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The spectra of a Hamiltonian with a linear radial potential derived by a
variational calculation based on a set of harmonic oscillator states
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In relation with a quark interaction confinement potential a linear radial one is frequently used. As the spectrum of the resulting Hamiltonian
is not available in an analytic fashion, we determine it in this paper using a variational procedure based on a set of appropriate harmonic
oscillator states.
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Para el potencial de confinamiento de los quarks se usa frecuentemente uno radial que es lineal. Como el espectro del hamiltoniano resultar
no esh disponible en forma ariéita, lo determinamos en esteiatio por un procedimiento variacional basado en un conjunto apropiado
de funciones de oscilador agmico.

Descriptores:Espectros; potencial radial lineal
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1. Introduction Our final objective will be to give the matrix represen-
tation of the Hamiltonian of Eq. (3) in a basis of harmonic

combination of the one gluon exchange that gives the effeghe change to dimensionless variables

at short distances plus another that takes into account the con-

finement. The first one, in analogy of what happens in the one H’ ,

photon exchange for two electrons, gives rise to an attractive - uc?’ P = Vhuwp,
potential of the Coulomb type, while the second one is fre-

guently assumed as linear radial potential. In cgs units our ; h 5
potential can then be written af| [ re ,Tw T )
b/2

r’

V(') =qr — (1) andwe get
where we used primed letters for the radial coordimand H=-p?*+2r - b261, (6)
the parameterg’, v’ as we wish to reserve the non-primed "
ones for a more convenient set of units. Ksis an energy  where
potential in acgs system of units it is given by ergs, whilé
is in centimeters so the units gf, b’ are, respectively, q= qh
p2c3’
¢ — (ergs/cm) e
b'? — (ergs cm). ) ~ he (7)
A two body problem of a quark-antiquark of masses We now can get the matrix element Bf of Eq. (6) with
m,, m, respectively, when considered non relativistically, respect to harmonic oscillator states of unit frequency and
has a Hamiltonian mass as they are already incorporated in the parameter
b Eq. (5). It turns out though that variational calculation of the
H = —p?+¢r - — (3)  part of the Coulomb potentialke. (b*/r), is very slowly con-
2p vergent as the corresponding discrete levels bunch up at ener-
where gy 0 while those of the harmonic oscillator continue to grow
indefinitely with the same spacing.
(4) Thus in this article we restrict ourselves to the confining
potentialgr assumingy®> = 0. Before discussing the varia-
which is a good approximation to the physical situation whentional procedure in detail we first indicate some well known
mq,m, are large as is the case of charm and bottom quarksproperties of the spectra of a linear radial potential.
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2. Properties of the Hamiltonian for a linear
radial potential TABLE |. On the left hand side we give the negative of the zeros of
. ) ) the Airy functioni.e. (—a,,) given in p. 478, Table 10.13 of Ref. 2.
If in Eq. (6) we takeb® = 0 ande = 1 and write the wave o the right hand side we give the results for the energies obtained

functiony) = (¢/r) we have the radial equation from the diagonalization of the matrix whose elements are given by
1 d2 I(1+1) Eq. (23) withl = 0,n,n’ = 0,1,2,...35. As all matrix elements
{2 [ ~ a3 = } + qr}qb =E¢. (8)  contain the factofg®/?/2'/%) we multiplied the energies by the

) ) ) ) ) _ inverse of this factor as indicated in Eq. (14) to be able to compare
There is no analytical solution for Eq. (8)lit~ 0, and in this  the left and right hand side of Table I. Note that the values on the
case the energy eigenvalues have to be determined numeléft and right hand side of Table I coincide except for the last three

cally. digits in each row which can no longer be trusted in both compu-
Forl = 0 we divide Eq. (8) b)(2q)2/3 and it can then be tations, and is the reason for separating them a bit from the rest.
written as , " —a, 9134213
( 12/3 CLQ 2gr —2/23E>¢ —o. (9) 1 2.33810 741 2.33810 753
(2¢)%/2dr* (29) 2 408794 944 108794 957
Defining now 3 5.52055 983 5.52055 997
L= 2qr —2F 4 6.78670 809 6.78670 824
(29)2/3 7 5 7.94413 359 7.94413 375
ds — (2q)1/3 dr. (10) 6 9.02265 085 9.02265 103
_ 7 10.04017 434 10.04017 453
we get the equation 8 11.00852 430 11.00852 451
d? 9 11.93601 556 11.93601 591
) (11)
dz2 10 12.82877 675 12.82878 491
which is the one discussed by Air?][i.e.,

(12) 3. Energy spectra of our problem based on a set

2qr — QE]
of harmonic oscillator states

This solution applies to the linear potential in the whole

plain 2z, but we want it only forr > 0 and it should vanish ¢ eigenstates of an harmonic oscillator in which 1 =
whenr = 0. In that case we have that the values of the ,_; g1 given by the ket

energyk,,,n = 1,2,..., are given by the zeros of the Airy
function Inim) = R, (r)Y,,, (0, ¢), (16)
| 2B, | whereY, is a spherical harmonic and the radial wave func-
=0. (13 o m
(2q)2/3 tion is given by

In Ref. 2 (Table 10.13 p. 478), the first ten zeros of the 2(n!) 1/2 L r2a 42,2
Airy function are denoted by the negative numbeyssothe (7)) = {W] re Ly=(r%), (A7)
corresponding energies become

(29)2/3 whereL’™/% in a Laguerre polynomiaby.
By, =——0—an, (14) Our Hamiltonian is the one given by Eq. (6) whigh= 0
or and, as it is invariant under rotations it commutes with the
/3 orbital angular momentum vector
qz/sn = " Ons (15) L=rxp, (18)

and their values up to a factdy?/3/2'/3) are given in SO the kets of Eq. (16) are characterized by the eigenva-

Table |, where we also have the corresponding number#iesi(l + 1) of L? andm of L. The matrix elements of
obtained variationally by a procedure outlined in the nextour Hamiltonian with respect to the stategm) will then be

section. diagonal in/, m and, from the analysis of 3—7 of Ref. 4,
| are given by
1 2 1\1%/2 3
n'lm|=e*p* + Lolnim Y=L I nti+= Oprm_1+ 2n—i—l—i—§ Spmt|(n+1) n—i—l—i—§ On/nt1
2 € 2 2 2 2
n+n’+1
p+1)!
)DL q)

q ’
= E B(n'l,n,l
+6 pil (n 7”’ 7p

)
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where the coefficienB(n'l, nl,p) is defined in Eq. (2.6) of ,
Ref. 4. " ]i)ffl B ._L
To be able to diagonalize the matrix whose elements 12 B o
are given by Eq. (19) we have to specify the values ol [ — — — —
¢ = (hw/pc?)V/? or, in other words, the frequency of the ¥ 71— —— E—
oscillator that we shall use for the particular valuel afie C 2 J— — — —_—
wish to investigate. Following the analysis of p. 7 of Ref. 4 5" Sl — o
we can start with the matrix element Eq. (19) for the lowest’__ 5 — I —

possible values fon, n’ i.e.n = n’ = 0 and thus have e -— — I
1 qr 1/, 3 q (I+1)! S S
<O lm’262p2+‘01m>:2<l+2>52+ —— . (20) 44— L
€

We can find the minimum value of the right hand side of i

€ 3 3 - F

Eq. (20) if we take its derivative with respecté@nd equate 00— w S A \
itto 0 o 1 2 3 4 5 6 7 8 9 10
In this way we get the equation FIGURE 1. We give the energies in Eq. (8) multiplied by the factor
4 3\ ¢ (+1)! 0 21) (21/3¢~2/3) indicated in Eq. (14), as function of the orbital angular
2 € €2 3\ momentum shown in abscissa, and enumerated by the number
r (l + 2) corresponding to increasing order for a fiXeéfor! = 0 the levels
from which we obtain are given numerically in Table I.
%
q(l+1)! where we added the indéxo thee on the left hand side, as
&= |—F——| > (22)  the minimum value of this parameter depends.on
F(l + 2) We can now replace the valugof Eq. (22) on the right

|  hand side of Eq. (19) and the matrix we need to diagonalize
has elements

Wi

2

28 | (1 (14 1) 1\ 2 3 3\1%
q
28 2r<z+5> {n<nﬂ+2) ]5’“"‘1+<2n+l+2)5"“”+[(HH)(WFH?)} et

1

3
F(l+> n—4n’+1
2 1)!
118 | A2 S )T

(+0 | & F<p N 3) &

Immediately we see that all eigenvalues obtained by di-
agonalizing this matrix wite, n’ = 0,1,2,... N, but keep-
ing ! fixed, will have a factorg?/3, the same that appears
in the energyE,, in Eq. (14) whenl = 0 where we can
solve the problem in terms of Airy functions. Thus our vari-
ational results are universal in the sense that they depend aqh Conclusions
the strengthy of the interaction only through the factgt/?.

The numerical analysis was done by taking the maximun¥Ve see that a variational procedure based on harmonic oscil-
value N of n,n’ up to N = 35 and the first ten energies lator states gives a good approximation to the spectrum of a
for I = 0 are given in Table | and they coincide, to the order Hamiltonian with a linear radial potential.
indicated, with those derived from Eq. (15).

In Fig. 1 we give the spectra of the Hamiltonian with a Acknowledgments
linear radial potential for different values bupressing the
constant factog?/3. We note that it resembles the spectra of The authors thank project 32421-E of CONACyT for support
an harmonic oscillator but the spacings are contracted as w& this work.

go to higher energies and the degeneracies are patrtially re-
moved.
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