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Fast algorithm for bilinear transforms in optics
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The fast algorithm for calculating the bilinear transform in the optical system is proposed. This algorithm is based on the coherent-mode
representation of the cross-spectral density function of the illumination. The algorithm is computationally efficient when the illumination is
partially coherent. Numerical examples are studied and compared with theoretical results.
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Se propone un algoritm@pido para calcular la transforméanibilineal en un sistemaptico. Este algoritmo estbasado en la representati
en modos coherentes de la fumtide densidad espectral cruzada de la ilumradEl algoritmo es eficiente computacionalmente cuando la
iluminacion es parcialmente coherente. Se estudian ejemploénzos y se comparan con resultadd¥ieos.

Descriptores:Transformadn bilineal; algoritmo &pido; densidad espectral cruzada; represeaam modos coherentes

PACS: 42.25.Kb; 42.30.Va; 42.30.Kq; 42.15.Eq.

1. Introduction needed for its computer realization. In this connection there
is a strong need for a computationally efficient method for
In consequence of the quadratic relation between the optig|culating the BLT. Recently we proposed such a method
cal field and intensity, an inherent nonlinearity exists in al-for calculating the BLT in partially coherent optical imaging
most all optical systems. As well known, the outpuy)  system [3]. This method is based on the coherent-mode rep-
of any non-linear system can be expressed as a functional egsentation of the cross-spectral density function of the illu-
the input signalf (), which is represented by the Volterra mination and allows to reduce the needed computational ef-
series [1] fort by a factor up to two orders in comparison with the direct
calculation. In this paper, we describe the generalization of

o0 the proposed method for calculating the BLT in an arbitrary

9(y) =qo (y) + Z //dm ooz f (1) .. optical system and illustrate its efficiency by two examples
n=1" of calculating the intensity distribution when optical system

X f(xn) qn (y;21,. .. 2n), (1) Meets either the condition of image formation or the condi-

tion of Fourier spectrum formation. After the analogy of the
whereg, (...) denotes thenuth-order Volterra kernel of the FFT algorithm we refer to the proposed method as FBLT al-
system. Saleh [2] showed that many optical systems and prgiorithm.
cesses can be represented either exactly or approximately by
the third term of this seriegg.,

2. BLT in optics and its computer realization

9(y) = // f(x1) [ (x2) g2 (y; 21, 22) dzrdze. (2)  Let us consider an elementary optical system with a single
e thin converging lens shown in Fig. 1. We will assume that
He called the transform described by Eqg. (2) a bilinear transan object with the complex amplitude transmittaride)
form (BLT) and gave a comprehensive analysis of the propin a pointx = (z,y) is illuminated by a stochastic quasi-
erties of its kernel for various optical systems. monochromatic scalar wave field (x) (to keep the notation
In spite of all its mathematical attractiveness the BLT ap-as simple as possible, here and further on, we suppress the
proach has so far limited application for numerical simula-explicit dependence of some of considered quantities on tem-
tion of optical systems in view of the complexity of the re- poral frequency), which can be completely characterized
quired calculations and, as a consequence, the enormous tirhg the cross-spectral density function [4]
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Output
W (x1,%2) = (V (x1) V* (x2)), 3) y Object q v  plane
where the angular brackets represent the statistical average / X p u
taken over the ensemble and the asterisk denotes the com /
plex conjugate. Then, as it is well known [seeg, Ref. 5], /
the intensity distribution in the output plane of the system,
within the paraxial approximation, is given by / /
e

o
I(u) = // t(Xl)t* (XQ)W(XhXQ) 2y Z
o FIGURE 1. Single lens optical system.
x H (u;x1) H* (u;x,) dx10x2, (4)
It is obvious that knowledge of the functiongx),

where W (x1,x2) andH (u; x) allows to calculate BLT (4) with the
kernel given by Egs. (6-8). Let us evaluate the computational
1 - - complexity of such a calculation. The dominant portion of
H(u;x) = ——— exp (ix2> exp (iuQ) calculating the intensity distribution from Eq. (4) is the mul-
)\22122 )\Zl /\22

tiplication of four 4-D functionst (x1) t* (x2), W (x1, X2),
° 7w (1 1 1\ , H (u;x,) andH* (u;x,). To realize the numerical multipli-
x / P (p) exp [’)\ ( ) p ] cation of these functions, it is necessary to multiply their sam-
ples for all possible combinations of sampling points taken
X exp {_izﬂp. <u+z2x)] dp, (5) One by one in each of three planasx, andx,. Hence,
AZg 21 assuming that the illumination field, object and amplitude

. . . spread function have each been adequately represented by
A is the mean wavelengtly, is the focal distance of the lens, N x N sampling points, one finds that the total number of

andP (p) is the aperture function of the lens. Comparing Eq. . ; ; .
(4) with Eq. (2), one can find that this equation describes thé)peranons required to compuigu) is proportional to

BLT of the object functiort (x) with the Volterra kernel

Z1 22 f

C = (N?)® =N (9)

¢ (W%, %2) = W (x1,%) H (w;x,) H* (0;%,). (6)  The magnitude of this number can easily result in an unac-
ceptably long computation time. Thus, for example, when

If the geometry in Fig. 1 satisfies the lens law, N = 100 and the computational speed is®ldperations per
second, the computer run time needed for calculatidn(af)
121+ 1/20=1/f is about 300 h. Clearly, an alternative approach to the calcu-

lation of intensity distribution is desired as a way to reduce

(the image formation condition), the corresponding BLT ker'the computational effort.

nel of the system takes the same form as Eq. (6), but with
3. FBLT algorithm

1 LT 5 . T g
H (u;x) = Nz P (ZAZIX ) oxp <2/\,22u ) According to Wolf’s theory of partial coherence in the space-
o 9 frequency domain [4], the cross-spectral density function
x/ P (p)exp [_i;p. <u+z2x)] dp, (7) W (x1,x2) of a wide class of sources may be represented
2 A1 in the form of the Mercer expansione.,

—00

which is known as the amplitude spread function of optical

system. R .

If 2o = f (the Fourier transform condition), the corre- W (x1,%2) = 3 Anpn (X1) 27, (x2)
sponding BLT kernel again has the form of Eq. (6) with =0

(10)

where),, are the eigenvalues agg, (x) are the orthonormal
eigenfunctions of the homogeneous Fredholm integral equa-

H (u;x) = % exp {Z;f (1 — Z;) XQ} tion

P (uﬁflx) exp <_ii;§u . x> @ /_ O; W (x1,%2) 0 (%2) G2 = Aupn (1) (11)
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The expansion (11) represents the cross-spectral densipfanesu andx, and then to multiply the obtained product

function of the illumination field as a superposition of spa-by its conjugate value. Hence, again usisigx N sampling

tially coherent mutually uncorrelated elementary modes.  points and truncating the summation in Eq. (12) to the ef-
Substituting forlV (x1, x2) from Eq. (10) into Eq. (4), fective numbe®t of uncorrelated modes, one finds that the

after a straightforward calculation we obtain number of operations needed to compiifa) by the pro-
posed algorithm is proportional to
s} 2
Fw =31 (), 12) C=M[(N?)?+ N?| =N (N?+1) (D)
n=0 or, for rather largeV,
C ~ MN™L (18)
where
As shown in Ref. 7, the value @R increases with de-
. 9 crease in the degree of coherence of the illumination field.
I, (u) =\, / t (%) on (%) H (1;x) dx (13) For a completely coherent illuminatiof = 1, and the com-

putational effortC’ decreases t&v*. For a partially coherent
represents the intensity distribution formed by th¢h co- illumination, C increases linearly witht, i.e., the computa-
herent mode of illumination field with the weight,. The tional effort is lager the more incoherent the illumination. For
eigenvalues\,, may be arranged in a converging sequence sufficiently large values dft, the illumination may be gener-
ally considered to be completely incoherent. In this case, Eq.
(4) reduces to [5]:

oo
rw =g [[ 1P d 9
- . . . —0o0
and h_er]ce, itis possible to trun_cate the summatlon In Eq. (12\R/here10 is a constant. By analogy with the foregoing, it is
to a finite numbeV/ of expansion terms which ensures the . .
L . L straightforward matter to show that this time the number of
admissible value of the relative error of approximation, . . 1
operations needed to computéu) reduces again to/*.
Comparison of the computational efficiency of the direct
= [ o0 calculation and the proposed algorithm for different values
A= Z I () du/ I{u)du.  (15) o ;s illustrated by a schematic picture in Fig 2. It is ev-
— 0o — 00
n=M ident from this figure that the FBLT algorithm can be effi-
It is evident that this error decreases with increase of the nunsiently employed to calculate the intensity distribution when
ber M. In Ref. 6 the concept of the effective numi@grof 91 < N. For the same values @¥ and the computational
uncorrelated modes needed to represent the illumination fielspeed that are in the example of the previous section, the
is introduced, and its upper bound is defined by the followingcomputer run time needed for calculation/dfu) from Egs.
inequality: (12) and (13) takes from 2 min to 3 h, depending on the de-

00 2 00 gree of coherence of the illumination.
mg[/ W(x,x)dx} /// [W (x1,%5)|” dx10x5. (16)

M= > >N > >0, (14)

Itis also noted there that this number may be used to establist : N l

an optimal point for truncating the orthogonal representation £

of the intensity distribution. As it follows from our exam- &

ples given in the next section, when the upper bound of the < N 2

effective numbe#t of uncorrelated modes of the illumination £ . 3
field is used to truncate the summation in Eq. (12), the rel- § N

ative error of intensity approximation does not exceed a few 0

percent. Such an error is quite admissible when resolving ) W

many practical problems of actual optical design.

Now, let us evaluate the computational complexity of in- < Coherence
tensity calculation in accordance with the proposed method.
The dominant portion of the intensity calculation from Egs. )
(12) and (13) is the consecutive multiplication of 4-D func- (Eftective number of uncorrelated modes)

tion H (u;x) by 2-D function(An)l/z t(x) ¢n (x), followed  FgyRre 2. Estimation of the computational effaft as a function

by the calculation of a square absolute value of the producéf coherence (effective numbbt of uncorrelated modes of illumi-
for everyn-th expansion term. To realize the numerical cal-nation): 1 - the direct method in accordance with Eq. (4); 2 - the
culation of every expansion term in Eq. (12), it is necessaryBLT algorithm; 3 - the direct method in accordance with Eq. (19).
to multiply the samples of this functions for all possible com-

binations of sampling points taken one by one in each of the

N >
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4. Examples of FBLT calculations At last, we consider that the lens in Fig. 1 is free of aber-

rations and has a circular aperture of raditS’ he amplitude

To illustrate the application of the proposed algorithm, let usspread function of such an optical system under certain con-
consider two examples of calculating the intensity distribu-yjtions [5] is given by

tion (4) in the output plane of the optical system shown in

Fig. 1 for two specific casesg., formation of the image of

an object and formation of the Fourier spectrum of an object. H (p) = aexp (Z)\W 2) Ji (mRp/\f) (26)
z2

As an object we choose the 1-D Dirac comb functice, TRp/Nf
wherep = (u® + 112)1/2, Ji (...) is the first-order Bessel
t(z) = Z 5 (z — kxg) . (20)  function, andx, here and further on, is a dimensionless coef-
& ficient.

At first we suppose that the optical system forms the im-
ge of an object without magnification( = 2z, = 2f).
hen, substituting fot (z), W (x1, z2) and H (u;z) from

Egs. (20), (21) and (26) into the 1-D version of Eqg. (4) and

This object was studied for the following two reasons. First,
both the ideal image and the exact Fourier spectrum of su
an object have the same form of the Dirac comb function

Secondly, the choice of this object allows the result of inte'making use of the sifting property of the Dirac function, it is

grating in Eq. (4) to be obtained in an explicit analytic form, straightforward matter to obtain the following expression for
a fact that gives us a chance to evaluate the accuracy of ﬂlﬁe theoretical image intensity distribution:

proposed algorithm.
Taking into account the 1-D character of our object, and
for the sake of simplicity, as an illumination field, we con- ; (w) = ol ZAml J1 [ R (u 4+ mao) /A f]
sider the secondary 1-D Gaussian Schell-model source [7] c~ " wR(u+mmzo) /Af
that is characterized by a cross-spectral density function of
the form (TR (U+ll’o)/>\f]7 27)
TR (u+lxo) /A f

2.4 .2 )2
W (1, z2)=1o exp(x1 + JnQ)exp l(zlm)

21
402 202 ] (1)
2
_ Lo 2, 72 o 2
where Iy, o7 and o2 are positive constants. This type of Ami=exp {LLU% (m* +1 )}GXP {%2 (m 1) } - (28)
source was chosen because it exhibits the essential features o _ g _ .
of many sources encountered in practice and yet it can be By analogy, but this time using the FBLT algorithm with

analyzed mathematically with relative easy. For this source due regard for the truncation of summation in Eq.(12), we ob-
tain the following approximation of the image intensity dis-

tribution (27):

2

. 1/2 b n
An = I (22
el Aewbe = B[R (o) M)
A 1| U+KITg
I (w=alhy Ba|S Cu . (29
and (u) onz:% zk: F TR (ut ko) AT ] (29)
9\ /4 where
W(@)=(=) ———H, (2v2 —cz?), (2
©on () (77) (2”'n!)1/2 (xﬁ) exp( cx ) (23) 1 b )
where Bn = 5t <a+b+c> ’ )
and

a=1/40%, bzl/QGi, c= (aerZab)l/27 (24)

andH,, (...) is the Hermite polynomial of order. As shown Chnk = Hp (kxo\/%) oxp (—ck’xg) . (31)

in Ref. 6, for this source the effective number of uncorrelated

modes is determined by the inequality Now we suppose that the optical system realizes the

Fourier transform of an object{ = 2o = f). For the sake of
simplicity we neglect the vignetting effedte., the limitation
Mm< (1 + 4/52)1/2 , (25) of the effective object size by the finite lens aperture. In this
case, making use of Egs. (8), (20) and (21), by analogy with
whereg = 0, /o is a measure of the global coherence of thethe foregoing, one can find that the intensity distribution (4)
source. takes the form
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I(u)=aly |Ag+2 Z Ay cos [i;ulﬂo (ml)} , (32)

m#l

where

(33)

:Z?2
Ay = — 0 k2
o= o (-5p),
k
andA,,,; are the same as in Eq. (28).

Using the FBLT algorithm, we obtain the following ap-
proximation of the intensity distribution (32):

M—-1
I(uw)=al Y B, {Cno +23 Comi
n=0 m#l

X €08 [i—;uxo (m — Z)H , (34)

where

Cho = Z H,QL (kxm/%) exp (—2x(2)ck;2) , (35)
k
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Crmi = Hy, (mmo\/%) H, (l:cox/%)
X exp [fca:(z) (m2 + 12)] , (36)

andB,, is the same as in Eq. (30).

To evaluate the quality of our approximation, we realized
numerical calculations of the intensity distributidriu) in
accordance with Eqgs. (27), (29), (32) and (33). When calcu-
lating we putzy = 2.44\f/R, which is twice greater than
the Rayleigh limit of resolution for our optical system, and
or = 20, = 10z, which corresponds to the case of the
true partial coherencés = 0.5). We truncated the summa-
tion over indexeg, m, [ to nine central Dirac impulses in the
object and varied the numbér of the terms in the modal
expansion.

The results of calculations are shown in Fig. 3 and Fig. 4.
As can be seen in these figures, with the increase of the num-
ber M the approximate intensity distributions come closer to
the theoretical curves. When the numbéris equal to the
effective numbet of uncorrelated modes of illumination (in
our examplét = 4), the relative error of the FBLT algorithm
makes up approximately 1% and, whigh= 291, it becomes
negligible.

< o = by
» =)} o0 o
1 1 1
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1 1 1

Normalized intensity, /I,
o
N

e
o

2 3 4 5
Relative distance, w/x,

(=}
—

(=
~

I o I Ly
SN (=)} -] o
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FIGURE 3. Results of calculating the image intensity distribution in accordance with Eq. (29) foi/ (&) 1; (b) M = 4. Theoretical
intensity distribution, obtained according to Eq. (27), is shown by solid curves.
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FIGURE 4. Results of calculating the intensity distribution of Fourier spectrum in accordance with Eq. (34) faf: €a)l; (b) M = 4.
Theoretical intensity distribution, obtained according to Eq. (32), is shown by solid curves.

5. Concluding remarks that is not an easier computational task than the proper calcu-
lation of BLT. However, it should be taken into account that

The FBLT algorithm allows to reduce considerably the com-ONc€¢» and\,, have been calculated for the given illumi-
putational effort needed for calculating the intensity distri-nation, they can be stored and applied to the calculation of

bution at the output of partially coherent optical system andBLT for any object and any optical system. Thus, the FBLT
its efficiency is larger the more coherent the illumination in@lgorithm can be considered as an indispensable tool for the
a global sense. It must be noted that the application of thi@halysis and computer simulating of optical systems with par-
algorithm requires the knowledge of the coherent-mode reptially coherent illumination. We hope to report on other pos-
resentation of illuminating field (eigenvalues and eigen- sible applications of the FBLT algorithm in the nearest future.

functions ¢,,). Unfortunately, the analytical expression of
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