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On Casimir forces for media with arbitrary dielectric properties
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We derive an expression for the Casimir force between slabs with arbitrary dielectric properties characterized by their reflection coefficients.
The formalism presented here is applicable to media with a local or a non-local dielectric response, an infinite or a finite width, inhomoge-
neous dissipative, etc. Our results reduce to the Lifshitz formula for the force between semi-infinite dielectric slabs by replacing the reflection
coefficients by the Fresnel amplitudes.
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Se presenta una deducción para la expresión de la fuerza de Casimir entre placas con propiedades dieléctricas arbitrarias caracterizadas por
sus coeficientes de reflección. El formalismo que presentamos es válido para medios con una respuesta dieléctrica local, no local, placas
de ancho finito o semi–infinito, inhomogéneos, disipativos, etc. Nuestros resultados se reducen a la fórmula de Lifshitz para la fuerza entre
placas dieĺectricas semi–infinitas substituyendo los coeficientes de reflección por las amplitudes de Fresnel.

Descriptores: Fuerzas de Casimir; dieléctricos; f́ormula de Lifshitz.

PACS: 12.20.D.s; 03.70.+k; 77.55.+f; 78.67.-n

1. Introduction

Even though Casimir [1] predicted in 1948 an attractive force
between perfectly conducting plates placed in quantum vac-
uum, it is only in recent years that experimental studies of
Casimir forces have reached the necessary accuracy to test in
detail theoretical predictions. The first measurements were
done by Derjaguinet al. [2] in 1951 using dielectric mate-
rials. In the following decades, a number of experiments to
measure Casimir interactions between dielectric or conduct-
ing materials were performed, however involving large rela-
tive errors in the measured forces [3]. It was until 1997 that
Lamoreaux [4] performed measurements with a precision
of the order of 5 % by using an electromechanical system
based on a torsion balance. Other experiments were made
taking advantage of the sensitivity of atomic force micro-
scopes achieving precisions close to 1% [6, 7]. Additional
measurements have been made by Chanet al. [8] using a mi-
cro torsional balance. This experiment is representative of the
effects that Casimir forces have in micromechanical systems
as was theoretically shown by Serry and Maclay [9]. Appli-
cations to nanostructures have also been considered [10–12].
This has boosted investigations in which the detailed proper-
ties of the materials such as absorptivity, rugosity, or finite
temperature effects are taken into account in the theoretical
calculations of the Casimir forces [13].

The standard approach to study vacuum forces between
imperfect conductors is the macroscopic theory proposed by
Lifshitz [14] in 1956 for semi-infinite dielectric materials.
In this theory, the dissipative effects associated to the radi-

ation reaction of the elementary atomic dipoles composing
the dielectric is balanced by the fluctuating vacuum field in
accordance with the fluctuation-dissipation theorem.

For a configuration of two semi-infinite slabs, with di-
electric permitivitiesε1 andε2, separated by a gap of width
L and permitivityε3, the Lifshitz formula for force per unit
area is

F (L) = − ~
2π2c3

∫ ∞

1

dpp2

∫ ∞

0

dξξ3ε
3/2
3

× [
G1(ξ, p)−1 + G2(ξ, p)−1

]
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with
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× e2ξp

√
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whereξ = iω is an imaginary frequency,p ands1, s2 are
defined in terms of the momenta parallel and perpendicular
to the slabsk, andK2

i = k2 + εi(iξ)ξ2/c2, respectively:
K3 =

√
ε3ξp/c andK2

1,2 = ε3ξ
2s2

1,2/c2. Lifshitz theory has
been succesfully employed in a number of experimental situ-
ations, and it yields the Casimir force for perfect conductors.
However, as pointed out by Barash and Ginzburg [15], it
is not clear how to generalize the theory to more complex
problems, such as nonplanar surfaces, multilayer systems,
anisotropic media, etc. Thus, they proposed an alternative ap-
proach to Lifshitz formula. As a dissipative system does not
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posses well defined natural frequencies of oscillation, they
introduced an auxiliary system in which the dielectric permi-
tivity depended only parametrically on the frequency. This
procedure enabled them to calculate the free energy of the
field as a sum over allowed states of the system. In turn, the
force per unit area was obtained as the derivative of the free
energy. Kats [22] re-elaborated the formalism of Barash and
Ginzburg by writing the dispersion law for surface electro-
magnetic waves in terms of the reflection amplitudesrs and
rp of the media fors andp polarizations. Approximating the
reflection coefficients in terms of the frequency and wavevec-
tor dependent surface impedanceZ(ω, Q) he was able to ob-
tain approximate non-local corrections to the Casimir force
for good conductors. Kats remarked that dielectrics materi-
als required alternative formulations, as their reflection co-
efficients cannot be expressed merely in terms of surface
impedances. This is not necessarily correct, as an exact re-
lation between surface impedance and reflection coefficients
may indeed be introduced for arbitrary systems [25]. Jaekel
and Reynaud [26] also rederived Lifshitz formula in terms of
reflection coefficients for partially transmitting mirrors. Their
expression reduces to that obtained by Barash and Ginzburg
[15]. However, their derivation is not valid when dissipation
is included.

Other approaches have been used to study the vacuum
fluctuations in the presence of dielectrics [16–18]. More re-
cently, the problem of quantization in absorbing media and
its applications to Casimir forces has been considered by
Kupiszewska [19, 20] and also by Matloob [21] in the one-
dimensional case. Interestingly enough, when temperature
effects are neglected the expression for the Casimir force in
absorbing and non-absorbing materials has the same func-
tional form. This fact suggests that it is possible to obtain
the Casimir force between two dispersive and absorbing slabs
without the need of quantizing in an absorbing medium as
was shown by Reynaudet al. [26] using a scattering matrix
formalism.

Within the framework of the above discussion, it seems
valuable to present an alternative, very simple derivation of
the Casimir force, valid for materials with arbitrary dielectric
properties. This is the purpose of the present paper.

2. Formalism

Consider two slabsa = 1, 2 parallel to thexy plane
within free space and separated by a distanceL along the
z-direction, with inner boundaries atz1 = 0 andz2 = L as
shown in Fig. 1. We assume that the slabs are non-chiral,
translational invariant and isotropic within thexy plane, but
otherwise they may be arbitrary; they could be identical to
each other or different, they might have a local or a non-local
dielectric response, an infinite or a finite width, they may be
opaque or transparent, dissipative, inhomogeneous, etc.

FIGURE 1. The system consists of two parallel slabs characterized
by their thicknessd1 amdd2 and a dielectric functionε1 andε2.

We want to describe the electromagnetic field only within
vacuum, so we hide all the details of the field-matter inter-
action within the slabs in their reflection amplitudesrs

a and
rp
a (a = 1, 2). The reflection coefficientsrα

a are determined
by the generalized surface impedancesZα

a (α = s, p) through

rα
a =

Zα
a − Zα

0

Zα
a + Zα

0

. (4)

HereZα
a is definedas the quotientEα

a‖/Hα
a‖ of the compo-

nentsEα
a‖ andHα

a‖ of theα-polarized electric and magnetic
fields evaluated at thea-th interface for outgoing boundary
conditions beyondza, taken along appropriately chosen di-
rections parallel to the surface,Zs

0 = q/k andZp
0 = k/q

are the surface impedances of vacuum,~q± = ( ~Q,±k) are the
vacuum wavevectors with projection~Q parallel to the surface

and components±k normal to the surface,q ≡
√

q2± = ω/c,
whereω is the frequency andc the speed of light. The sign
of k is chosen so that~q+ propagates (or decays) asz in-
creases. Upon each reflection,~Q andω are conserved while
the sign of±k is reversed. Notice that Eq. (4)is exactand
that no approximation is involved by the use of our general-
ized surface impedances, unlike other works [23, 24] that use
an inappropiate definition of surface impedance. It should
be noticed that for local homogeneous semiinfinite media,
Zs

a = q/ka andZp
a = ka/(εaq), whereka is the compo-

nent of the wavevector normal to the surface within medium
a with local dielectric responseεa(ω), and Eq. (4) yields the
well known Fresnel amplitudes. However, Eq. (4) is much
more general [25].

The density of states within vacuum may be obtained
from the Green’s functions of the system. To this end, we
study first the case ofs-polarized waves choosingx − z as
the plane of incidence. With that choice,~E = (0, Ey, 0),
~B = (Bx, 0, Bz), ~q± = (Q, 0,±k) and the boundary con-
ditions for ~E becomeiqEy(0+) = −Zs

1∂zEy(0+), and
iqEy(L−) = Zs

2∂zEy(L−), with ∂z ≡ ∂/∂z. The electric
Green’s function is

GE
k2(z, z′) =

E<
y (z<)E>

y (z>)
W

, (5)
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wherez< andz> are the smaller and larger ofz andz′ re-
spectively,

E<
y (z) = e−ikz + rs

1e
ikz (6)

and
E>

y (z) = eik(z−L) + rs
2e
−ik(z−L) (7)

are solutions of the scalar 1D wave equation with wavenum-
berk obeying the appropriate boundary conditions atz = 0+

and L− respectively, andW is their Wronskian. Analo-
gously, ~B obeysiqBx(0+) = −(Zs

0)2∂zBx(0+)/Zs
1 , and

iqBx(L−) = (Zs
0)2∂zBx(L−)/Zs

2 , so that the magnetic
Green’s function is obtained by replacingEy → Bx and
rs
a → −rs

a in Eqs. (5)-(7). We do not considerBz separately,
as it is simply proportional toEy.

For each~Q, the local density of states per unitk2 is given
by [27]:

ρs
k2(z) = − 1

2π
Im

(
GE

k̃2(z, z) + GB
k̃2(z, z)

)
,

(k̃ ≡ k + i0+) (8)

so that by substituting Eqs. (5)-(7) and its magnetic ana-
logues we obtain

ρs
k2 =

1
2πk̃

Re

[
1 + rs

1r
s
2e

2ik̃L

1− rs
1r

s
2e

2ik̃L

]
, (9)

independent ofz. The densityρp
k2 corresponding top po-

larization may be derived similarly, and is simply given by
Eq. (9) after replacing all the superscriptss → p. Finally, the
total density of states isρk2 = ρs

k2 + ρp
k2 .

A photon in a state characterized byα, ~Q andk2 has mo-
mentum±~k and moves with velocity±ck/q along thez
direction, so that its contribution to the momentum flux is
~ck2/q. Multiplying this by the photon occupation number,
integrating overk2 with the weight functionρα

k2 and adding
the contributions from all values ofα = s, p and ~Q, with
the usual replacement

∑
~Q . . . → A/2π

∫
QdQ . . ., we ob-

tain the momentum flux from the vacuum gap into slab 2.
There is a similar contribution coming from the semiinfinite
vacuum on the other side of the slab, obtained by substitut-
ing rα

2 → 0 above and reversing the flux directionz → −z.
The total force per unit area is obtained by subtracting the
contributions from either side [28], that is:

F (L) = A ~c
2π2
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]
. (10)

The integral overk runs fromiQ to 0 and then to∞, so that
q remains real and positive. It is easy to show that for per-
fect mirrors (rα

a = ±1) Eq. (10) yields the expected Casimir

force. Furthermore, simple substitution of the Fresnel ampli-
tudes

rs
a =

k − ka

k + ka
, (11)

rp
a =

ka − εak

ka + εak
, (12)

and manipulation of the integration contours in Eq. (10) leads
to the formula of Lifshitz [Eq.(1)].

3. Conclusions

We have derived a general expression for Casimir forces be-
tween slabs with arbitrary dielectric properties characterized
by the reflection coefficients of the material. This procedure
avoids complications related to the quantization of the elec-
tromagnetic field in dispersive media. The expression we
obtain for the Casimir force is convenient for calculations
since the reflection coefficients can be obtained straightfor-
wardly in theoretical computations or through experimental
studies. Our approach is based on the exact definitions of
surface impedance and yields the Lifshitz formula for semi-
infinite slabs when the reflection coefficients are replaced by
the Fresnel amplitudes. This contradicts the results obtained
by Mostepanenko and Trunov [23] and also by Bezerraet al.
[24] that claim that the use of surface impedances is only
an approximation valid for small transverse wave vectorQ.
However, this conclusion arises from considering an approx-
imate expression of the surface impedance. In our work
this limitation is not present, since we do take into account
that the surface impedances for the p and s polarized waves
are different. Therefore, the results that we obtain are valid
for any value of the wave vectorQ. The expresion for the
Casimir force in Eq. (10) can be used to calculate accurately
the force between non-homogeneous systems. In fact, cur-
rent experimental setups for measuring Casimir forces con-
sist of two metallic surfaces with a high reflectivity in the
frequency range of interestω ∼ c/a, coated by thin (∼ 8
nm) Au/Pd layer to avoid Al oxidation. The analysis of the
experimental data is performed by giving arguments on the
transparency of the Au/Pd layer, which allows the use of
the Lifshitz expression for semi-infinite homogeneous me-
dia with semi-empirical corrections for the presence of that
layer. However, within our formalism, such assumptions are
unecessary. In a future work, we will present exact results for
Casimir forces between heterostructured media, generalizing
our previous one-dimensional analysis [10].
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