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Bell's theorem is a crucial tool to solve the contradiction between local realism conceptianginstein-Podolsky-Rosen and quantum
mechanics. In this note we present three versions of the theorem: the original one of Bell of 1964, theeCEss@mger version of 1969,

and the Wigner's version of 1970, and show how the simultaneous validity of EPR ideas and quantum theory leads to a contradiction with
number theory. The quantum mechanical formula for the correlation between two spin 1/2 particles is derived in an appendix.
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El teorema de Bell es una herramienta crucial para resolver la cont@iesire concepciones realistas localda Einstein-Podolsky-
Rosen y la me@nica céantica. En esta nota presentamos tres versiones del teorema: la original de Bell de 1964 danzrduerte de
Clauseret al de 1969 y la veréin de Wigner de 1970, y mostrama3nco la validez simuéinea de las ideas de EPR y la faariantica

conducen a una contradiéci con la tedia de rimeros. En un gmdice se deduce l@ifmula que da la correlami clantica entre dos
parfculas de esp 1/2.

Descriptores: Teorema de Bell; mémica céntica; EPR.

PACS: 03.65.Ud; 03.65.Ca; 03.65.Ta

1. Introduction 2. Introductory comment

In 1935, Einstein, Podolsky and Rosen showed that the hy:- .
potesis oflocality and a properly defined criterion afality :\fgr?red;insqt ;onc?rflllc’)cva?lr%ilc?lldegvnmvz\r:i:d;fgﬂetgs (tizeézfcin ;:I}
of physical quantities, implied that physical observables with ccupied himself of local hidden variables theories, proving

non commuting guantum operators could have exact valuet at they are in contradiction with quantum mechanics). In
simultaneouslyi.e. simultaneous reality; so, quantum me- y q '

chanics could not be@mpletaheory of the physical world, Ref. 2, Bell showed that von Neumann’s statement was not

if by a complete theory we understand a theory in which eV_correct. (In this connection, in Ref. 1, Bell also mentioned

ery element of the physical reality has a counterpart in theggggg)’rgzc;gl M. Jauch and C. PiroHelv. Phys. Act86
physical theory. '

This discovery led to the proposals bidden variables
theories local and non local, the best known being the non
local theory of Bohm [17,18]. It was not till 1964 when Bell,
with his famous theorem, provided a theoretical and experi-
mental tool to decide betwedacal realism inherent to the
EPR approach, and the mathematical theorguantum me-
chanicswith its usual Copenhagen interpretation. Theoreti-
cal because their simultaneous validity leads to a contradic-
tion with number theory (inadmissible!), and experimental R
because it forced many laboratory tests of the quantum me- 2. One measures the spin componefitsa anda’ - b of
chanical formulae. Most of these tests were in agreement the particles 1 and 2 respectively.andb are unitary

3. Bell's logic (based on Refs. 3 and 4; see also
Ref. 5)

1. One prepares a pair of spin 1/2 particles in the sin-
glet state, and leaves the particles to travel in opposite
senses.

with the theory, the most celebrated being that of Aspect
and collaborators [19, 20]. The conclusion of many authors,
shared by the author of this note, is thatal realisma la
EPR does not hold.

In this note we present three different versions of Bell’s
theorem: the 1964 original version, then the 1969 version of
Clauseret al, and finally the Wigner’s version of 1970. In
an appendix we give a detailed derivation of the formula for
the average value of the product of two spin 1/2 particles in
arbitrary directions.

*Based mainly in Ref. 1.

vectors inR? i. e. a,b € S2. a andb are experimen-
tally controllable parameters. #f= a anda; -a = +1
thends - 4 = —1 and vice versa e. &1 - 6 = —3J5 - a.
This is a quantum mechanical result.

3. According to Einstein, the measurement at 1 (2) can

not affect the simultaneous measurement at 2 (1): this
is the hypothesis dbcality. Since, however, accord-

ing to quantum mechanics, the measurement at 1 (2)
predicts the result of the measurement at 2 (1), for not
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contradicting Einstein’s locality one concludes that the
measured values must have betetermined at the
moment in which the particles 1 and 2 were in con-
tact: this is the hypothesis oéalism. In this sense,
guantum mechanics and the exigency of locality imply
the hypothesis of realism. Quantum mechanics itself,
plus locality, predicts or demands realism. Unless lo-
cality is wrong, it is quantum mechanics that requires
hidden variables. If locality does not hold, then quan-
tum mechanics does not require realism.

. Quantum mechanics (the wave function) however,
does not predict the results of individual measurements
(e.0. oiV can be +1 or -1); therefore the predetermina-
tion in 3 demandsa more complete description of a
guantum state.

. The parameters which effect the more complete de-
scription are denoted by, and are callettidden vari-
ables If A specifies the results of the measurements
of the spin on 1 and 2, individually these are given, re-
spectively, by functionsi(a, A) andB(b, A), with val-
uesin{+1, —1}. If p()\) is the probability distribution

of A\
([ r00 = 1,500 2 0)

then theaverage of the productof the measurements
of & -a anda - b is given by

P(a,b) = / dAp(\)A(a, )B(b,\). (1)

A
In these formulae) is the domain of\. By their own
nature, the\ parameters are not experimentally con-
trollable. The functions”(a, b) are calledcorrelation

functions between the spins or, simplyorrelations.
From the mathematical point of view, and B are
|

9.

385

functions with domairs? x A and codomairR or, with
more precision{—1,+1} i.e,,

AB:S*xAN—Ror S*xA— {-1,+1}.
For the case discussed in 10,

A,B:S%x A — [—1,+1].

. In quantum mechanics, the correlation is given by

P(a,b) = —a - b. (2)

(See appendix.)

. Theorem: 5. and 6. are contradictory. (See the proof

in9.)

. ObservationThe fact that4 does not depend dnand

that B does not depend od, is the expression of lo-
cality in this context. The variablesare, in principle,
global. Also, even ifA determines the result of each
measurement on 1 and 2, respectively throughand
B, there is astatistical elementpresent, given by(\).

If A= (\1,..., \), itis then possible a "locality” im\
with \; = A for

i=1,2,..,p, and X =A"

forj=p+1,..p+qg=n.le.

A=A, Y, 2) = 1

B A®)

s Ap+1s A

andB = B(b o Aptg) =

+1.

Proof of 7.

If b = a, then B(a,\) =
a € S? and all A €
)-

—A(a, ) for all
then P(a,b) =
is another unitary

— [y dAp(N)A(a, A)A(b, A P
Ap(N)A(a, A)A(E,N)

vector, thenP(a,¢) =
and therefore

A;
If
d

Ja

— [ D) (AGN)AG. ) — A A V)
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where we have used thatl(a, \)A(b,\)] = 1 and that if these values are replaced in (3), one obtains
— A(b,\)A(&,A\) > 0. Therefore we have obtained
~ ~ < —
IP(a,5) - P(a,&)] <1+ P(5,2), 3) 0+ V2/21 <1+ (=v2/2)

which is theinequality obtained byBell in Ref. 1. Notice
that A does not appear in Eq. (3). This formula appears in
Eq. (A.12) in Ref. 7, and in Eq. (8) in Ref. 8. V2/2<1-v2/2,

Let us see how, in some cases, Egs. (2) and (3) are comvhich amounts ta/2 < 1: false! Therefore, Bell's inequal-
tradictory: Leta, b, andé be in the same plane, with b =0 ity is violated by quantum mechanics. QED
andé in the bisection ofi andb. Then, according to quantum (Note: In Ref. 11, page 36, Bell argues that the above

mechanics, proof does not restrict to non relativistic quantum mechan-
ics, but only depends on the existence of separated systems
P(a, 13) — —a-b=0, P(a,8) = —a-é=—V2/2, "highly correlated” with respect to quantities like the spin.)
and 10. Stronger Bell's inequality

If A(a,\) = £1then|A(a,\)| < 1;let us assume this
weaker condition. The difference between correlations
is given by

:/dAp()\)A(d, )\)B(E,A)(liA(d’,A)B(l;’,)\))—/d)\p()\)A(d, NB(®b', \) (1 + A(a', \)B(b, \))
A A

where we have summed and subtracted the integral

/dAp(A)A(a,A)A(a’,/\)B(E, NB(®,\);
A
taking absolute values,
|P(a,b) — P(a,b')| < / drp(N)|A(a, N)||B(b, N)|]1 £ A(a', BV, \)|
+/AdAp(A)\A(&,A)I\B(B’A)Ill + A(@, \)B(b, )|

< / DN+ A VB, N) + / ANV £ A N B(b,N)
A

. (/A PNV A\ /d/\p B(, )\))

=24 (P(@,b) + P(a',b) < 2+|P(@a,b)+ P, b)),

then

k/vhich is the desired Bell's inequality. This formula is eq. (9)
|P(d,l§) _ P(&,E’)\ F |P(d’,l§’) + P(d’,f))| <92 in Ref. 9 (Bell, 1971), eq. (11) in Ref. 8 (Jackiw and Shi-
mony, 2001), eq. (1a) in Ref. 10 (Clausaral, 1969), and
eg. (20-6) in Ref. 6 (Ballentine, 1990).

11. Proposition: Eq. (4) implies Eq. (3).

Proof. Since Eqg. (4) was obtained from a weaker con-
dition, one expects that in a particular case it will re-
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duce to Eq. (3). If in Eq. (4) we maké& = b, then in
the second term of the left hand side one has

|P(b,b) + P(b,b)],

but

P(b,b) = /A dAp(N)A(b,\)B(b, \)

- /A dAp(\) A

if one restricts tad (b, \) € {—1, +1}; then

A(b,\) = —

|P(a,b) — P(a, V)| + | — 1+ P(b,)| < 2.

On the other hand,

O ROVERICEY

< / ANV A, V| B, )|
A

:/pr:l,

and therefore-1 + P(b, ') < 0, then

B(V', )]

| =1+ P(b,b)| = —(—1+ P(b,})) =

and therefore

implies

|P(a,b) — P(a,b')| <1+ P(b,b),
which is eq. (3). QED

Proposition: (4) contradicts quantum mechanics.

Proof. Choosé, @', b, andd’ in the same plane, with
b = a’ and with the anglé betweeni anda’ the same
as the angle betweert and¥’. Then, using Eq. (2) in
Eqg. (4), we have:

p(a" b? C? a”? bl7 Cl)?

387
| — cosf + cos26| + cost < 1.
If 0 € [0,7/2], then—cosf + cos20 < 0 and therefore

| — cosl + cos20| = cost — cos26

which gives2cost — cos26 < 1. l.e.

2¢0s0 — cos%0 + sen?6 < 1,

then

2c080 — cos*0 < 1 — sen?0 = cos?0.

2(cost — 00529) <0;

so ford € (0,7/2),1 < cosb: false! QED

. Wigner’s formulation of Bell’'s inequalities

Wigner’s formulation is based in probabilities instead
of correlations (averages of products of spin projec-
tions). By the hypothesis of Einstein’s locality, which
together with quantum mechanics, demands the real-
ism hypothesis, each particle of the pair (1,2) has a spin
projection along each of the directions= a, b=b
andé = c of R?; these projections were determined at
the moment in which the particles were together (e.g.
before the decay of the original particle or molecule
in the singlet state). What in the Bell’'s formulation is
represented by the probability distributiptW), in this
formulation it is represented by the probabilities

(@ =—a, bV =—b, ¢ =—c),

where the first three entries refer to particle 1, and the second
three entries refer to particle 2:

p(++,+,—— ), p(—+,+,+,— —),
p(+, =+ =+ =), p(+,+, — 7+)7
p=s =+t =), (= + =+, = ),
p(+, = = — ),p(———+++)

Since in the singlet state, the second three entries are deter-
mined by the first three entries, it is sufficient to denote these

probabilities by

| — cos + cos20| + | — cosf — 1| < 2;

| —cosf—1|=|(—1)(14cos8)|=|1+4cosf| =14 cosb,

then
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Let us consider the quantify, ,(+, —): probability that

N . + . N . . _ . . _ ) . 9 9

the particle 1 has spin +1 in directianand spin -1 in direc sin20 = dsin?2 cos?—
tion b. This quantity (and its similars) can be measured with- 2 2
out interference of measurements: one measures on particle,§ thereforecos?

, _ : ¢ < 1 which impliescosg < L for
1 the cases witly, = +1 and on particle 2 the cases with 4 ] . . . V2
o — +1ie (4+.—) = p(la+,2b+) with an obvious 2 € (0,7/4): false! Then, with this election of directions,
ngt;cion itie flggr et pAraT, guantum mechanics is contradictory with the Bell's inequal-

ity for all 0 € (0,7/2).
pa,b("‘» _) = p(+7 _7+) +p(+7 ) _)a

analogously Appendix
Proposition: In quantum mechanics, the probability that two

Poe(t: =) =p(,+ =) +p(=+ ), spin 1/2 particles in the singlet statee( with total spin

and S = 0) have their spins in the positive directions of the unit
Pa,c(+,—) = p(+,+,—) + p(+, —, —). vectorsi; andn., is given by
We see that 1
Pyy = g5in* ()
Pap(+, =) + Poc(+,—) wherea;, is the angle betweef;, andn..

= pa,c("_? _) +p(+v ) +) +p(_a +, _)

and from the non negativity of probabilities (i = (sinblcospr, sinbysingy, cosdy)).

Pac(: =) € pap(+, =) +p0e(+ =), () Proof.
which isBell's inequality in the Wigner’s formulation.e. Pyy =] < X0 X1y Xnoy > 2
p(la+,2¢+) < p(la+, 20+) + p(1b+, 2¢+). where

Introducing the result of quantum mechanics 1
Xo = E(XHXQ_ — X1-X2+)

1 Ouc
p(la+,2¢+) = 5smz < 5 > ) 6)  and
(see appendix) wheré,. is the angle between the unitary
vectorsa andé, one obtains o = cos (92k> ks + €9 sin <92’f) e, k=12
1 (Oae 1 o (O 1 o (O
Z Zac ) < - Zav — Zo¢ .
9% < 2 ) =% < > )T m ) @ We shall use the notation:

For some angles, Eq. (7) is contradictory, what again estab-

. . 1
sinfy = sy, sinfy = s9, cos— =c¢

lishes a contradiction between quantum mechanics and the 2 R

hypothesis which lead to Eq. (5). This inequality (and its 0 65 O,

analogous) appears in Eqg. (3) in Ref. 12 (Wigner, 1970), eq. Sy =8y, 0S5 =Cg, S =83,

(48) in Ref. 13 (Wigner, 1983), eq. in pg. 171 in Ref. 14 .

(’Espagnat, 1979), Eq. (3.9.12) in Ref. 15 (Sakurai, 1985), cospy =C1,  singy =51, cospz = Cy,

and Eq. (7.7) in Ref. 16 (Treiman, 1999). singpy = S, cos(p1 — @) = Cla, cosQ12 = c1o,
Leta, b andé be in the same plane, withithe bisection of

a and¢, so iff,. = 20 thenf,, = 6. = 6, with 6 € [0, 7/2]. sm(%) =512, Sm(91 — 92) =813,

Eq. (7) gives 2 : 2 ?

0 cos(01 — 02) = ¢1_o;
sin?0 < 2sin®—.

2 and the formulae
If 6 = 0then0 < 0;if 6 = «/2 then

. A
1<2xsin®(n/4) =2 x (1/v2)? = 1; sind = 2sing cos

letd € (0,7/2), andsin?3 = (1 — cos\).

Rev. Mex. 5. 48 (4) (2002) 384-390
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In this notation:

Ny - Ny = Cl12 = (8101, 5151701)(820275252,02)
= 8182(0102 + Slsz) “+ c1e9

= 5152012 + cica,

1 1
5212 = 1(1 — 012) = 1(1 — 8182012 — 0102); (Al)

/N

NN

Ci8

o N

2C2
2 2 2 2

Ci18

[N
o N

2

/N

+s2% — 20120;8;8202)
2 2 2 2 2

S§1C2 —C1S

VRS

[M(M]
NI

1 1
2 2

7N

N~ N~

1 1
(I—c1_2)+ 55152 — 28182C12>

N~ N~ N= N = N

2

(

and(Al) = (A2). QED

To simplify, let us writea;o = «. From the definition
and formula forP, ; we obtain the formulae foP, _, P_,
and P__, with obvious interpretation of the notation:

Py L sin? <7r—a) = 10052g

1 1
(1= (c1ea + s152)) + =s152 — 25132012>

M T 2% 9
1 — 1 1
P, = 552'712 <7T 5 a) = 50052%, P _ = 532712%

Then:

P++ =+ P__ :Sin2%

=probability that the product of the
spins be equal to + 1,
and

P._+P 20032%

=probability that the product of the

spins be equal to — 1.

2 1
)—i—(l —012)6%8%8%6%15 (s% —|—2s%c;s%c% (1 —012)):

!

from

Xni+ = C1X14 T € s1x1-
and

Xno+ = C2X24 €252 X0
we have

< X0 Xy 4 Xmat >= —= (2152 —€is1c2),

Sl

and therefore

+82c% — P29 g 600 —e_l(‘”_‘“)s;c;c;w)
2 2 p 2 2

2 2

1 1
(.92122 + 58182 — 28182012>

N =

2

1
(1 —cico — Cras182) (A2)

l\/Ve have then the
Corollary: The average of the product of the spins,
P(n1,n2) is given by

P(f1, fia) = —fy - o

Proof.

P(fy,n2) = (+1) x prob.(+1) + (—1) x prob.(—1)

. o 2 A
= sin 3 — cos 3= —cosa = —Mq - Na.

QED.
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