
ENSEÑANZA REVISTA MEXICANA DE FÍSICA 48 (4) 384–390 AGOSTO 2002

On Bell’s theorem∗

M. Socolovsky
Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de Ḿexico
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Bell’s theorem is a crucial tool to solve the contradiction between local realism conceptionsà la Einstein-Podolsky-Rosen and quantum
mechanics. In this note we present three versions of the theorem: the original one of Bell of 1964, the Clauseret alstronger version of 1969,
and the Wigner’s version of 1970, and show how the simultaneous validity of EPR ideas and quantum theory leads to a contradiction with
number theory. The quantum mechanical formula for the correlation between two spin 1/2 particles is derived in an appendix.
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El teorema de Bell es una herramienta crucial para resolver la contradicción entre concepciones realistas localesà la Einstein-Podolsky-
Rosen y la mećanica cúantica. En esta nota presentamos tres versiones del teorema: la original de Bell de 1964, la versión más fuerte de
Clauseret al de 1969 y la versión de Wigner de 1970, y mostramos cómo la validez simult́anea de las ideas de EPR y la teorı́a cúantica
conducen a una contradicción con la teoŕıa de ńumeros. En un aṕendice se deduce la fórmula que da la correlación cúantica entre dos
part́ıculas de esṕın 1/2.

Descriptores: Teorema de Bell; mecánica cúantica; EPR.
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1. Introduction
In 1935, Einstein, Podolsky and Rosen showed that the hy-
potesis oflocality and a properly defined criterion ofreality
of physical quantities, implied that physical observables with
non commuting quantum operators could have exact values
simultaneouslyi.e. simultaneous reality; so, quantum me-
chanics could not be acompletetheory of the physical world,
if by a complete theory we understand a theory in which ev-
ery element of the physical reality has a counterpart in the
physical theory.

This discovery led to the proposals ofhidden variables
theories, local and non local, the best known being the non
local theory of Bohm [17,18]. It was not till 1964 when Bell,
with his famous theorem, provided a theoretical and experi-
mental tool to decide betweenlocal realism, inherent to the
EPR approach, and the mathematical theory ofquantum me-
chanicswith its usual Copenhagen interpretation. Theoreti-
cal because their simultaneous validity leads to a contradic-
tion with number theory (inadmissible!), and experimental
because it forced many laboratory tests of the quantum me-
chanical formulae. Most of these tests were in agreement
with the theory, the most celebrated being that of Aspect
and collaborators [19, 20]. The conclusion of many authors,
shared by the author of this note, is thatlocal realismà la
EPR does not hold.

In this note we present three different versions of Bell’s
theorem: the 1964 original version, then the 1969 version of
Clauseret al, and finally the Wigner’s version of 1970. In
an appendix we give a detailed derivation of the formula for
the average value of the product of two spin 1/2 particles in
arbitrary directions.

2. Introductory comment

According to Bell, von Newmann stated that there can not
even exist a non local hidden variables theory (in Ref. 1, Bell
occupied himself of local hidden variables theories, proving
that they are in contradiction with quantum mechanics). In
Ref. 2, Bell showed that von Neumann’s statement was not
correct. (In this connection, in Ref. 1, Bell also mentioned
the work of J. M. Jauch and C. Piron,Helv. Phys. Acta36
(1963) 827).

3. Bell’s logic (based on Refs. 3 and 4; see also
Ref. 5)

1. One prepares a pair of spin 1/2 particles in the sin-
glet state, and leaves the particles to travel in opposite
senses.

2. One measures the spin components~σ1 · â and~σ2 · b̂ of
the particles 1 and 2 respectively.â and b̂ are unitary
vectors inR3 i. e. â, b̂ ∈ S2. â and b̂ are experimen-
tally controllable parameters. If̂b = â and~σ1 · â = +1
then~σ2 · â = −1 and vice versai. e. ~σ1 · â = −~σ2 · â.
This is a quantum mechanical result.

3. According to Einstein, the measurement at 1 (2) can
not affect the simultaneous measurement at 2 (1): this
is the hypothesis oflocality. Since, however, accord-
ing to quantum mechanics, the measurement at 1 (2)
predicts the result of the measurement at 2 (1), for not
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contradicting Einstein’s locality one concludes that the
measured values must have beendetermined at the
moment in which the particles 1 and 2 were in con-
tact: this is the hypothesis ofrealism. In this sense,
quantum mechanics and the exigency of locality imply
the hypothesis of realism. Quantum mechanics itself,
plus locality, predicts or demands realism. Unless lo-
cality is wrong, it is quantum mechanics that requires
hidden variables. If locality does not hold, then quan-
tum mechanics does not require realism.

4. Quantum mechanics (the wave function) however,
does not predict the results of individual measurements
(e.g.σ(1)

x can be +1 or -1); therefore the predetermina-
tion in 3 demandsa more complete description of a
quantum state.

5. The parameters which effect the more complete de-
scription are denoted byλ, and are calledhidden vari-
ables. If λ specifies the results of the measurements
of the spin on 1 and 2, individually these are given, re-
spectively, by functionsA(â, λ) andB(b̂, λ), with val-
ues in{+1,−1}. If ρ(λ) is the probability distribution
of λ

(∫

Λ

dλρ(λ) = 1, ρ(λ) ≥ 0
)

then theaverage of the productof the measurements
of ~σ · â and~σ · b̂ is given by

P (â, b̂) =
∫

Λ

dλρ(λ)A(â, λ)B(b̂, λ). (1)

In these formulae,Λ is the domain ofλ. By their own
nature, theλ parameters are not experimentally con-
trollable. The functionsP (â, b̂) are calledcorrelation
functions between the spins or, simply,correlations.

From the mathematical point of view,A andB are

functions with domainS2×Λ and codomainR or, with
more precision,{−1, +1} i.e.,

A,B : S2 × Λ → R or S2 × Λ → {−1,+1}.

For the case discussed in 10,

A,B : S2 × Λ → [−1, +1].

6. In quantum mechanics, the correlation is given by

P (â, b̂) = −â · b̂. (2)

(See appendix.)

7. Theorem: 5. and 6. are contradictory. (See the proof
in 9.)

8. Observation.The fact thatA does not depend on̂b and
that B does not depend on̂a, is the expression of lo-
cality in this context. The variablesλ are, in principle,
global. Also, even ifλ determines the result of each
measurement on 1 and 2, respectively throughA and
B, there is astatistical elementpresent, given byρ(λ).
If λ = (λ1, ..., λn), it is then possible a ”locality” inλ
with λi = λ

(A)
i for

i = 1, 2, ..., p, and λj = λ
(B)
j

for j = p + 1, ..., p + q = n. I.e.

A = A(â, λ
(A)
1 , ..., λ(A)

p ) = ±1

andB = B(b̂, λ(B)
p+1, ..., λ

(B)
p+q) = ±1.

9. Proof of 7.

If b̂ = â, then B(â, λ) = −A(â, λ) for all
â ∈ S2 and all λ ∈ Λ; then P (â, b̂) =
− ∫

Λ
dλρ(λ)A(â, λ)A(b̂, λ). If ĉ is another unitary

vector, thenP (â, ĉ) = − ∫
Λ

dλρ(λ)A(â, λ)A(ĉ, λ)
and therefore

P (â, b̂)− P (â, ĉ) = −
∫

Λ

dλρ(λ)(A(â, λ)A(b̂, λ)−A(â, λ)A(ĉ, λ));

since(A(x̂, λ))2 = 1, one has

P (â, b̂)− P (â, ĉ) = −
∫

Λ

dλρ(λ)(1−A(b̂, λ)A(ĉ, λ))A(â, λ)A(b̂, λ).

Then

|P (â, b̂)− P (â, ĉ)| = | −
∫

Λ

dλρ(λ)(1−A(b̂, λ)A(ĉ, λ))A(â, λ)A(b̂, λ)| ≤
∫

Λ

ρ(λ)|1−A(b̂, λ)A(ĉ, λ)||A(â, λ)A(b̂, λ)|

=
∫

Λ

dλρ(λ)(1−A(b̂, λ)A(ĉ, λ))

=
∫

Λ

dλρ(λ)−
∫

Λ

dλρ(λ)A(b̂, λ)A(ĉ, λ) = 1 + P (b̂, ĉ),
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where we have used that|A(â, λ)A(b̂, λ)| = 1 and that
1−A(b̂, λ)A(ĉ, λ) ≥ 0. Therefore we have obtained

|P (â, b̂)− P (â, ĉ)| ≤ 1 + P (b̂, ĉ), (3)

which is theinequality obtained byBell in Ref. 1. Notice
that λ does not appear in Eq. (3). This formula appears in
Eq. (A.12) in Ref. 7, and in Eq. (8) in Ref. 8.

Let us see how, in some cases, Eqs. (2) and (3) are con-
tradictory: Letâ, b̂, andĉ be in the same plane, witĥa · b̂ = 0
andĉ in the bisection of̂a andb̂. Then, according to quantum
mechanics,

P (â, b̂) = −â · b̂ = 0, P (â, ĉ) = −â · ĉ = −
√

2/2,

and

P (b̂, ĉ) = −b̂ · ĉ = −
√

2/2;

if these values are replaced in (3), one obtains

|0 +
√

2/2| ≤ 1 + (−
√

2/2)

i.e.

√
2/2 ≤ 1−

√
2/2,

which amounts to
√

2 ≤ 1: false! Therefore, Bell’s inequal-
ity is violated by quantum mechanics. QED

(Note: In Ref. 11, page 36, Bell argues that the above
proof does not restrict to non relativistic quantum mechan-
ics, but only depends on the existence of separated systems
”highly correlated” with respect to quantities like the spin.)

10. Stronger Bell’s inequality

If A(â, λ) = ±1 then|A(â, λ)| ≤ 1; let us assume this
weaker condition. The difference between correlations
is given by

P (â, b̂)− P (â, b̂′) =
∫

Λ

dλρ(λ)(A(â, λ)B(b̂, λ)−A(â, λ)B(b̂′, λ))

=
∫

Λ

dλρ(λ)A(â, λ)B(b̂, λ)(1±A(â′, λ)B(b̂′, λ))−
∫

Λ

dλρ(λ)A(â, λ)B(b̂′, λ)(1±A(â′, λ)B(b̂, λ))

where we have summed and subtracted the integral

∫

Λ

dλρ(λ)A(â, λ)A(â′, λ)B(b̂, λ)B(b̂′, λ);

taking absolute values,

|P (â, b̂)− P (â, b̂′)| ≤
∫

Λ

dλρ(λ)|A(â, λ)||B(b̂, λ)||1±A(â′, λ)B(b̂′, λ)|

+
∫

Λ

dλρ(λ)|A(â, λ)||B(b̂′, λ)||1±A(â′, λ)B(b̂, λ)|

≤
∫

Λ

dλρ(λ)(1±A(â′, λ)B(b̂′, λ)) +
∫

Λ

dλρ(λ)(1±A(â′, λ)B(b̂, λ))

= 2±
(∫

Λ

ρ(λ)A(â′, λ)B(b̂′, λ) +
∫

Λ

dλρ(λ)A(â′, λ)B(b̂, λ)
)

= 2± (P (â′, b̂′) + P (â′, b̂)) ≤ 2± |P (â′, b̂′) + P (â′, b̂)|,

then

|P (â, b̂)− P (â, b̂′)| ∓ |P (â′, b̂′) + P (â′, b̂)| ≤ 2

and therefore

|P (â, b̂)− P (â, b̂′)|+ |P (â′, b̂′) + P (â′, b̂)| ≤ 2, (4)

which is the desired Bell’s inequality. This formula is eq. (9)
in Ref. 9 (Bell, 1971), eq. (11) in Ref. 8 (Jackiw and Shi-
mony, 2001), eq. (1a) in Ref. 10 (Clauseret al, 1969), and
eq. (20-6) in Ref. 6 (Ballentine, 1990).

11. Proposition:Eq. (4) implies Eq. (3).

Proof. Since Eq. (4) was obtained from a weaker con-
dition, one expects that in a particular case it will re-
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duce to Eq. (3). If in Eq. (4) we makêa′ = b̂, then in
the second term of the left hand side one has

|P (b̂, b̂′) + P (b̂, b̂)|,

but

P (b̂, b̂) =
∫

Λ

dλρ(λ)A(b̂, λ)B(b̂, λ)

= −
∫

Λ

dλρ(λ)A(b̂, λ)A(b̂, λ) = −1

if one restricts toA(b̂, λ) ∈ {−1,+1}; then

|P (â, b̂)− P (â, b̂′)|+ | − 1 + P (b̂, b̂′)| ≤ 2.

On the other hand,

|P (b̂, b̂′)| = |
∫

Λ

dλρ(λ)A(b̂, λ)B(b̂′, λ)|

≤
∫

Λ

dλρ(λ)|A(b̂, λ)||B(b̂′, λ)|

=
∫

Λ

ρ(λ) = 1,

and therefore−1 + P (b̂, b̂′) ≤ 0, then

| − 1 + P (b̂, b̂′)| = −(−1 + P (b̂, b̂′)) = 1− P (b̂, b̂′)

and therefore

|P (â, b̂)− P (â, b̂′)|+ 1− P (b̂, b̂′) ≤ 2

implies

|P (â, b̂)− P (â, b̂′)| ≤ 1 + P (b̂, b̂′),

which is eq. (3). QED

12. Proposition:(4) contradicts quantum mechanics.

Proof. Choosêa, â′, b̂, andb̂′ in the same plane, with
b̂ = â′ and with the angleθ between̂a andâ′ the same
as the angle between̂a′ andb̂′. Then, using Eq. (2) in
Eq. (4), we have:

| − cosθ + cos2θ|+ | − cosθ − 1| ≤ 2;

|−cosθ−1|=|(−1)(1+cosθ)|=|1+cosθ|=1+cosθ,

then

| − cosθ + cos2θ|+ cosθ ≤ 1.

If θ ∈ [0, π/2], then−cosθ + cos2θ < 0 and therefore

| − cosθ + cos2θ| = cosθ − cos2θ

which gives2cosθ − cos2θ ≤ 1. I.e.

2cosθ − cos2θ + sen2θ ≤ 1,

then

2cosθ − cos2θ ≤ 1− sen2θ = cos2θ.

I.e.

2(cosθ − cos2θ) ≤ 0;

so forθ ∈ (0, π/2), 1 ≤ cosθ: false! QED

13. Wigner’s formulation of Bell’s inequalities

Wigner’s formulation is based in probabilities instead
of correlations (averages of products of spin projec-
tions). By the hypothesis of Einstein’s locality, which
together with quantum mechanics, demands the real-
ism hypothesis, each particle of the pair (1,2) has a spin
projection along each of the directionsâ ≡ a, b̂ ≡ b
andĉ ≡ c of R3; these projections were determined at
the moment in which the particles were together (e.g.
before the decay of the original particle or molecule
in the singlet state). What in the Bell’s formulation is
represented by the probability distributionρ(λ), in this
formulation it is represented by the probabilities

p(a, b, c, a′, b′, c′), (a′ = −a, b′ = −b, c′ = −c),

where the first three entries refer to particle 1, and the second
three entries refer to particle 2:

p(+,+, +,−,−,−), p(−, +,+, +,−,−),

p(+,−, +,−,+,−), p(+, +,−,−,−,+),

p(−,−, +, +,+,−), p(−, +,−, +,−,+),

p(+,−,−,−,+, +), p(−,−,−, +, +,+).

Since in the singlet state, the second three entries are deter-
mined by the first three entries, it is sufficient to denote these
probabilities by

p(+, +, +), p(−,+, +), p(+,−,+), p(+, +,−),

p(−,−, +), p(−,+,−), p(+,−,−), p(−,−,−).

Rev. Mex. F́ıs. 48 (4) (2002) 384–390



388 M. SOCOLOVSKY

Let us consider the quantitypa,b(+,−): probability that
the particle 1 has spin +1 in directiona and spin -1 in direc-
tion b. This quantity (and its similars) can be measured with-
out interference of measurements: one measures on particle
1 the cases withσa = +1 and on particle 2 the cases with
σb = +1 i.e. pa,b(+,−) = p(1a+, 2b+) with an obvious
notation. It is clear that

pa,b(+,−) = p(+,−,+) + p(+,−,−),

analogously

pb,c(+,−) = p(+, +,−) + p(−,+,−),

and
pa,c(+,−) = p(+, +,−) + p(+,−,−).

We see that

pa,b(+,−) + pb,c(+,−)

= pa,c(+,−) + p(+,−, +) + p(−, +,−)

and from the non negativity of probabilities

pa,c(+,−) ≤ pa,b(+,−) + pb,c(+,−), (5)

which isBell’s inequality in the Wigner’s formulationi.e.

p(1a+, 2c+) ≤ p(1a+, 2b+) + p(1b+, 2c+).

Introducing the result of quantum mechanics

p(1a+, 2c+) =
1
2
sin2

(
θac

2

)
, (6)

(see appendix) whereθac is the angle between the unitary
vectorsâ andĉ, one obtains

1
2
sin2

(
θac

2

)
≤ 1

2
sin2

(
θab

2

)
+

1
2
sin2

(
θbc

2

)
. (7)

For some angles, Eq. (7) is contradictory, what again estab-
lishes a contradiction between quantum mechanics and the
hypothesis which lead to Eq. (5). This inequality (and its
analogous) appears in Eq. (3) in Ref. 12 (Wigner, 1970), eq.
(48) in Ref. 13 (Wigner, 1983), eq. in pg. 171 in Ref. 14
(d’Espagnat, 1979), Eq. (3.9.12) in Ref. 15 (Sakurai, 1985),
and Eq. (7.7) in Ref. 16 (Treiman, 1999).

Let â, b̂ andĉ be in the same plane, witĥb the bisection of
â andĉ, so ifθac = 2θ thenθab = θbc = θ, with θ ∈ [0, π/2].
Eq. (7) gives

sin2θ ≤ 2sin2 θ

2
.

If θ = 0 then0 ≤ 0; if θ = π/2 then

1 ≤ 2× sin2(π/4) = 2× (1/
√

2)2 = 1;

let θ ∈ (0, π/2),

sin2θ = 4sin2 θ

2
cos2 θ

2

and therefore2cos2 θ
2 ≤ 1 which impliescos θ

2 ≤ 1√
2

for
θ
2 ∈ (0, π/4): false! Then, with this election of directions,
quantum mechanics is contradictory with the Bell’s inequal-
ity for all θ ∈ (0, π/2).

Appendix

Proposition: In quantum mechanics, the probability that two
spin 1/2 particles in the singlet state (i.e. with total spin
S = 0) have their spins in the positive directions of the unit
vectorsn̂1 andn̂2, is given by

P++ =
1
2
sin2

(α12

2

)

whereα12 is the angle between̂n1 andn̂2.

(n̂k = (sinθkcosϕk, sinθksinϕk, cosθk)).

Proof.

P++ = | < χ0, χn1+χn2+ > |2

where

χ0 =
1√
2
(χ1+χ2− − χ1−χ2+)

and

χnk+ = cos

(
θk

2

)
χk+ + eiϕksin

(
θk

2

)
χk−, k = 1, 2.

We shall use the notation:

sinθ1 = s1, sinθ2 = s2, cos
θ1

2
= c 1

2
,

sin
θ1

2
= s 1

2
, cos

θ2

2
= c 2

2
, sin

θ2

2
= s 2

2
,

cosϕ1 = C1, sinϕ1 = S1, cosϕ2 = C2,

sinϕ2 = S2, cos(ϕ1 − ϕ2) = C12, cosα12 = c12,

sin(
α12

2
) = s 12

2
, sin(

θ1 − θ2

2
) = s 1−2

2
,

cos(θ1 − θ2) = c1−2;

and the formulae

sinλ = 2sin
λ

2
cos

λ

2

andsin2 λ
2 = 1

2 (1− cosλ).
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In this notation:

n̂1 · n̂2 = c12 = (s1C1, s1S1, c1)(s2C2, s2S2, c2)

= s1s2(C1C2 + S1S2) + c1c2

= s1s2C12 + c1c2,

then

1
2
s2

12
2

=
1
4
(1− c12) =

1
4
(1− s1s2C12 − c1c2); (A1)

from

χn1+ = c 1
2
χ1+ + eiϕ1s 1

2
χ1−

and

χn2+ = c 2
2
χ2+ + eiϕ2s 2

2
χ2−

we have

< χ0, χn1+χn2+ >=
1√
2
(eiϕ2c 1

2
s 2

2
− eiϕ1s 1

2
c 2

2
),

and therefore

P++ =
1
2

(
c2

1
2
s2

2
2

+ s2
1
2
c2

2
2
− ei(ϕ2−ϕ1)c 1

2
s 1

2
s 2

2
c 2

2
− e−i(ϕ2−ϕ1)s 1

2
c 1

2
c 2

2
s 2

2

)

=
1
2

(
c2

1
2
s2

2
2

+ s2
1
2
c2

2
2
− 2C12c 1

2
s 1

2
s 2

2
c 2

2

)

=
1
2

(
s 1

2
c 2

2
− c 1

2
s 2

2

)2

+ (1− C12) c 1
2
s 2

2
s 1

2
c 2

2
=

1
2

(
s 1−2

2
+ 2s 1

2
c 1

2
s 2

2
c 2

2
(1− C12)

)
=

1
2

(
s2

1−2
2

+
1
2
s1s2 − 1

2
s1s2C12

)

=
1
2

(
1
2

(1− c1−2) +
1
2
s1s2 − 1

2
s1s2C12

)

=
1
2

(
1
2

(1− (c1c2 + s1s2)) +
1
2
s1s2 − 1

2
s1s2C12

)
=

1
4

(1− c1c2 − C12s1s2) , (A2)

and(A1) = (A2). QED

To simplify, let us writeα12 ≡ α. From the definition
and formula forP++ we obtain the formulae forP+−, P−+

andP−−, with obvious interpretation of the notation:

P+− =
1
2
sin2

(
π − α

2

)
=

1
2
cos2 α

2
,

P−+ =
1
2
sin2

(
π − α

2

)
=

1
2
cos2 α

2
, P−− =

1
2
sin2 α

2
.

Then:

P++ + P−− =sin2 α

2

=probability that the product of the

spins be equal to + 1,

and

P+− + P−+ =cos2 α

2

=probability that the product of the

spins be equal to − 1.

We have then the
Corollary: The average of the product of the spins,

P (n̂1, n̂2) is given by

P (n̂1, n̂2) = −n̂1 · n̂2.

Proof.

P (n̂1, n̂2) = (+1)× prob.(+1) + (−1)× prob.(−1)

= sin2 α

2
− cos2 α

2
= −cosα = −n̂1 · n̂2.

QED.
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