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Debye potentials adapted to cylindrical coordinates
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Using the method of adjoint operators, the solution to the source-free Maxwell equations is expressed in terms of two real Debye potentials
adapted to circular, parabolic or elliptic cylindrical coordinates. Analogous expressions are obtained for the solutions of the Einstein vacuum
field equations linearized about the Minkowski space-time.
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Usando el ratodo de operadores adjuntos, se expresa la $olu las ecuaciones de Maxwell sin fuentesaeminos de dos potenciales de
Debye reales adaptados a las coordenadiaslditas circulares, parélicas o eipticas. Se obtienen expresioneglagas para las soluciones
de las ecuaciones de campo de Einstein para & Vimealizadas alrededor del espacio-tiempo de Minkowski.

Descriptores:Campo electromagatico; teofa de Einstein linealizada.

PACS: 03.50.De; 04.30.-w

1. Introduction &1 IS the Levi-Civita symbol,

Itis well known that the electromagnetic field in a source-free =—irxV, X=iVxL-V,

region can be expressed as
and E;; and B;; are the components of the curvature per-

E— }at(r X Vi) — V x (r X Vi) turbations (see Eqs. (18) below). Equations (2) can also be
c ’ obtained by separation of variables in spherical coordinates

[8] and by means of the method of adjoint operators, which

gives, in the first place, the corresponding metric perturba-

. tions [9].

wherey ands)y; are two real solutions of the scalar wave The solution to the source-free Maxwell equations and to

equation, called Debye potentials [1-4]. It can be shown[he Einstein vacuum field equations linearized about the flat
that Eqs. (1) actually represent. the most general solution tgpace-time can be written in forms adapted to Cartesian or
the source-free Maxwell equations (seeg, Ref. 5). Ex- tcircular, parabolic or elliptic) cylindrical coordinates. Using

pressions in Egs. (1) can be d_erlved _by solvmg the Maxwel he method of separation of variables one obtains the expres-
equations by separation of variables in spherical coordinate NS

[6], but a simpler derivation is provided by Wald’s method
of adjoint operators [7], which also yields the electromag- E— lat(ez X Vi) — V % (e, X Vibg),
netic potentials. Equations (1) are adapted to the spherical c

coordinates and are useful in the multipole expansion of the
electromagnetic field [1-3].

The Einstein vacuum field equations linearized aboutthe, . .. i o unit vector along the-axis (seeg.g, Refs. 10
Minkowski space-time can be written in a form analogous to * e ’

B-— —%@(r X Vi) =V x (rx Vo), (1)

B=—0e. x Vibe) - V x (2 x Viine),  (3)

that of the source-free Maxwell equations, with the curvatureand 11) and
perturbation in place of the electromagnetic field, and the so- 1 3 o
lution to these equations can be expressed in the form [5] Eij = catW” (¥m) = Zis (V).
1
1 o . _ 7.
Eij — EatUij(z/JM) _ Vij (wE)7 Bzg Cath ("/JE) Zz] ('l/}M)y (4)
1 where [8]
Bij = *Eathzj(i/JE) = Vig(¥m), (2)

Wi () = iM; Njp+iMiN;, Zij (V) = €imnOm W (¥),
where
and

Ui(V) = iL; Xy + il X590, Vip(¥) = im0 Ui (), = —ie, X V, N =V x M.



344 G. F. TORRES DEL CASTILLO AND R. ROSAS RODRIGUEZ

In all cases, the potentials:; andqy; satisfy the scalar wave linear differential operator that mapsindex tensor fields
equation. Expressions in Eqgs. (3) are useful, for instancento m-index tensor field defined by
in the study of the propagation of electromagnetic waves in
waveguides (taking the-axis along the axis of the waveg-  [A(tag.)]po """ = tap..[AT(s777)]*" = 90,
uide). o , .

The aim of this paper is to give a short and elementar))Nhere v* Is some vector field (for details see.g,
derivation of Egs. (3) and (4), using the method of adjointRefS' 12,7, 9), then
operators, and to obtain the corresponding vector potential
and metric perturbation, respectively. In Sec. 2 we obtain the (A+B)! = AT+ B, (AB)! = BLAT
solution to the Maxwell equations and in Sec. 3 the case Oénd the operato, defined by Eq. (6), is self-adjoint
the linearized Einstein vacuum field equations is considereq.c+ _ £); thus, from the identitpT — SE it follows that
Throughout this paper the summation convention is appliedeoT — £51. Hence, ifyy is a function such thad (¢) = 0,
Lower case Greek indices run from O to 3 and lower Cas?hené‘(sf(w)) —0,i.e, A? = [ST(1)]” satisfies the source-

Latin indices run from 1 to 3. free Maxwell equations. Using the fact th#lt = —d,, one
finds that
2. Solution to the source-free Maxwell equa-

tions O = (0°0,)" = 810°T = (=0,)(—0%) = 0,0% = %0,

If the Cartesian components of the electromagnetic field ten2nd: from Eq. (7).
sor, F, 3, are expressed in terms of the four-potentil, =
(=, A), in the usual manner, ST = (8501 — 6702)" = 6501 + 57,
thus

Fap = Oahs = 9p4a, ®) (ST () = (5702 — 00 ).

whered,, = 9/9z“, then the source-free Maxwell equations Therefore, ifiy satisfies the wave equatiod; 9, 1m = 0,
are given byo“F,z = 0 or, equivalently, by€(A,)]g = 0,
where¢ is the differential operator AP = 6702\ — 0501Ym (8)

S(A = 0%(0, A4 — D5A,, is the four-potential of a solution of the source-free Maxwell
[E(A)ls ( s~ 9p4a) equations. Explicitly, Eq. (8) gives

Al = 8y7/}M7 A2 = - fL‘wM7 A3 = 0, ¢ =0. (9)
and the tensor indices are raised or lowered by means of the

= (530%00 — 0703)A, ()

Minkowski metric(1j,5) = diag(—1,1,1,1) = (n°). The z-component of the electric field corresponding to the
Equation (5) is (locally) equivalent to potentials in Egs. (9) is
OaFay + 0pFye + 0 Fop = 0, E.,=-0.6—(1/c)0: Az = 0;

hence, Egs. (9) is not the most general solution to the source-

free Maxwell equations.

0% 0 Fgy= 030° Foy— 0,0 Fog= (5566 —6587) [E£(A)],- _ In order to obtain an expression for.the most general so-
lution of the source-free Maxwell equations we now take

(This shows that when the source-free Maxwell equations are

satisfied, each Cartesian component of the electromagnetic T(Ay) = 03A0 — oAz = Fio

field satisfies the wave equation.) Setting and

which implies that

O(f) = 0%0uf,
as before. Then we have

T(A.y) = 81142 — 6‘2A1 = F12

andO(f) = 0“0, f, we have the operator identity
OT(A,) = (6505 — 6500)[E(A =8E(A
OT(A»Y) — ((5581 —6?82)[5(A7)]p :Sg(A,Y), ( ’Y) ( 0¢3 3 0)[ ( ’Y)}P ( ’Y)’
) ) ) where nows is the differential operator
wheresS is the differential operator
S(b,) = (8505 — 6509)b,,.
S(b,) = (820, — 6°0,)b,. 7) (b) = (%25 = 0520)b
Proceeding as above, one finds thalib,, ¢ = 0, then
If the adjoint,. A", of a linear differential operato#, that
mapsm-index tensor fields inta-index tensor fields, is the AP = §800YE — 0503¢g (20)
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is another solution of the source-free Maxwell equations3. Solution to the linearized Einstein vacuum
Thus, by virtue of the linearity of the Maxwell equations, the  field equations
superposition of the four-potentials (8) and (10), given by
1 In the linearized Einstein theory it is assumed that the space-
¢ =—e, Vg, A =e,—-0rg —e, x Vih, (11)  time metric,g,3, can be written ag.g = 1q8 + hap, With
¢ |hag| < 1, then, the curvature tensor gf, to first order in
is a solution of the Maxwell equations. The electromagnetic,,g is
field generated by the potentials in Eqgs. (11) is precisely that
given by Egs. (3). I_fle gnde are sep_arable s_olqtions to Kopys = }(%85/157 — 905N
the wave equation in (circular, parabolic, or elliptic) cylin- 2

drica] coordinates, the fields g?ven py Egs. (3) are separable +050,has — Oadyhss). (13)
solutions to the Maxwell equations in that coordinate system
[10,11]. Therefore, the Einstein vacuum field equations linearized

The Debye potentialgr andiy in Egs. (1) are indepen-  about the Minkowski space-time,
dent in the sense that the electromagnetic field generated by a
potentialy i, cannot be generated by a potentig}. In fact,
the field generated by, satisfies the condition- E = 0,
yvh|le the f|§lc_i generated byg satisfiesr - B = O.and there whereK, 5 = K7 o3, aMOUNt t0[E (R 5)] 5 = 0 With
is no non-trivial well-behaved electromagnetic field such that
r - E andr - B vanish. By contrast, as is well-known, it is

1
KO‘B - §K’Yﬂy7’]a5 = Oa

possible to have electromagnetic fields with = B, = 0. £(h _1 9.0"h 00 e — O ON

Using Egs. (3) one finds that the conditiofis = 0, B, = 0 [E(po)lap = 2( a0 f1yp + 00 Nia vitap

amount to —0a08h" + 100 Oyh’s — 0apd’ hys). (14)
(07 + 07)be = 0, (07 + 07)m = 0, Equivalently,[€(hyo)las = Kap— 3 K, 145, which implies

respectively. The first of these equations is locally equivalenthat[€(h,s)]a® = —K.“; therefore,
to the existence of a functiop such that

Kap = (0505 = 570 )E (hpo )] - (15)
a’v'(/)E = ava 81/¢E = _81X- (12)
Equation (13) implies thak',,3,s = K35 and
On the other hand, sinags obeys the wave equation, it fol-
lows that a(xKB'y(Se + aﬁK'y(xée + a’yK(xﬁée =0
((1/c*)07 — 82)¢g = 0, hence [9]

which implies that)y is of the form 0D K 35 = D305 K e — 030K s

wE = f(waya ’U,) + g(:ﬂ,y,v), _a'yaSKBe + a’yaeKﬁé' (16)

whereu = z — ¢t, v = z + ct. Taking, for instance,
vg = f(z,y,u), which (if the field is not static) corresponds
to waves propagating along the positbraxis, the terms con-
taining+g in Eq. (11) can be rewritten as 0%0aK1230 =03(01 K20 — 02K10) — 0p(01 K23 — 02 K13)

Thus,

1 —=£,:30;0% (8505 — 0500) Kup.
0 = —0up = —Oup = O, 130107 (G0 = 0300 e
1 Letting7 (hag) = Ki230, O = 0*9,, and making use of Eq.
A = ezgath = —e.0,YE = —e.0.Yg (15) we find the identityp7T = S&, with
= TV¥E-e:xVx, S(bag) = €;30:0," (5535 — 85 00)bas,

herefor means of th ransformation o .
therefore, by means of the gauge transformatio where the parentheses denote symmetrization on the in-

dices enclosed. Since the operatbdefined by Eq. (14)
A A+ Vi, b — ¢ — g, is self-adjoint, it follows that ifyy; is a function such
that Of (1) = 0 then h®? = [ST(yy)]*? satisfies
one obtains the potentials generatedihy = x (see Egs. the Einstein vacuum field equations linearized about the
(11)). (Note that, owing to Eqgs. (12), also obeys the wave Minkowski space-time. The adjoints @ andS are given
equation). by Of = 9%9, and
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perturbations (17) and (19) is also a solution to the linearized

) 3) Einstein equations; hence
[T (@)™ = €ij30i0; (8y O3 — 05  0) Y

1
hoo = —2(024 507
therefore 00 ( S 8t) Ve,
@ , 1
Bl = eijady (0005 = 00 00)0ine (A7) hes = —dby 04duabn + 2e50:0- 0k, (20)

satisfies the linearized Einstein vacuum field equatiogig;if s 15 1,9
is a solution of the wave equation. hij = —20; <az - (Tzat e — 403i03; Zzat Ve

When K,3 = 0, the curvature perturbatiof’ .35 has 1
only ten independent components that can be represented by +4esk(i05)3 =010k M
the two traceless, symmetric tensdfg and B;; defined by ¢
[5,9] (obtained by multiplying Eqgs. (17) and (19) by4 and

B = Kojo;, Bi; = — = Koi" €yt (18) adding the results), sgtisfies the linearized Eipstein equations
2 for any two real solutions of the wave equation. By means

wheree,g,s iS completely antisymmetric withgi103 = 1. of a straightforward but somewhat lengthy computation one

Since the metric perturbations (17) are such that finds that the curvature perturbations corresponding to Eg.

(20) are given by Egs. (4). Since the most general solution to

hoo = hss = hos = 0, the equations for the curvature perturbations is of the form in

from Egs. (13) and (18) one finds thBt; = Kos3 = 0;  Ed. (4) (see Ref. 8), it follows that the most general solution

which means that Eq. (17) represents a “transverse electrido the Einstein vacuum field equations linearized about the

field and that the potentialy; alone cannot produce the gen- Minkowski space-time is given by Egs. (20), up to the gauge
eral solution to the linearized Einstein equations. transformations

Hence, making use of Egs. (16) and (15), we consider

now the identity hap = hap + 9alp + Opa;

wheref,, is an arbitrary vector field, which leave the curva-

0% 0aKo303 = 0000 K33 — 20003 Ko3 + 9303 Koo ture perturbations(,, 5.4 invariant.

_ [6080(5§6§ _ %naﬁ) _ 2806366“55) Asinthe case 0}‘ expressionsin Egs. (3), the_potenzligls
andi; appearing in Egs. (4) and (20) are not independent;
+ 8383(65’65 + %n“ﬁ)][é’(hpg)]a@, the perturbations witt's3 = B33 = 0 can be expressed in
terms of eitheryg or ¢ alone. IndeedFs; and B33 van-
which is of the formO7 = S€&, with ish if
T (hag) = Kozos, O = 0%0,, (07 + 92)pp =0 and (024 02)hm = 0.
and Taking, as in Sec. 2y = f(z,y,u), ¥ = 0, where
5 1 o8 (o B) u = z —ct and (97 + 02)f = 0, the only nonvanishing
S(bag) = [0000(05 05 — 51*") — 200038, J5 components of the metric perturbation (20) are given by
+6383((58‘(5€ + %Uaﬁ)](baﬂ)- hoo = —4(93’(/)]5, hos = —48083’(/JE = 488¢E,
Then one finds that hss = —405YE = —49;YE. (21)

Then, under the gauge transformation
[ST@)]™ = (5565 = $n*) o> — 236”65 DoDsts

3 haﬂ = ha,B + aagﬁ + 8,6’5047
+(8565 + 31703059

with & = 200k, & = 0 = &, & = 203¢, one obtains
the metric perturbation generated By = 0 andyy = ¥,
wherey is defined by Egs. (12).

hag = (M3aM38 — 3Map)0000UE The perturbed metric determined by Egs. (21) is

and therefore

_ 1
210(aNB)30003YE + (MoaNos + 57as)030310E (19) Gasda®da® = (g + hag)da®da®

sat!sﬁes the linearized Einstein vacuum field equatiqm@if = dz? + dy? + dz2 — Rdt® + F(z,y,u)(dz — cdt)?,
satisfies the wave equation. The curvature perturbations gen-
erated by (19) satisfy333 = 0 and therefore this field is with I = —492f. This metric is not only a solution

“transverse magnetic”. Any linear combination of the metricto the Einstein vacuum field equations linearized about the
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Minkowski metric, but also an exact solution to the Einsteina given system of linear partial differential equations. In the
vacuum field equations for any functidi(x, y, u) such that  two cases considered in this paper we know that two real po-
(02 + 8§)F =0 (seee.g, Ref. 13). tentials are sufficient since the solution of the Maxwell equa-
tions or of the equations for the curvature perturbations ob-
tained by separation of variables can be expressed in terms
of two real potentials. The method of adjoint operators gives
The only drawback of the method of adjoint operators in itsnot only the electromagnetic field tensor and the curvature
present form is that it is not known in advance how many poJerturbations but also the vector potential and the metric per-
tentials are necessary to express the most general solution @frbations in an extremely simple way.
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