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Debye potentials adapted to cylindrical coordinates
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R. Rosas Rodrı́guez
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Using the method of adjoint operators, the solution to the source-free Maxwell equations is expressed in terms of two real Debye potentials
adapted to circular, parabolic or elliptic cylindrical coordinates. Analogous expressions are obtained for the solutions of the Einstein vacuum
field equations linearized about the Minkowski space-time.
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Usando el ḿetodo de operadores adjuntos, se expresa la solución de las ecuaciones de Maxwell sin fuentes en términos de dos potenciales de
Debye reales adaptados a las coordenadas cilı́ndricas circulares, parabólicas o eĺıpticas. Se obtienen expresiones análogas para las soluciones
de las ecuaciones de campo de Einstein para el vacı́o linealizadas alrededor del espacio-tiempo de Minkowski.
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1. Introduction

It is well known that the electromagnetic field in a source-free
region can be expressed as

E =
1
c
∂t(r×∇ψM)−∇× (r×∇ψE),

B = −1
c
∂t(r×∇ψE)−∇× (r×∇ψM), (1)

whereψE andψM are two real solutions of the scalar wave
equation, called Debye potentials [1–4]. It can be shown
that Eqs. (1) actually represent the most general solution to
the source-free Maxwell equations (see,e.g., Ref. 5). Ex-
pressions in Eqs. (1) can be derived by solving the Maxwell
equations by separation of variables in spherical coordinates
[6], but a simpler derivation is provided by Wald’s method
of adjoint operators [7], which also yields the electromag-
netic potentials. Equations (1) are adapted to the spherical
coordinates and are useful in the multipole expansion of the
electromagnetic field [1–3].

The Einstein vacuum field equations linearized about the
Minkowski space-time can be written in a form analogous to
that of the source-free Maxwell equations, with the curvature
perturbation in place of the electromagnetic field, and the so-
lution to these equations can be expressed in the form [5]

Eij =
1
c
∂tUij(ψM)− Vij(ψE),

Bij = −1
c
∂tUij(ψE)− Vij(ψM), (2)

where

Ujk(ψ) ≡ iLjXkψ + iLkXjψ, Vjk(ψ) ≡ εjlm∂lUmk(ψ),

εijk is the Levi-Civit̀a symbol,

L ≡ −ir×∇, X ≡ i∇× L−∇,

and Eij and Bij are the components of the curvature per-
turbations (see Eqs. (18) below). Equations (2) can also be
obtained by separation of variables in spherical coordinates
[8] and by means of the method of adjoint operators, which
gives, in the first place, the corresponding metric perturba-
tions [9].

The solution to the source-free Maxwell equations and to
the Einstein vacuum field equations linearized about the flat
space-time can be written in forms adapted to Cartesian or
(circular, parabolic or elliptic) cylindrical coordinates. Using
the method of separation of variables one obtains the expres-
sions

E =
1
c
∂t(ez ×∇ψM)−∇× (ez ×∇ψE),

B = −1
c
∂t(ez ×∇ψE)−∇× (ez ×∇ψM), (3)

whereez is a unit vector along thez-axis (see,e.g., Refs. 10
and 11) and

Eij =
1
c
∂tWij(ψM)− Zij(ψE),

Bij = −1
c
∂tWij(ψE)− Zij(ψM), (4)

where [8]

Wij(ψ) ≡ iMiNjψ+iMjNiψ, Zij(ψ) ≡ εimn∂mWnj(ψ),

and
M ≡ −iez ×∇, N ≡ i∇×M.
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In all cases, the potentialsψE andψM satisfy the scalar wave
equation. Expressions in Eqs. (3) are useful, for instance,
in the study of the propagation of electromagnetic waves in
waveguides (taking thez-axis along the axis of the waveg-
uide).

The aim of this paper is to give a short and elementary
derivation of Eqs. (3) and (4), using the method of adjoint
operators, and to obtain the corresponding vector potential
and metric perturbation, respectively. In Sec. 2 we obtain the
solution to the Maxwell equations and in Sec. 3 the case of
the linearized Einstein vacuum field equations is considered.
Throughout this paper the summation convention is applied.
Lower case Greek indices run from 0 to 3 and lower case
Latin indices run from 1 to 3.

2. Solution to the source-free Maxwell equa-
tions

If the Cartesian components of the electromagnetic field ten-
sor,Fαβ , are expressed in terms of the four-potential,Aα =
(−φ,A), in the usual manner,

Fαβ = ∂αAβ − ∂βAα, (5)

where∂α ≡ ∂/∂xα, then the source-free Maxwell equations
are given by∂αFαβ = 0 or, equivalently, by[E(Aγ)]β = 0,
whereE is the differential operator

[E(Aγ)]β ≡ ∂α(∂αAβ − ∂βAα)

= (δγ
β∂α∂α − ∂γ∂β)Aγ (6)

and the tensor indices are raised or lowered by means of the
Minkowski metric(ηαβ) = diag(−1, 1, 1, 1) = (ηαβ).

Equation (5) is (locally) equivalent to

∂αFβγ + ∂βFγα + ∂γFαβ = 0,

which implies that

∂α∂αFβγ= ∂β∂αFαγ−∂γ∂αFαβ= (δρ
γ∂β−δρ

β∂γ)[E(Aσ)]ρ.

(This shows that when the source-free Maxwell equations are
satisfied, each Cartesian component of the electromagnetic
field satisfies the wave equation.) Setting

T (Aγ) ≡ ∂1A2 − ∂2A1 = F12

andO(f) ≡ ∂α∂αf , we have the operator identity

OT (Aγ) = (δρ
2∂1 − δρ

1∂2)[E(Aγ)]ρ = SE(Aγ),

whereS is the differential operator

S(bρ) ≡ (δρ
2∂1 − δρ

1∂2)bρ. (7)

If the adjoint,A†, of a linear differential operator,A, that
mapsm-index tensor fields inton-index tensor fields, is the

linear differential operator that mapsn-index tensor fields
into m-index tensor field defined by

[A(tαβ···)]ρσ···sρσ··· − tαβ···[A†(sρσ···)]αβ··· = ∂αvα,

where vα is some vector field (for details see,e.g.,
Refs. 12, 7, 9), then

(A+ B)† = A† + B†, (AB)† = B†A†

and the operatorE , defined by Eq. (6), is self-adjoint
(E† = E); thus, from the identityOT = SE it follows that
T †O† = ES†. Hence, ifψ is a function such thatO†(ψ) = 0,
thenE(S†(ψ)) = 0, i.e., Aρ = [S†(ψ)]ρ satisfies the source-
free Maxwell equations. Using the fact that∂†α = −∂α one
finds that

O† = (∂α∂α)† = ∂†α∂α† = (−∂α)(−∂α) = ∂α∂α = ∂α∂α

and, from Eq. (7),

S† = (δρ
2∂1 − δρ

1∂2)† = −δρ
2∂1 + δρ

1∂2,

thus
[S†(ψ)]ρ = (δρ

1∂2 − δρ
2∂1)ψ.

Therefore, ifψM satisfies the wave equation,∂α∂αψM = 0,

Aρ = δρ
1∂2ψM − δρ

2∂1ψM (8)

is the four-potential of a solution of the source-free Maxwell
equations. Explicitly, Eq. (8) gives

A1 = ∂yψM, A2 = −∂xψM, A3 = 0, φ = 0. (9)

The z-component of the electric field corresponding to the
potentials in Eqs. (9) is

Ez = −∂zφ− (1/c) ∂tA3 = 0;

hence, Eqs. (9) is not the most general solution to the source-
free Maxwell equations.

In order to obtain an expression for the most general so-
lution of the source-free Maxwell equations we now take

T (Aγ) ≡ ∂3A0 − ∂0A3 = F30

and

O(f) ≡ ∂α∂αf,

as before. Then we have

OT (Aγ) = (δρ
0∂3 − δρ

3∂0)[E(Aγ)]ρ = SE(Aγ),

where nowS is the differential operator

S(bρ) ≡ (δρ
0∂3 − δρ

3∂0)bρ.

Proceeding as above, one finds that if∂α∂αψE = 0, then

Aρ = δρ
3∂0ψE − δρ

0∂3ψE (10)
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is another solution of the source-free Maxwell equations.
Thus, by virtue of the linearity of the Maxwell equations, the
superposition of the four-potentials (8) and (10), given by

φ = −ez · ∇ψE, A = ez
1
c
∂tψE − ez ×∇ψM, (11)

is a solution of the Maxwell equations. The electromagnetic
field generated by the potentials in Eqs. (11) is precisely that
given by Eqs. (3). IfψE andψM are separable solutions to
the wave equation in (circular, parabolic, or elliptic) cylin-
drical coordinates, the fields given by Eqs. (3) are separable
solutions to the Maxwell equations in that coordinate system
[10,11].

The Debye potentialsψE andψM in Eqs. (1) are indepen-
dent in the sense that the electromagnetic field generated by a
potentialψE cannot be generated by a potentialψM. In fact,
the field generated byψM satisfies the conditionr · E = 0,
while the field generated byψE satisfiesr ·B = 0 and there
is no non-trivial well-behaved electromagnetic field such that
r · E andr · B vanish. By contrast, as is well-known, it is
possible to have electromagnetic fields withEz = Bz = 0.
Using Eqs. (3) one finds that the conditionsEz = 0, Bz = 0
amount to

(∂2
x + ∂2

y)ψE = 0, (∂2
x + ∂2

y)ψM = 0,

respectively. The first of these equations is locally equivalent
to the existence of a functionχ such that

∂xψE = ∂yχ, ∂yψE = −∂xχ. (12)

On the other hand, sinceψE obeys the wave equation, it fol-
lows that

((1/c2)∂2
t − ∂2

z )ψE = 0,

which implies thatψE is of the form

ψE = f(x, y, u) + g(x, y, v),

where u ≡ z − ct, v ≡ z + ct. Taking, for instance,
ψE = f(x, y, u), which (if the field is not static) corresponds
to waves propagating along the positivez-axis, the terms con-
tainingψE in Eq. (11) can be rewritten as

φ = −∂zψE = −∂uψE =
1
c
∂tψE,

A = ez
1
c
∂tψE = −ez∂uψE = −ez∂zψE

= −∇ψE − ez ×∇χ,

therefore, by means of the gauge transformation

A 7→ A +∇ψE, φ 7→ φ− ∂0ψE,

one obtains the potentials generated byψM = χ (see Eqs.
(11)). (Note that, owing to Eqs. (12),χ also obeys the wave
equation).

3. Solution to the linearized Einstein vacuum
field equations

In the linearized Einstein theory it is assumed that the space-
time metric,gαβ , can be written asgαβ = ηαβ + hαβ , with
|hαβ | ¿ 1, then, the curvature tensor ofgαβ , to first order in
hαβ is

Kαβγδ =
1
2
(∂α∂δhβγ − ∂β∂δhαγ

+∂β∂γhαδ − ∂α∂γhβδ). (13)

Therefore, the Einstein vacuum field equations linearized
about the Minkowski space-time,

Kαβ − 1
2
Kγ

γηαβ = 0,

whereKαβ ≡ Kγ
αγβ , amount to[E(hαβ)]γδ = 0 with

[E(hρσ)]αβ ≡ 1
2
(∂α∂γhγβ + ∂β∂γhγα − ∂γ∂γhαβ

−∂α∂βhγ
γ + ηαβ∂γ∂γhδ

δ − ηαβ∂γ∂δhγδ). (14)

Equivalently,[E(hρσ)]αβ = Kαβ− 1
2Kγ

γηαβ , which implies
that[E(hρσ)]αα = −Kα

α; therefore,

Kαβ = (δµ
αδν

β − 1
2ηαβηµν)[E(hρσ)]µν . (15)

Equation (13) implies thatKαβγδ = Kβγδα and

∂αKβγδε + ∂βKγαδε + ∂γKαβδε = 0

hence [9]

∂α∂αKβγδε = ∂β∂δKγε − ∂β∂εKγδ

−∂γ∂δKβε + ∂γ∂εKβδ. (16)

Thus,

∂α∂αK1230 =∂3(∂1K20 − ∂2K10)− ∂0(∂1K23 − ∂2K13)

=εij3∂iδ
α
j (δβ

0 ∂3 − δβ
3 ∂0)Kαβ .

LettingT (hαβ) ≡ K1230,O = ∂α∂α and making use of Eq.
(15) we find the identityOT = SE , with

S(bαβ) = εij3∂iδ
(α
j (δβ)

0 ∂3 − δ
β)
3 ∂0)bαβ ,

where the parentheses denote symmetrization on the in-
dices enclosed. Since the operatorE defined by Eq. (14)
is self-adjoint, it follows that ifψM is a function such
that O†(ψM) = 0 then hαβ = [S†(ψM)]αβ satisfies
the Einstein vacuum field equations linearized about the
Minkowski space-time. The adjoints ofO andS are given
byO† = ∂α∂α and
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[S†(ψM)]αβ = εij3∂iδ
(α
j (δβ)

0 ∂3 − δ
β)
3 ∂0)ψM;

therefore

hαβ = εij3δ
(α
j (δβ)

0 ∂3 − δ
β)
3 ∂0)∂iψM (17)

satisfies the linearized Einstein vacuum field equations ifψM

is a solution of the wave equation.
WhenKαβ = 0, the curvature perturbationKαβγδ has

only ten independent components that can be represented by
the two traceless, symmetric tensorsEij andBij defined by
[5,9]

Eij ≡ K0i0j , Bij ≡ −1
2
K0i

ρσερσ0j , (18)

whereεαβγδ is completely antisymmetric withε0123 = 1.
Since the metric perturbations (17) are such that

h00 = h33 = h03 = 0,

from Eqs. (13) and (18) one finds thatE33 = K0303 = 0;
which means that Eq. (17) represents a “transverse electric”
field and that the potentialψM alone cannot produce the gen-
eral solution to the linearized Einstein equations.

Hence, making use of Eqs. (16) and (15), we consider
now the identity

∂α∂αK0303 = ∂0∂0K33 − 2∂0∂3K03 + ∂3∂3K00

= [∂0∂0(δα
3 δβ

3 − 1
2ηαβ)− 2∂0∂3δ

(α
0 δ

β)
3

+ ∂3∂3(δα
0 δβ

0 + 1
2ηαβ)][E(hρσ)]αβ ,

which is of the formOT = SE , with

T (hαβ) = K0303, O = ∂α∂α,

and

S(bαβ) = [∂0∂0(δα
3 δβ

3 − 1
2ηαβ)− 2∂0∂3δ

(α
0 δ

β)
3

+∂3∂3(δα
0 δβ

0 + 1
2ηαβ)](bαβ).

Then one finds that

[S†(ψ)]αβ = (δα
3 δβ

3 − 1
2ηαβ)∂0∂0ψ − 2δ

(α
0 δ

β)
3 ∂0∂3ψ

+(δα
0 δβ

0 + 1
2ηαβ)∂3∂3ψ

and therefore

hαβ = (η3αη3β − 1
2ηαβ)∂0∂0ψE

−2η0(αηβ)3∂0∂3ψE + (η0αη0β + 1
2ηαβ)∂3∂3ψE (19)

satisfies the linearized Einstein vacuum field equations ifψE

satisfies the wave equation. The curvature perturbations gen-
erated by (19) satisfyB33 = 0 and therefore this field is
“transverse magnetic”. Any linear combination of the metric

perturbations (17) and (19) is also a solution to the linearized
Einstein equations; hence

h00 = −2
(

∂2
z +

1
c2

∂2
t

)
ψE,

h0i = −4δ3i
1
c
∂t∂zψE + 2ε3ki∂z∂kψM, (20)

hij = −2δij

(
∂2

z −
1
c2

∂2
t

)
ψE − 4δ3iδ3j

1
c2

∂2
t ψE

+4ε3k(iδj)3
1
c
∂t∂kψM

(obtained by multiplying Eqs. (17) and (19) by−4 and
adding the results), satisfies the linearized Einstein equations
for any two real solutions of the wave equation. By means
of a straightforward but somewhat lengthy computation one
finds that the curvature perturbations corresponding to Eq.
(20) are given by Eqs. (4). Since the most general solution to
the equations for the curvature perturbations is of the form in
Eq. (4) (see Ref. 8), it follows that the most general solution
to the Einstein vacuum field equations linearized about the
Minkowski space-time is given by Eqs. (20), up to the gauge
transformations

hαβ 7→ hαβ + ∂αξβ + ∂βξα,

whereξα is an arbitrary vector field, which leave the curva-
ture perturbationsKαβγδ invariant.

As in the case of expressions in Eqs. (3), the potentialsψE

andψM appearing in Eqs. (4) and (20) are not independent;
the perturbations withE33 = B33 = 0 can be expressed in
terms of eitherψE or ψM alone. Indeed,E33 andB33 van-
ish if

(∂2
x + ∂2

y)ψE = 0 and (∂2
x + ∂2

y)ψM = 0.

Taking, as in Sec. 2,ψE = f(x, y, u), ψM = 0, where
u = z − ct and (∂2

x + ∂2
y)f = 0, the only nonvanishing

components of the metric perturbation (20) are given by

h00 = −4∂2
0ψE, h03 = −4∂0∂3ψE = 4∂2

0ψE,

h33 = −4∂2
3ψE = −4∂2

0ψE. (21)

Then, under the gauge transformation

hαβ 7→ hαβ + ∂αξβ + ∂βξα,

with ξ0 = 2∂0ψE, ξ1 = 0 = ξ2, ξ3 = 2∂3ψE, one obtains
the metric perturbation generated byψE = 0 andψM = χ,
whereχ is defined by Eqs. (12).

The perturbed metric determined by Eqs. (21) is

gαβdxαdxβ = (ηαβ + hαβ)dxαdxβ

= dx2 + dy2 + dz2 − c2dt2 + F (x, y, u)(dz − cdt)2,

with F ≡ −4∂2
uf . This metric is not only a solution

to the Einstein vacuum field equations linearized about the
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Minkowski metric, but also an exact solution to the Einstein
vacuum field equations for any functionF (x, y, u) such that
(∂2

x + ∂2
y)F = 0 (see,e.g., Ref. 13).

4. Concluding remarks

The only drawback of the method of adjoint operators in its
present form is that it is not known in advance how many po-
tentials are necessary to express the most general solution of

a given system of linear partial differential equations. In the
two cases considered in this paper we know that two real po-
tentials are sufficient since the solution of the Maxwell equa-
tions or of the equations for the curvature perturbations ob-
tained by separation of variables can be expressed in terms
of two real potentials. The method of adjoint operators gives
not only the electromagnetic field tensor and the curvature
perturbations but also the vector potential and the metric per-
turbations in an extremely simple way.
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