our formal-of this theory.
ism describes the dynamics of NN to first non trivial order
in the system size 1p, 16], by separating systematically the
N = oo from the finite N contributions in the Kramers- 2. Finite size effects. General formalism
Moyal expansion 17] and keeping the first non trivial order
in (1/N). In this way it is obtained a Fokker-Planck Equation Let us consider a system composed by a large, but finite,
(FPE) which can be written in terms of the fluctuations ofnumberN of interconnected neurors € {—1,1}", so the
the dynamical order parameters, from whose solution it cawvectoro (t) = (o1(t),02(t),...,on(t)) describes the state
be constructed the probability distribution for these fluctua-of the system at a given time. Each variablgt) evolves
tions. This formalism does not require symmetry of the inter-in time by describing sequential stochastic alignment of the
action matrix, as opposed to other methods];[so dynami-  spins under the action of an external field given by
cal flow diagrams for either symmetric or non-symmetric in-
teractions can be obtained by solving numerically the deter- hi(o) = Z Jijoj+0i,
ministic mean field equations for the fluctuation moments. In I
the particular case of symmetric interactions the approach teith »
equilibrium is warranted by knowing Lyapunov functions. T — 1 Z €A L€ (1—6,))
We know that any system in thermodynamical equilib- YN LN “

rium must obey detailed balance. However, NN with nonJij is the (separable) synaptic strength of the connection

symmetric interactions can never obey detailed balance; thi&oing from neuronj to neuroni, 6, is a response thresh-
is reflected on the NN behaviour as the lack of COMPENSay 4 ‘and the auto interaction; are excluded. These in-
tion between positive and negative random fluctuations in th?eractions store a finite numb@r < N of quenched bi-
order parameters, in a way that induces a rotation of the prOtHary patterng¢”} chosen at random with = 1, ..., p and
ability current in the space of the fluctuation variables. In thisy, notation, L (€L,...,€7) € {-1,1)7, or al’tern’atively
sense, the divergence and rotational of the probability currel%u = (et ‘ I L ’

ful tool h e th . d iibri e e 1, 1}V. And, as we can see, interac-
are useful tools to characterize the stationary and equilibriun, s 4o not need to be symmetrical. The micro-dynamics of

states. _In addl_t|_on to this geqmetnc _plcture, we obtain thethe system is defined by a master equation for the probability
algebraic conditions under which stationary states can ex'saensitypt(a) given by

We also introduce the concept of 'extended entrapy’la p
Boltzmann, for asymmetric NN, to characterize the station- ¢ _ . N
ary states. The limiting (maximum) value of this function aP7) = zl: twilFe)p(Fio)—wile)p(e)}, (D)
allows us to obtain a condition that has to be satisfied by a .
NN in a stationary state; we find out that this condition isWlth 1
met, in particular, by any symmetric NN in equilibrium, so wi(o) = 5[1_‘” tanh(3h;(o))],
we can see the equilibrium state as a particular case qf a ?tﬁ/herewi(a) is the temperaturel{ = 3~!) dependent tran-
tionary process. These_ results are illustrated by consideringion probabilitys; (t) — —o;(t), andF; is an operator that
a peculiar system previously analyzed: a NN with & macrosjips the;—th spin. If we define the probability density for
scopic ﬂxe_d point but unable to satisfy detailed balance at thg, o pattern overlaps: asP;(m) = 3, pi(o) § [m—m(o)]
microscopic level {6]. with the usual definition for the overlaps
The paper is organized as follows: in Sec. 2, it is pre-
sented an overview of the general formalism (for details see 1 & "
Refs. 15, 16): in Sec. 3, it is introduced the concept of ex- ™(@) = (m1(@),....my(a)),  my =+ Zgi i
tended entropy in order to discuss statistical equilibrium and !
stationary processes; in Sec. 4, the lack of detailed balandg8€ master Eq. (1) can be rewritten in terms of the macro-
and its relation to the rotation of the probability current areSCopic dynamical variables (o) by insertingd[m —m(o)]
examined to obtain a geometric picture of this phenomenoito Eg. (1), and making a Taylor expansion in powers of the
and the algebraic conditions for the existence of stationary€ctor2c;€;/N. If we expand the resulting Kramers-Moyal
states; finally, in Sec. 5, it is discussed a NN with a fixededuation in powers of1/N) and keep the two leading or-
point but without detailed balance as an example to illustratélers R3], we obtain a FPE valid on finite time-scalese(
the previous sections. not scaling withV) for the stochastic vectan (o). We can
Our work can be applied to study finite size effects in"OW Write m(o) as the sum of a deterministic part™ ()
any kind of finite, separable recurrent NN with sequentialhich corresponds to the infinite system, and the leading or-
dynamics and away from saturation, provided that transferder stochastic contribution(t)/v/'N vanishing asV — oo
ence functions are sigmoidal. This includes models with ei- )
ther symmetric or asymmetric interactions, and even models m=m’(t) + ﬁq“) T

pr=1
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we can now separate the dynamical equations for these two
order parameters. In this wawy*(t) is the deterministic so-

lution to the Liouville equation given by F,lg;t] = )+ Z Ly [m*(t)]an(t), (4)
d . . with
7™ (t) = (§tanh B [§-Am™ (1) +0])¢ , —m (1), (2)

K,[z] = lim \/N{@ tanh B&- Az-+6])¢

where we defined- - - )¢ , as an average over an ensemble

of NN characterized by different realizations of patterns. We _ L > ¢ tanh B¢, 'Aw+9']} (5)
can now obtain a FPE for the remaining stochastic gér N ' ’ 7
resulting from the finite size effects as follows:

[x] = O =0 Z<fu§>\
A

X [1—tanh25[£.Am+9]]>€ﬂ Ax,. (6)

*Pt Z {Pt Fula;t]}

It is important to notice thai,, (t) makes a 'frozen’ correc-
tion to the flux, that persists even’&it= 0 and depends on
] ) o the specific pattern configuratigig”}. On the other hand,
In this equation the flow term, [g; ¢] is given by the diffusion termD,,, [t] of the FPE, Eq. (3), is found to be
| symmetric, and given by

82
+; 8quaqy {Pt(Q)DW[q,t]} (3)

Dylt] = b0 — ¢ lim —Zw 0,(0) tanh B¢, Am(t)+0;]

t
*/o ds ¢! (€€, tanh F[€- Am* (s)+6] tanh G- Am* (1) +0))¢ 5. (7)

It is important to notice that the flux is linear g{¢) and the

diffusion term is independent frog(), therefore the process i terms of the flow and difussion we can construct the prob-
can be identified as a time dependent Ornstein-Uhlenbecbility distribution for the fluctuations of the dynamical or-

process, whose formal solution is Gaussian: der parameters (8) around mean field trajectories given by
_exp {~1la—(a)] =2 (1) [q - (@)} g Eq. _(2).. These stochastic fluctuations depend on the ac_tual
Pi(q) = (8)  realization of stored patterns, through the frozen correction

(2m)% \/det E (f)
with E, the time dependent correlation matrix for the fluctu-
ations=,, = (quqv)t — (qu)+(qw)s, Where< --. >, is the
average at time over different evolutions, for a given pat- . ey .
tern configuration(¢!'}. Therefore, the process can be fully 3. Statistical equilibrium and stationary pro-
characterized by its two first statistical moments, which are CESSES

found to evolve in time according to the following determin-
istic equations A physical system is said to be in a stationary state when the

correlations of the stochastic momentsgnf become inde-
—A{@)¢ + (Fulg;t])r =0 (9)  pendent of time translations, that is if

term in Eq. (5) and their size is of ordér (N —1/2).

dt

%E(t) = —LOEW) —EWOLT () +2D(t). (10)  (qu (1 +7)gu(ta +7) gy (tn + 7))

In order to arrive to explicit expressions for the flux in Eq. (4) = (qu (t1) qu (t2) ..qu (tn))

and difussion in Eq. (7) terms, for any particular system con-

sidered, we need to choose independently drawn unbiasddr any timer > 0, andy = 1, ...p [21]; this condition is sat-
pattern component§’ € {-1,1} (with equal probabilities) isfied in particular by any system in thermodynamical equi-

and independently drawn thresholfjgfrom some probabil- librium. However, thermodynamical equilibrium requires ad-
ity distribution 1V (0)). Afterwards, by solving equations (9) ditionally the presence of detailed balance, which means that
and (10) at microscopical level the probability for a ‘direct’ process
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is equal to the probability of the ‘reverse’ process, so theregd. Non detailed balance, rotating probability

is no net probability current between any two microscopic  current and the existence of stationary states
states of the system. The equilibrium state has strong sta-

bility properties: any perturbation acting on it will die out In this section it is given another way to characterize the
fast; this behaviour is reflected in the second law of thermodifference between stationary and equilibrium states, in the
dynamics, according to which equilibrium is reached in anframework of NN. We also find the conditions needed for the
irreversible fashion and corresponds to a maximum entropgxistence of a stationary state. The first objective is reached
at constant energy, or minimum free energy at constant tenit we analyze the probability current in the space of fluctua-
perature. However, all this scheme is no longer useful fotion variables by rewriting the FPE as a continuity equation
systems with non-symmetric interactions, as in this case it i§or the probability fluxJ;(q) as follows:

not possible to define an energy function and detailed bal- 9

ance no longer holds, so it is not possible to talk about equi- 5 1@+ V- Jilg) =0,

librium. However, it is observed that these kind of system ith

still evolves from less probable to more probable states, an .

this evolution leads them towards more privileged parts of the Ji(q) = J"%(q) + T (q), (12)

‘space of states’. Therefore, for a system not satisfying de- o .
. : where we hav rated the pr ility flux in two term
tailed balance we can define an “extended entro®B1] &s ere we have separated the probability flu 0 ferms,

one related to the flux, and the other to the diffusion; for an

follows: Ornstein-Uhlenbeck process, like this one, these are given by
S(t)=—H(t) with H(t)= / dqP,(q) InP,(q) (11) J{"“(q) = —=Pu(@)(F [a,1]),
dis —_—
(with Boltzmann’s constaritz = 1). This extended entropy Ji"(q) = P(@)DE"" [q(t) — (a(1))].  (13)

is an extensive quantity, which, according to the H-theoremy/an Kampen $2] has noted that the first term, resulting from
increases monotonica”y until it reaches its maximum Valuethe presence of an external f|e|d' can be called ‘pure|y me-
provided it exists a stationary state; and this result is valid foghanical’ as it has the characteristics of a Liouville flux, while
any system satisfying, or not, detailed balance. The contrithe second term is ‘purely diffusive’ as it is related to an irre-
bution to the extended entropy, due to finite size fluctuationsyersible diffusive process.

at timet is obtained by Substituting (8) into the preViOUS ex- From expression in Eq (12), it should be clear

pression (11). In this way we find that when the divergence of the total probability current
1 Jt(q) = J"(q) + J¥*(q) is zero the system is _in a
Sy (t) = —(InPr(q))gr = =In{det [Z ()]} + C, stationary state. If we makéq)/dt = 0, d=/dt = 0 in
2 Egs. (9-10) for long times, we obtain
where C is a constant. Therefore, the increase in entropy be- (Flg) =0 = (@)oo =L Ko (14)
tween two instants; andt¢, such that; < ¢, is given by
LooZoo + B Ll = 2D, (15)
AS =1 det [E (t2)] H >0 The first of Egs. (14) shows that, in general, the mechan-
- det [Z (t1)] = ical probability current vanishes. On the other hand, Eq.

(15) is known as the fluctuation-dissipation theorem (FDT),
which impliesdet [Z (t2)] > det [Z (t1)]. If we combine the  and it shows that the correlatid),, may be in a stationary
Wronski identity-& In {det [B]} = T'r [B_I%B] with Eq.  state as a consequence of the compensation between damp-
(10) describing the time evolution of the second moments, wéng, represented by the convection matidix (6) and dif-

find fusion, represented by (7). In this limit, we also have
4 ndet = @) = 2Tr [DE L] Loo =I-(3DsA. S
dt This state is an equilibrium state if, additionally, the prob-

which implies that in any relaxation process it is satisfied ~ ability currentis irrotational, thatis, #.J,,/0q, = 0., /0q,.,
for all 1, v. But this happens only fod,, = A,,, which

Tr [ Efl] > Tr[L], implies symmetric interactions, as expected. On the contrary,
rotational probability current is present when asymmetric in-

where the equal sign applies when the system reaches a stgtactions appear and detailed balance cannot exist. Besides,
tionary state. Therefore, Boltzmann's H-theorem tells uss; Peo (@) = 0 implies thatV - J; (q) = 0, so that, for NN
that if a stationary state exists, it satisfies the expressiolith symmetricA, there will be detailed balance in the prob-
Tr | 5—1] = Tr[L]. We can compare this result to the ability current whenever there is a compensation between the
stronger conditioD 2! = L, satisfied by symmetric sys- mechanical and the dissipative currents, that is:
tems in an equilibrium state (therefore, satisfying detailed 0 0

. - mec dis —
balance) [6]. aunu Pa, (e + Jg) = 0.
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In particular, the conditiom,, = A, is satisfied by the while in the finite case it is also relevant the particular pattern
use of the Hebb rule or a variation of it where each pattermealization{¢!'} (measured by the overlap between pairs of
{¢*} is given a different weight in the learning prescription patterns). As we mentioned before, the time evolution of the
[24]. Therefore, divergence and rotational operating on thedeterministic part of the dynamical order parametef,(t),
probability current,J;(q), give us two conditions to charac- can be obtained by numerical solution of the Liouville equa-
terize stationary and equilibrium states, respectively, in theion, Eq. (2).
framework of NN. If ¢ = 0 the characteristics of the system are as follows:
To complete this discussion from the formal point of there is complete symmetry between all the Liouville equa-
view, we need to present the algebraic conditions for the existions for the parameters:;, (2), the infinite system hagp
tence of stationary states. Obviously, the first condition is thafixed points related to pure states (only one order parameter
the convection matrix should be nonsingular. But in additionjs different to zero) given byn;, = +mg, withp=1,...,p
we need to find the formal solution to the autocorrelation mawhose values are temperature dependent and are given by the
trix =. We start from the FDT.Lo, = + =00 L, = 2Dy, solution ofmg = tanh (Gmg). Besides, there are other un-
and by choosing the eigenvectof$ \,,)} of the matrix  desirable stable states related to mixtures of the order param-
LI L., as the basis to represent our matrixes. Then we gedters (more than one of them are simultaneously different to
L Lo = A | \), and multiplying (15) byL!_ onthe left,  zero), with smaller basins of attractior25]. The system

and byL ., on the right, we obtain evolves towards one or another of the fixed points, depending
) on the initial conditions.
(AnlLY, Loo B Loo Am) + (An| Ll Boo LI, Loo|Am) In the case: # 0 the symmetry between patterns is lost,

and the shape of the basins and the placing of the attractors
depend on the value ef The convection matrix is given by

Ly = 0 — B(€u&y [1 — tanh® B (€ - Am +0)])¢ 0

= (An[2 LL Doo Lo |Am)-

From Eq. (6) we know that if the interaction matrix satisfies
A, = £ A,,, then the convection matrik is also symmet-

ric or antisymmetric, respectively. In this case we can use that _ 2 )
(M | LY, Lo = £\, (A, |, rearranging and multiplying by 0200 (€uéa [1 = tand® 5 (€ - Am +0)])e.
Lz from the right we arrive to the solution and its determinant is different from zero, so the solution to
(@)oo = —L 'K, exists. For simplicity, we will analyze
22 = (n | LI, Dog Lo G LY | Ar) the stationary states fqr = 2; as generalization to other
' values ofp is straightforward and does not add new insight
with , into the physics of the problem. In this caseTat= 0 for
G, =2 Z | Am) (An |. 0 <|e|< 1 there exist four attractors, two of them related to
= A, + A pattern{¢'} and two others having a big overlap with pattern

Then we find, as expected, that if the interaction matjx {gl}ﬁnd a small, :m stlll_macr:)scr?pm overlap with p?tte:jn
is symmetric, then the solution exists. On the other hand{E bforef> 1t ere exist only the two attractqrs relate

S . : L o o pattern '1’. For higher temperatures an analytical expres-
for an antisymmetric interaction matrix it is a condition for

; : . sion has been found far.(T") [16], the critical value ofe

having a stationary state that all eigenval§as} should be VA .
. . ) O . where stability is lost. The FDT (15) can be summarized
different. For other types of interactions it is not possible tointo three relevant equations to be written $& — A
know, in general, if the solution to the FDT exists (15), so q - '

- with @ = (Z11,Z212,2 NndA = (Di1,D12,D99).
each particular problem must be analyzed separately, as v\ﬁet (E11,Z12, E22) aNd A (D11, Diz, Do)
: o : . . or the NN under consideratiofs, is nonsingular whenever
will do it in the next section by analyzing a system previousl

studied 6] y(L11)2 = (L22)2 # /LisLoy. _Since this condi_tion is met,
’ we can conclude that the stationary state exists. Then the
FPE can be written a8 - J = 0 to establish that compensa-
5. Study of a system with a fixed point but with-  tion between damping and diffusion occurs according to the
out detailed balance analysis written before.
Itis just a matter of algebra to study the final size effects
In this section we will study the dynamics of a particular close to the stationary stai@), = mgs(1,0). According
NN that, even though due to its structure it is unable toto Eq. (9), at the stationary statey, = mgsd,1, the aver-
satisfy detailed balance, it has a stable fixed point in theage flux(F').. is equal to zero and the value of the average
limit: N — oo. In this neural networkp binary patterns fluctuations{q)., depends on the explicit configuration of
{&'y = {+1, —l}N, randomly chosen with equal probabil- patterns and it is weighted by the overlap between patterns:
ity for each of their two values, have been stored accord®;, = (1/VN) Y, £1¢€2.
ing to a (p x p) asymmetric interaction matrix given by The fixed pointm is an stable attractor when the over-
A, =0, +¢€6,10,2, SOe can be seen as a parameter breakdap between patterns is non negativg { > 0), while for the
ing the symmetry. As we will corroborate later, in the infi- caseR,5 < 0, the state of the system escapes from this basin
nite version it only matters the probability distributi®{¢!), of attraction and evolves towards® = mg(—1,0) [4]; this
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is an important finite size effect, since escaping is impossibléa Boltzmann, and it was shown that in any process lead-
in the infinite case 8 = 0). The autocorrelation matrix is ing towards a stationary state it is satisfied the relationship

given by the next expression Tr[DE™'] > Tr[L]. This condition is less restrictive than
the condition satisfied by a process leading to an equilib-

Sy = Hp (T) {5W [1 + 8,161 15252]{7271 (T)] rium state, namelyD Z~! > L, which can only be reached
2 by symmetric systems satisfying detailed balance. We also

1 showed how the lack of detailed balance is related to the ro-
+5 Betn (T) [6u1du2 + 5u25ul]} , tation of the probability current for the finite size fluctuations

q(t). For the case of antisymmetric NN, which are often used
in which to retrieve patterns sequentiallyi 2], we demonstrated that

1— (m*)? Fhey can reach a station_ary state only if its conve(_:tion matrix
=1 50— (m)7]’ is nonsingular and the eigenvalues pf\,,) } are all different. .

We demonstrated our results by examining the behaviour

H,(0)=0, H,(1)=oo, of a peculiar system whose infinite version has fixed points

even though these states do not satisfy detailed balance, and
so the contribution to the extended entropy, due to finite Siz%erefore, it cannot reach an equi“brium state. We demon-

Hm(T)

fluctuations, is given by strated how, if we consider finite size effects, these "fixed
1 points” transform into the wider category of "attractors” of
Sq (00) = 5 In{det [Ecc]} the dynamics which keep the system moving around but
never reaching them, as the probability distribution of the fi-
+C = H,, (T) [1 + 15252H72n (T)} ) nite size fluctuations has a rotational different from zero.
4 Our theory describes finite size effects around the order

This expression allows to see that the entropy associated r_ameter values which are exgct in the therquynamlcal
imit, and therefore help us to find out how the finite size

the stationary state of the system not satisfying detailed bal- o . .
ance.S..,, can be written as follows of the sample modifies the macroscopic behaviour of the sys-
westy

tem. These fluctuations, originated by the finite size of the
system, are specific for each particular system and depend on
the specific set of stored patterns.

) As we mentioned before, this theory can be applied in
whereSe, = (1/2)In [H,, (t)]+C. The rotation of the prob-  rinciple, to study finite size effects in any kind of finite, sep-
ability current:V x J o, (q) = —Ps (q) Be (1 - m%), pro-  arable recurrent NN with sequential dynamics and away from
duces this additional entropy. saturation. However, we should keep in mind that this theory
is correct only in the low storage regime as in the derivation
of the theory it is essential the assumption that the overlap
between any pair of stored patterns (chosen at random) goes

In general terms, in the scientific literature there exists somé& Zero in the thermodynamical limit. In the case of systems
confusion about the terms "stationarity” and "equilibrium” with parallel updating a theory to describe finite size effects
and sometimes they are even treated as synonymous. [} notyetbeen developed.

this work we discussed the conceptual differences between

these two terms from a formal point of view and provided Acknowledgments
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