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We study the quantization of effective Yang-Mills theories within the path integral formalism. In particular, the equivalence of the Hamiltonian
and Lagrangian path integral quantization (Matthews’ theorem) is probed for an effective Yang-Mills Lagrangian without matter fields, which
includes all the invariant terms up to dimension six. This theorem is probed from point of views of both the gauge and BRST symmetries. The
importance of the BRST symmetry in probing this theorem is stressed. We found that the functional integration on the generalized momenta
are of Gaussian type and that they do not contribute to physical quantities as a consequence of the symmetries of the effective Lagrangian,
which leads to a Lorentz and BRST invariant Lagrangian path integral.
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Se estudia la cuantización de teoŕıas efectivas de Yang-Mills en el contexto del formalismo de integral de trayectoria. En particular, se prueba
la equivalencia de la cuantización por las integrales de trayectoria hamiltoniana y lagrangiana (teorema de Matthews) para un lagrangiano
efectivo de Yang-Mills sin campos de materia, el cual incluye todos los términos invariantes de hasta dimensión seis. Este teorema es probado
desde los puntos de vista de la simetrı́a de norma y de la simetrı́a BRST. Se enfatiza la importancia de la simetrı́a BRST en la prueba de este
teorema. Se encuentra que las integrales funcionales en los momentos generalizados son de tipo gaussiano y que no contribuyen a cantidades
fı́sicas como consecuencia de las simetrı́as del lagrangiano efectivo, lo cual conduce a una integral de trayectoria Lagrangiana invariante de
Lorentz y BRST.
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1. Introduction

Effective field theories is a well-motivated framework to
parametrize in a model-independent manner the virtual ef-
fects of heavy particles lying beyond a given low-energy
theory [1], which has been successfully used both in hadron
physics [2] and in the electroweak theory [3]. An effective
Lagrangian is nonrenormalizable under the Dyson prescrip-
tion of power counting since it contain all terms of dimen-
sion greater than four, constructed out only with the fields of
the dimension-four theory, which respect the symmetries of
this theory. This scheme has extensively been used to make
predictions within perturbation theory not only at tree level,
but also at one-loop level [4]. Due to the presence of terms
of arbitrary dimension in the Lagrangian, it is important to
investigate their quantum properties, mainly those aspects re-
lated with the constraints associated with the gauge freedom.
In particular, it is important to know what is the correct struc-
ture of the Feynman rules and if they arise from a generating
functional possessing the Lorentz and BRST [5] symmetries,
like in renormalizable Yang-Mills theories.

Canonical quantization leads to a generating functional
defined on the phase space coordinates [Hamiltonian path in-
tegral (HPI)]. Though it is the fundamental quantity, it has the
inconvenient that the symmetries involved are not manifest.
Hence it is very important to have our deposition a generat-

ing functional defined on the configuration space coordinates
[Lagrangian path integral (LPI)], because in most of cases
is manifestly covariant, does not depends on the generalized
momenta, and directly implies the Feynman rules. The tech-
nical procedure of deriving the LPI from the HPI, when it is
possible, is known in the literature as Matthews’ theorem [6].
The proof of this theorem may be impossible for a HPI de-
pending arbitrarily on the generalized momenta, but this is
not the case for renormalizable Yang-Mills theories in virtue
that the involved functional integrals are of Gaussian type.
This is another key aspect in effective Yang-Mills theories
that must be treated with care because the corresponding HPI
could depends arbitrarily on the momenta. Even in the case
of Gaussian integrals, their solutions could give contributions
with nontrivial physical consequences if the coefficients of
the quadratical part of the momenta depend on the involved
fields, since then the contributions would modify the action of
the theory and thus the corresponding Feynman rules. More-
over, this class of terms could lead to a quantum action with-
out explicit Lorentz and BRST invariance.

Gauge theories possesses interesting properties at classi-
cal level because of the presence of first-class constraints [7],
that have nontrivial implications at the quantum domain. In
particular, to have a well-behaved unitaryS-matrix, it is ne-
cessary to introduce new unphysical degree of freedom, the
Faddeev-Popov ghosts fields. Therefore, it is important to
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study the implications of these type of constraints in quan-
tizing effective Yang-Mills theories. We will extend on this
later on, for the moment, let us argue that the structure, as
well as the number, of first-class constraints in the effec-
tive theory must be the same as those appearing in the con-
ventional theory, since the effective Lagrangian is, by cons-
truction, gauge invariant and does not involve more degrees
of freedom that those already present in the dimension-four
theory. On the other hand, as we will see below, in general the
consistence requirements to be satisfied by the gauge-fixing
procedure will depend on the specific structure of the effec-
tive Lagrangian. Though interesting, it is an intricate problem
to put the gauge theory in the Hamiltonian form to quan-
tize it, mainly because it is not possible to introduce covari-
ant gauge-fixing functions, but only canonical ones, such the
Coulomb or axial gauges, which in turn implies the use of
the Faddeev-Popov trick to recover manifest Lorentz covari-
ance in the LPI [8]. One would expect that the situation be-
comes more complicated for an effective theory, although,
as we will see below, the new aspects in probing Matthews’
theorem arise not from the constraints of the effective theory,
but from the dependence of the effective Hamiltonian on the
generalized momenta.

Due to the complications that arise from the first-class
constraints, it is convenient to lift the degeneration of the
gauge invariant effective Lagrangian not on the phase space,
but on the configuration one because one can introduce a co-
variant gauge-fixing procedure. To carry out this it is neces-
sary to extend the configuration space by introducing new de-
grees of freedom, the Faddeev-Popov anticommuting fields,
and auxiliary bosonic scalar fields. In this framework, the
theory is characterized by a larger Lagrangian, which con-
tains the gauge invariant part and two new terms (gauge-
fixing and Faddeev-Popov) whose structure is dictated by
the so-called BRST symmetry [5]. Unlike the gauge-invariant
Lagrangian, the BRST-invariant one represents a system sub-
ject to second-class constraints only [7] and no gauge-fixing
procedure is necessary in the phase space because the cor-
responding Hamiltonian is unique,i.e., these systems are not
degenerate. One of the main goals of this work is to show
that the proof of Matthews’ theorem is very transparent from
the point of view of this symmetry. In particular, it makes
evident that any possible modification to the BRST-invariant
action only arises from the functional integrals on the gene-
ralized momenta and not from the nature of the constraints of
the theory.

In order to show the advantages of probing the Mat-
thews’ theorem within the BRST-symmetry framework, we
will probe it also in the context of the gauge symmetry. Pre-
vious studies of this theorem have already been presented for
a scalar effective theory in [9] and more recently for a gauge
theory, using the gauge-invariant point of view [10]. To our
knowledge the proof from the point of view of BRST symme-
try has never been studied before. We will restrict our study
to aSU(N) invariant Lagrangian containing all the terms up
to dimension six, since it is sufficient to discuss the main

difficulties encountered in quantizing this type of theories.
The study of the most general casea will be presented else-
where [11].

Our paper is organized as follows. The proof of Mat-
thews’ theorem from the point of view of the gauge symme-
try is presented in Sec. 2, following the conventional scheme
used in renormalizable theories. We will discuss with certain
detail the structure of the first-class constraints arising from
the effective theory, as well as the properties on the consis-
tency requirements of the gauge-fixing procedure. The same
theorem is probed from the BRST symmetry point of view in
Sec. 3. Finally, the conclusions are presented in Sec. 4.

2. Gauge invariant effective Lagrangian and
Matthews’ theorem

2.1. The effective Lagrangian

It is convenient to start with a brief discussion of the renor-
malizable theory, which allows us to present our notation and
conventions. A dimension-four Yang-Mills theory without
matter fields is characterized by the following Lagrangian:

L4 = −1
2
Tr[FµνFµν ], (1)

whereFµν = taF a
µν , with F a

µν andta being the strength ten-
sor and the generators associated with theSU(N) group, res-
pectively. The equations of motion are given by

Dab
µ Fµν

b = 0, (2)

whereDab
µ = δab∂µ − gfabcAc

µ is the covariant derivative in
the adjoint representation of the group,fabc are the respec-
tive structure constants, andg is the coupling constant.

The general structure of the effective Lagrangian is given
by

Leff = L4 +
∑
n=5

εnLn, (3)

whereLn are Lorentz andSU(N) invariant structures of di-
mension greater than four which are constructed with the
fields of the dimension-four theory. Hereεn = αn/Λn−4,
whereΛ is the new physics scale and theαn are unknown
parameters which depend on the details of the underlying
physics, typically≤ O(1) in a weakly coupled fundamen-
tal theory. To have a predictive theory, it is fundamental
thatεn ¿ 1, since then we would haveS-matrix elements de-
pending on a finite number of unknown parameters. In prac-
tice, it is assumed that the effective Lagrangian technique is
valid only to describe physical processes at energiesE ¿ Λ,
so theεn parameters are small in this sense and they decrease
when the dimensionn of the invariant structuresLn is in-
creased. The building blocks necessary to construct the ef-
fective Lagrangian are, in this theory, the gauge and Lorentz
covariant objectsF a

µν and their covariant derivatives,i.e.,
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Leff = Leff(F a
µν ,Dab

µ Fµν
b , . . .). This means that effective La-

grangians contain an arbitrarily high number of time deriva-
tives,i.e., they are higher-order Lagrangians, which have quit
unsatisfactory properties [12]. For instance, the solutions of
the equations of motion are not uniquely determined by the
initial values of the coordinates and their first time deriva-
tives. In this respect, it has been show in [13] that an effec-
tive higher-order Lagrangian can be reduced always to a first-
order one by using a certain type of transformations, without
affecting theS-matrix elements. These transformations are
valid only at first order in theεn parameters and it is an essen-
tial consistency requirement as any effective Lagrangian is
assumed to describe the effects of well-behaved new physics
just in that approximation. Since any invariant higher-order
term has a structure that resembles the covariant form of the
equations of motion, the procedure is indeed equivalent to
use the equations of motion arising from the dimension-four
theory (at first order in theεn parameters). Consequently, af-
ter performing the required transformation, the equations of
motion can be used to eliminate any higher-order structure
and, in this way, to transfer its coefficient to other first-order
invariant terms, already present in the effective Lagrangian.
In the following, we will make use of this procedure.

We now proceed to construct the effective Lagrangian
up to dimension six. The effective Lagrangian would con-
tain only invariant terms of even dimension, so there are no
dimension-five terms. There is only one first-order invariant
dimension-six term,b given by

L6 =− 4i

3!
Tr[Fµ

νF ν
λFλ

µ] =
fabc

3!
F aµ

νF bν
λF cλ

µ. (4)

In the electroweak theory, the analogous of this term
has interesting phenomenological implications, since it in-
duce anomalous electromagnetic and weak effects on the
chargedW± gauge boson, which have extensively been
studied in the literature.

On the other hand, using the covariant derivative, it is
possible to construct the following two second-order struc-
tures given by

L1
6 =Dab

µ Fµν
b Dλ

acF
c
λν , (5)

L2
6 =Fµν

a Dab
µ Dλ

bcF
c
λν . (6)

However, these structures are not independent since they are
related through a surface term. The remaining one can be
eliminated using the equations of motion given in Eq. (2).
So, we will probe the Matthews’ theorem for an effective La-
grangian which includes all first-order invariant terms of up
to dimension-six, namely

Leff = −1
4
F a

µνFµν
a + ε

fabc

3!
F aµ

νF bν
λF cλ

µ, (7)

whereε = α6/Λ2. Taking into account that this is a first-
order Lagrangian, the corresponding equations of motion can
be calculated in the usual form. We obtain

Dab
µ F̂µν

b = 0, (8)

where we have found convenient to define the antisymmetric
tensorF̂µν

a as

F̂µν
a = Fµν

a + εfabcF
bµ

λF cλν . (9)

2.2. The effective Hamiltonian

In this section we will study the structure of the constraints
arising from the effective Lagrangian of Eq. (7). To put the
theory in the Hamiltonian form it is necessary to introduce
the generalized momenta given by

πµ
a =

∂Leff

∂Ȧa
µ

= Fµ0
a + εfabcF

bµ
λF cλ0. (10)

Due to the antisymmetry of both the strength tensor and the
structure constants, the above expression leads to the primary
constraintsc

Φ(1)
a = π0

a ≈ 0, (11)

which means that thėAa
0 velocities can not be expressed in

terms of coordinates and momenta. Notice that these cons-
traints do not depend on theε parameter, so the effective term
does not modifies the structure of the primary constraints
arising from the dimension-four theory. This result is true not
only for this particular theory, but also in the general case,
since all invariant terms are constructed with the strength ten-
sor only, which does not depends on theȦa

0 velocities and
thus ∂Leff/∂Ȧa

0 = 0 always. On the other hand, the mo-
menta associated with the spatial components of the fields
are given by

πa
i =

(
δacδij + εfabcF b

ij)F
c
0j . (12)

In the following, we will use the lettersi, j, k, . . . to de-
note spatial indices. It is difficult to solve these equations for
theȦa

i velocities for an arbitrary parameterε, but working at
first order in it, we obtain

Ȧa
i =

(
δacδij + εfabcF b

ij

)
πc

j + ∂iA
a
0 − gfabcAb

0A
c
i . (13)

This approximation is equivalent to make the substitution
F a

0i → πa
i anywhere, valid in the general case because a

structure of arbitrary dimension would be made of combina-
tions of the strength tensor only. We will use this result later
when we demand consistency conditions on the constraints.

In order to classify all constraints of the theory, we intro-
duce the primary Hamiltonian, defined as [7]

H (1)

eff =
∫

d3xH(1)

eff =
∫

d3x (Heff + λaΦ(1)
a ), (14)

whereHeff is the canonical Hamiltonian, constructed out
with the expressible velocities given by Eq. (13), andλa

are arbitrary Lagrange multipliers. The canonical Hamilto-
nianHeff can be conveniently expressed as

Heff = H+ Ĥ, (15)
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26 L.T. LÓPEZ-LOZANO AND J.J. TOSCANO

beingH andĤ the Hamiltonians arising from the dimension-
four theory and from the dimension-six term, respectively,
expressed by

H =
1
2
πa

i πa
i −Aa

0Dab
i πb

i +
1
4
F a

ijF
a
ij , (16)

Ĥ = εfabc(πa
i πb

jF
c
ij +

1
3!

F a
ijF

b
jkF c

ki). (17)

A basic consistency requirement is the preservation of the
constraints in time. Since the constraints do not depend ex-
plicitly on time, this requirement means that

Φ̇(1)
a =

{
Φ(1)

a ,H (1)

eff

}

=
∫

d3y
{
Φ(1)

a (~x ),H(~y ) + Ĥ(~y ) + λb(~y )Φ(1)

b (~y )
}

=
∫

d3y
{
Φ(1)

a (~x ),H(~y )
}≈0, (18)

where{·} denotes Poisson brackets (PB). The last expression
comes from the fact that neitherΦ(1)

a norĤ depend on theAa
0

fields, as it is clear from Eqs. (11) and (17). The consistency
condition in Eq. (18) does not determines the Lagrange mul-
tipliers but leads to secondary contraints given by

Φ(2)
a = Dab

i πb
i ≈ 0, (19)

whose structure is completely determined by the dimension-
four theory, as in the primary constraints case. From com-
ments presented after Eq. (13), we can conclude that this re-

sult is valid in the general case. By noting the structure of the
secondary constraints in Eq. (19), we can rewrite the dimen-
sion four canonical Hamiltonian in the suggestive form

H =
1
2
πa

i πa
i −Aa

0Φ(2)
a +

1
4
F a

ijF
a
ij , (20)

which reflect the role played for theAa
0 fields as Lagrange

multipliers. Taking into account that theλa multipliers are
indeed theȦa

0 velocities [7], it is clear that bothAa
0 andȦa

0

fields play the role of Lagrange multipliers.
The secondary constraints must also satisfy consistency

conditions, similar to the primary ones. As the PB between
the primary and secondary constraints are trivially zero, those
conditions are given by

Φ̇(2)
a =

∫
d3y{Φ(2)

a (~x ),H(~y ) + Ĥ(~y )}

=
∫

d3y{Φ(2)
a (~x ), Ĥ(~y )} ≈ 0, (21)

where the last expression arises after using the well-known
result of the dimension-four theory. The remaining PB can
be calculated as follows. Using the following relations:

{Dab
i πb

i (~x ), πc
j(~y )

}
= −gfabcπ

b
jδ

3(~x− ~y ), (22)
{
πa

i (~x ), F b
jk(~y )

}
= (δijDab

k − δikDab
j )δ3(~x− ~y ), (23)

and the Jacobi identity satisfied by the structure constants of
the group, we arrive at

{Φ(2)
a , Ĥ

}
=εfbcd

[
gfaedF

e
ij−

(Dae
i Ded

j −Dae
j Ded

i

)]
πb

i π
c
j

+
ε

3!
fbcd

[(Dae
j Ded

i −Dae
i Ded

j

)
F b

jkF c
ki +

(Dae
k Deb

j −Dae
j Deb

k

)
F d

ijF
c
ik +

(Dae
i Dec

k −Dae
k Dec

i

)
F d

ijF
b
jk

]
. (24)

This expression vanishes after using again the Jacobi identity
together with the identityDae

i Ded
j − Dae

j Ded
i = −gfadeF

e
ij .

This show that there are no more constraints. It can be shown
that the same result is obtained in the general case [11]. So,
the primary and secondary constraints of the effective theory
are the same to those appearing in the dimension-four theory,
as it was anticipated in the introduction. As it is well-known,
these contraints are first-class ones, since all their PB vanish,
implying that the Lagrange multipliers remain undetermined.
The primary Hamiltonian describes a degenerate system in
the sense that given a state at an initial time, it evolves fol-
lowing many histories. These histories must be recognized as
physically equivalent because they are consequence of arbi-
trary Lagrange multipliers in the Hamiltonian. At a later time,
the corresponding physically equivalent states on the histo-
ries form an orbit. The states on the orbit are related one to
another through a gauge transformation, the generators being
the first-class constraints. It is clear that only one set of coor-
dinates, corresponding to a representative point of the orbit,
is necessary to specify the state of the system at a given time.

In order to specify a representative set of variables it is ne-
cessary to introduce supplementary conditions, known in the
literature as gauge fixing-conditions, which lift the degene-
ration of the system. For this aim, the number of gauge-fixing
functions must be equal to the number of the first-class cons-
traints. These functions can not be arbitrary at all, they must
have nonvanishing Poisson brackets with the first-class cons-
traints, which implies that first-class constraints and gauge-
fixing functions together form a set of second-class cons-
traints. Since we can lift the degeneration in many diffe-
rent ways, it is clear that there exist many physically equi-
valent classical theories, each one of them determined once a
specific gauge fixing procedure has been chosen. According
to canonical quantization, there is a quantum theory corres-
ponding to each classical Hamiltonian and since all of them
are physically equivalent, one may believe that the quantum
versions of these classical theories must also be physically
equivalent. It is, therefore, reasonable to quantize only one of
the physically equivalent classical theories.
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We will define a specific classical theory using the
Coulomb gauge to lift the degeneration. This supplemen-
tary condition is defined by

χ(1)
a = ∂iA

a
i ≈ 0. (25)

We demand that these constraints be also preserved in time:

χ̇(1)
a =

∫
d3y

{
χ(1)

a (~x ),H(~y )+Ĥ(~y )+λb(~y )Φ(1)

b (~y )}

=
∫

d3y
[{

χ(1)
a (~x ),H(~y )

}
+{χ(1)

a (~x ), Ĥ(~y )
}]

≈ 0. (26)

A direct calculation shows that the second PB in the last ex-
pression vanishes. However, as it was pointed out in the in-
troduction, in the general case this PB would give a nonva-
nishing result on the constraint surface and thus the consis-
tency requirements on the gauge-fixing procedure could be
affected for the higher-dimension terms [11]. The first PB in
this expression is a well-known result of the dimension-four

theory, given by

χ(2)
a = ∂iπ

a
i +Dab

i ∂iA
b
0 ≈ 0, (27)

which constitutes a new constraint. It is not difficult to con-
vince ourselves that consistency conditions imposed on these
constraints does not leads to new constraints, but to the
determination of the Lagrange multipliers. The first-class
constraints [Eqs. (11) and (19)] together with the supple-
mentary conditions [Eqs. (25) and (26] represent indeed a
set of second-class constraints, because the matrix formed
with all PB among the constraints is nonsingular for a confi-
guration of small fields.d The determinant of this matrix is
given by

Det‖{Φa, χb}‖ = det4
[
∂iDab

i δ3(~x− ~y )
] 6= 0, (28)

for small fields, which is sufficient for perturbation theory.

2.3. Matthews’ theorem

We now proceed to probe Matthews’ theorem. The funda-
mental HPI for a system subject to first-class constraints only
is [15]

Z[J ] =
∫
DAa

µDπa
µDet

[{
Φa(~x ), χb(~y )

}
δ(x0 − y0)

]
δ
(
Φ(1)

a

)
δ
(
Φ(2)

a

)
δ
(
χ(1)

a

)
δ
(
χ(2)

a

)

× exp
[
i

∫
d4x

(
πa

µȦµ
a −Heff + J ·A)]

, (29)

whereJ ·A = Ja
µAµ

a , with J representing the sources as-
sociated with the gauge fields. The determinant appear-
ing in this expression can be directly calculated using the
Eqs. (11), (19), (25), and (27). The result is

Det
[{Φa(~x ), χb(~y )}δ(x0 − y0)

]
=

Det2
[
∂iDab

i δ4(x− y)
]
. (30)

For subsequent development, it is convenient to rewrite the
effective Hamiltonian as follows:

Heff =
1
2
Kabijπ

a
i πb

j +
1
4
F a

ijF
a
ij

−Aa
0Φ(2)

a + ε
fabc

3!
F a

ijF
b
jkF c

ki, (31)

whereKabij = δabδij + εfabcF
c
ij . Before carrying out the

momenta integrations, the following remarks are in order.
The structure of the effective Hamiltonian leads to functional
integrals of the Gaussian type, though the coefficients of the
quadratic parts depend on the gauge fields, which may con-
tribute to the action of the theory. Besides, these terms are
not covariant. In the general case, more complicate Hamilto-
nians with arbitrary dependence on the generalized momenta
would appear and use of dimensional regularization would be
necessary in order to eliminate non-covariant terms [9]–[11].

Since the structure of the constraints are the same as in
the renormalizable theory, we follow the standard procedure

to remove the delta functions. We present only some com-
ments on the relevant steps. The integration on the genera-
lized momentaπa

0 is immediate due to the simple structure of
the primary constraints. Next, we integrate on theAa

0 fields
to remove the delta function on the constraintsχ(2). For this,
we use the following relation:

δ(∂iπ
a
i +Dab

i ∂iA
b
0) =

δ(Ab
0 − Âb

0)
Det[Dab

i ∂iδ
4(x− y)]

, (32)

whereÂb
0 is the solution of the differential equation

∂iπ
a
i +Dab

i ∂iA
b
0 = 0. (33)

The resulting integral is modified by using the exponential
representation for the delta function corresponding to the se-
condary constraint, as follows:

δ(Dab
i πb

i ) =
∫
DVa exp

[
− i

∫
d4x VaDab

i πb
i

]
, (34)

whereVa are auxiliary scalar fields, which allow us to rein-
corporate into the measure of integration theAa

0 fields by
means of the change of variablesAa

0 = V a + Âa
0 . After these

considerations, we obtain
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Z[J ]=
∫
DAa

µDπa
i Det

[
∂iDab

i δ4(x− y)
]
δ(∂iA

a
i )

× exp
{

i

∫ [
− 1

2
Kabijπ

a
i πb

j + πa
i

(
Ȧi

a +Dab
i Ab

0

)− 1
4
F a

ijF
a
ij − ε

fabc

3!
F a

ijF
b
jkF c

ki + J ·A
]}

. (35)

The determinant and the delta function appearing in this expression can be treated following the standard procedure by using
the Faddeev-Popov trick to express them in covariant form. In particular, one can use their four-dimensional covariant version,
which is equivalent to make the following change in the generating functional:

Det
[
∂iDab

i δ4(x− y)
]
δ(∂iA

a
i ) → Det

[
∂µDab

µ δ4(x− y)
]
δ(∂µAa

µ −Ba), (36)

where we have introduced the real functions on the space-timeBa(x), which do not alter the previous results. As a field-
independent term multiplying the generating functional does not contributes to physical quantities, we can introduce the fol-
lowing constant term into the generating functional:

∫
DBa exp

{
− i

2ξ

∫
d4xBaBa

}
, (37)

whereξ is a positive real parameter. We can then solve for the delta function. On the other hand, the determinant can be
expressed as a Gaussian functional integration on anticommutingca andc̄ a fields. So we finally obtain

Z[J ] =
∫
DAa

µDc̄ aDcaDπa
i

× exp
{

i

∫ [
− 1

2
Kabijπ

a
i πb

j + πa
i (Ȧi

a+Dab
i Ab

0)−
1
4
F a

ijF
a
ij − ε

fabc

3!
F a

ijF
b
jkF c

ki −
1
2ξ

(∂µAµ
a)2 − c̄ a∂µDab

µ cb+J ·A
]}

. (38)

So far, none of the manipulations made in the HPI were related directly with the effective theory, but only with the renor-
malizable one. Hence, any possible change introduced by the effective theory to the LPI would arise from the Gaussian integrals
on theπa

i momenta in Eq.(38), as a consequence of the dependence on the gauge fields of the coefficientsKabij . Solving these
integrals, we obtain

Z[J ] =
∫
DAa

µDc̄ aDcaDet−
1
2

(
Kabij

2π

)
exp

{
i

∫ [
Leff −

1
2ξ

(∂µAµ
a)2 − c̄ a∂µDab

µ cb + J ·A
]}

, (39)

where Eq. (12) was used to determine the “stationary” point of the Gaussians. The determinant appearing in this expression is
the sole effect arising from the dimension-six term, which can not be removed from the integral since it depends on the gauge
fields. This term can be added explicitly to the action of the theory by using the well-known formulaDet(A) = exp{Tr(ln(A)},
valid for any nonsingularA matrix. After calculating the continuous trace and ignoring a constant factor, we arrive at

Z[J ] =
∫
DAa

µ exp
[
i

∫
d4x

{
Leff −

1
2ξ

(∂µAµ
a)2 − c̄ a∂µDab

µ cb − 1
2
δ4(0)Tr

[
ln

(
δabδij − εfabcF

c
ij

)]
+ J ·A

}]
, (40)

where hereTr indicates the trace on the discrete indices and
the divergent termδ4(0) = δ4(x− x) comes from the space-
time trace. The logarithm in this expression is determined by
its Taylor series:ln(δab−Uab) = Uab +UacUcb + . . . At first
order in theε parameter, its contribution vanishes due to the
antisymmetry of the termfabcF

c
ij :

Tr
[
ln

(
δabδij − εfabcF

c
ij

)] ' εTr
(
fabcF

c
ij

)
= 0. (41)

Thus, the non-covariant terms arising from the dimension-six
term disappear from the LPI. Then, Matthews’ theorem says,
for this theory, that the correct Feynman rules are the naive
ones,i.e., those obtained directly from the gauge invariant ef-
fective Lagrangian together with the usual gauge-fixing and
Faddeev-Popov terms.

To conclude this section, we would like to mention that
the same result is obtained if the dimensional regularization

scheme is used, since in this case the divergent term vanishes:
δ4(0) = 0. Though in our case it is unnecessary to recurs to
this regularization scheme to remove the non-covariant terms,
in the general case, it plays a fundamental role, not only in
eliminating non-covariant terms arising from Gaussian inte-
grals, as in the present work, but, more importantly, in deal-
ing with a HPI depending arbitrarily on the generalized mo-
menta [9–11].

3. BRST invariant effective Lagrangian and
Matthews’ theorem

In this section, we will probe the Matthews’ theorem for
the effective Lagrangian given in Eq. (7), focusing from
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the BRST symmetry point of view. The corresponding ef-
fective Lagrangian would be defined in a configuration space
extended by the ghosts (ca) and anti-ghosts (̄c a) fields, as
well as the auxiliaryBa-fields, which allow to lift the dege-
neration of the gauge invariant Lagrangian in a covariant and
quite general way.

3.1. The BRST invariant effective Lagrangian

Under the BRST symmetry [5], the gauge fields (and also
the matter ones) are transformed according the infinitesimal
form of the gauge symmetry. The ghost fields are related to
the gauge group parameters (αa) throughca = ηαa, whereη
is an anticommuting constant. These fields are subject to the
requirementca† = ca and c̄ a† = −c̄ a, which guarantees a
Hermitian action. The corresponding BRST transformations
are given by

δBRSTAa
µ =ηsAa

µ = ηDab
µ cb, (42)

δBRSTca =ηsca = η

(
− g

2
fabcc

bcc

)
, (43)

δBRSTc̄ a =ηsc̄ a = ηBa, (44)

δBRSTBa =ηsBa = 0, (45)

where s is the BRST operator. These transformations are
nilpotent in the sense thats2 = 0, leading to the existence
of an unitaryS-matrix [16].

The BRST invariant action associated with the effective
gauge theory in consideration can be written as follows:

Seff
BRST = Seff

GI + sΨ, (46)

whereSeff
GI is the gauge invariant action for the effective theo-

ry, which was studied in the previous section, and the so
called gauge-fermion functionalΨ has the form

Ψ =
∫

d4x

(
fa +

ξ

2
Ba

)
c̄ a, (47)

wherefa are the covariant gauge-fixing functions andξ is a
real positive number. Taking into account the BRST transfor-
mations given by Eqs.(42-45), the actionsΨ takes the form

sΨ =
∫

d4x

[
Bafa +

ξ

2
BaBa + (sfa)c̄ a

]
, (48)

which define the usual gauge-fixing and Faddeev-Popov-
ghost terms, given by

LGF =Bafa +
ξ

2
BaBa, (49)

LFPG =(sfa)c̄ a. (50)

In a dimension-four theory, the gauge-fixing functionsfa are
restricted to satisfy, besides Lorentz covariance, the Dyson
prescription of renormalizability. In our case, we are res-
tricted to use only a covariant gauge, though for our purpose
it is sufficient to use the simplest gauge, namely, the Lorenz
one, given by

fa = ∂µAaµ. (51)

In this gauge, the BRST invariant effective Lagrangian can
be written as

LBRST
eff = Leff + Ba∂µAaµ +

ξ

2
BaBa − c̄ a∂µDµ

abc
b, (52)

whereLeff is the gauge invariant effective Lagrangian given
by Eq. (7). The corresponding equations of motion can be
written as

Dab
µ F̂ bνµ + ∂νBa =gfabcc̄

b∂νcc, (53)

ξBa =− ∂µAa
µ, (54)

∂µDab
µ c̄ b =0, (55)

Dab
µ ∂µc̄ b =0, (56)

where the tensor̂F a
µν was already presented in Eq. (9).

3.2. The effective Hamiltonian

The structure of the configuration space in which the BRST
symmetry is defined implies the existence of a correspond-
ing phase space extended by theca, c̄ a, Ba fields and their
generalized momenta. The momenta associated with this new
phase space are given by

πa
0 =

∂LBRST
eff

∂Ȧa
0

= Ba, (57)

πa
B =

∂LBRST
eff

∂Ḃ
= 0, (58)

πa
i =

∂LBRST
eff

∂Ȧa
i

= (δac + εfabcF b
ij)F

c
0j , (59)

πa
c =

∂LBRST
eff

∂ċa
= ˙̄c a, (60)

πa
c̄ =

∂LBRST
eff

∂ ˙̄c a
= Dab

0 cb. (61)

The Eqs. (59-61) can be solved for the corresponding veloci-
ties (at first order inε) as follows:

Ȧa
i =

(
δacδij + εfabcF b

ij

)
πc

j + ∂iA
a
0 − gfabcAb

0A
c
i , (62)

ċa =πa
c̄ + gfabcc

bAc
0, (63)

˙̄ca =πa
c , (64)

whereas the remaining ones lead to the following primary
constraints:

Φa
1 =πa

0 −Ba ≈ 0, (65)

Φa
2 =πa

B ≈ 0. (66)

We immediately see that these constraints, besides their alge-
braic simplicity, are of the second-class type. In fact, after a
simple calculation one obtains

Det‖{Φa
m(~x ), Φb

n(~y )
}‖ = δabδ3(~x− ~y ), (67)

wherem,n = 1, 2.
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The primary effective Hamiltonian can be written as

H(1)

eff = HBRST + λa
mΦa

m, (68)

where

HBRST = Heff −Ba∂iA
a
i −

ξ

2
BaBa + πa

c̄ πa
c + ∂ic̄

aDab
i cb + gfabcπ

a
c cbAc

0. (69)

HereHeff is the effective Hamiltonian given by Eqs. (15)–(17). From Eq. (67), we can see that the consistency conditions on
the constraints determine the Lagrange multipliers.

It should be emphasized the fact that these second-class constraints arise directly from the gauge-fixing procedure,i.e., it is
the structure of thesΨ action which determine their nature and structure, which have nothing to do with the nonrenormalizable
terms.

3.3. Matthews’ theorem

The fundamental HPI for a system subject to second-class constrainst only is given by [17]

Z[J ] =
∫
DAa

µDc̄ aDcaDBaDπa
µDπa

c̄Dπa
cDπa

B

×Det
1
2
[{

Φa
m(~x ), Φb

n(~y )
}
δ(x0 − y0)

]
δ(Φa

1)δ(Φ
a
2) exp

{ ∫
d4x

[
πa

µȦµ
a + πa

c ċa + πa
c̄
˙̄ca + πa

BḂa −HBRST + Jφ
]}

, (70)

Since the determinant appearing in this expression does not depends on the fields, it can be neglected in the HPI. On the other
hand, the integrations on theπa

B momenta are trivial, while those on theπa
0 momenta restore the covariant form of the gauge-

fixing functions. Besides, the integrals on the ghost and anti-ghost fields momenta are of Gaussian type and can be solved
immediately. Since the coefficients of the quadratical parts do not depend on the fields and using Eqs. (63) and 64) for the
“stationary point” of the Gaussians, we arrive at

Z[J ] =
∫
DAa

µDc̄ aDcaDBaDπa
i exp

{
i

∫ [
− 1

2
Kabijπ

a
i πb

j + πa
i (Ȧi

a +Dab
i Ab

0)

−1
4
F a

ijF
a
ij − ε

fabc

3!
F a

ijF
b
jkF c

ki − c̄ a∂µDab
µ cb + Ba∂µAa

µ +
ξ

2
BaBa + J ·A

]}
. (71)

Noting that the integrations on the auxiliaryBa-fields are also of Gaussian type and taking into account that the coefficients of
the quadratics parts do not depend on the fields, we obtain

Z[J ] =
∫
DAa

µDc̄ aDcaDπa
i exp

{
i

∫ [
− 1

2
Kabijπ

a
i πb

j + πa
i (Ȧi

a +Dab
i Ab

0)

−1
4
F a

ijF
a
ij − ε

fabc

3!
F a

ijF
b
jkF c

ki − c̄ a∂µDab
µ cb − 1

2ξ
(∂µAµ

a)2 + J ·A
]}

, (72)

where, as before, constant factors arising from field-independent determinants have been neglected. This expression coincides
with those given in Eq.(38) of Sec. 2 which contain the non-covariant contributions arising from the dimension-six term.
Hence, the conclusions concerning Matthews’ theorem are the same of Sec. 2. It should be stressed that BRST-symmetry
greatly simplifies its probe, making evident that any non-covariant contribution to the LPI only can arises from the structure of
the HPI on the generalized momenta associated with the gauge fields and not from the constraints of the theory.

4. Conclusions

In this paper we have presented a study of Matthews’ theorem for an effective Yang-Mills theory without matter fields, whose
Lagrangian includes all invariant terms up to dimension six. This theorem was probed from both the gauge and BRST symme-
tries point of views. The nature and structure of the constraints arising from the effective Lagrangian were studied with certain
detail. It was shown that the presence of nonrenormalizable invariant terms can not modify, neither in their structure nor in their
number, the constraints arising from the dimension-four theory. It was found that any possible source of non-covariant effects
to the LPI can arises only from the specific dependence of the HPI on the generalized momenta. It was stressed that these facts
are more transparent from the BRST-symmetry point of view. In the special effective Lagrangian considered in this work, it
was found that the HPI has a dependence of the Gaussian type on the generalized momenta and can explicitly be solved. Their
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non-covariant implications on the LPI can be eliminated us-
ing the dimensional regularization scheme, though in our
case it was unnecessary, since this term vanish at first order
in the unknownε parameter as a consequence of the symme-
tries of the effective Lagrangian. This regularization scheme
would play a fundamental role in eliminating non-covariant
structures arising from a HPI depending arbitrarily on the
generalized momenta. For the effective Lagrangian studied
here, Matthews’ theorem says that the correct Feynman rules
are those obtained directly from the BRST-invariant effective

Lagragian. This conclusion would be valid in the general case
if the effective theory is regularized using the dimensional
scheme.
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a. In the following, always we refer to the general case, it must
be understood that the effective Lagrangian in consideration is
gauge invariant and contain all invariant structures of arbitrary
dimension, including matter fields.

b. It is possible to construct another independent term by sub-
stituting in L6 one of the strength tensor by its dual:
eF a

µν = (1/2)εµνλρF aλρ, but this class of structures will be not
considered here, for simplicity.

c. Through the paper, we will write weak equations using the sym-
bol≈.

d. For large values of the fields, the Gribov phenomenon arises
and no gauge-fixing is possible [14].
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