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It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the
Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics.
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Se muestra que las constantes de movimiento del oscilador armónico bidimensional iśotropo no relacionadas con la invarianza rotacional del
hamiltoniano, pueden derivarse usando las ideas de la mecánica cúantica supersiḿetrica.
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1. Introduction

The hydrogen atom and the isotropic harmonic oscillator are
perhaps the best known examples of systems with hidden
symmetry,i.e., the Hamiltonian is invariant under a group of
transformations which is larger than the rotation group asso-
ciated with the “obvious” rotational invariance of the Hamil-
tonian. The existence of this larger group corresponds to that
of constants of motion in addition to the angular momen-
tum. In Ref. 1 it has been shown that the hidden symme-
try of the two-dimensional hydrogen atom can be deduced
using the ideas of supersymmetric quantum mechanics. The
aim of this paper is to present a similar derivation for the
two-dimensional isotropic harmonic oscillator (TIHO). As
we shall show below, despite the well-known connection be-
tween the hydrogen atom and the isotropic harmonic oscil-
lator, there are some interesting differences in the derivation
of the extra constants of motion which are related to the fact
that in the case of the hydrogen atom these extra constants of
motion are the components of a vector (the so-called Runge–
Lenz vector) while in the case of the isotropic harmonic os-
cillator the extra constants of motion are the components of a
second-rank tensor.

2. Supersymmetric factorization and shift
operators

The rotational invariance of the Hamiltonian of the TIHO al-
lows one to separate the Schrödinger equation in polar co-
ordinates and the radial part of the wavefunction is deter-

mined by an effective potential that is the sum of the true
(harmonic oscillator) potential and a centrifugal potential that
depends on the angular momentum quantum numberm. In
the case of the hydrogen atom, the effective potentials for
two neighboring values ofm are supersymmetric partners of
each other [1]; however, in the case of the TIHO, following
an analogous procedure, one obtains operators that connect
radial wavefunctions with neighboring values ofm but with
values of the energy that differ by one unit of~ω (by con-
trast, for the hydrogen atom there is no energy shift). Then
by composing two of these shifting operators, with appropri-
ate values of the parameters, one obtains operators that con-
nect radial wavefunctions with the same energy and values
of m differing by 2. Since a constant of motion (that does
not depend explicitly on the time) maps an eigenstate of the
Hamiltonian into another with the same energy, one may sus-
pect that the composition mentioned above corresponds to a
constant of motion. As shown below, one indeed obtains two
constants of motion in this manner and the fact that the value
of m is shifted by two units is related to the fact that these
constants of motion are components of a tensor (and not a
vector as in the case of the hydrogen atom).

Following Ref. 1, we shall summarize the relevant infor-
mation about supersymmetric quantum mechanics that will
be required in what follows (for a more complete discus-
sion see Refs. 2–8). Ifu0 is the wavefunction of the ground
state of a particle of massM in a one-dimensional poten-
tial V (x), i.e.,

Hu0(x) = − ~2

2M
u′′0(x) + V (x)u0(x) = E0u0(x), (1)
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then, makingE0 = 0 by redefining the energy, the poten-
tial V (x) is given by

V (x) =
~2

2M

u′′0(x)
u0(x)

, (2)

and letting

A ≡ ~(2M)−1/2

(
d

dx
+

u′0
u0

)
,

A† ≡ ~(2M)−1/2

(
− d

dx
+

u′0
u0

)
, (3)

one finds that

AA† = − ~2

2M

d2

dx2
+ V (x) = H. (4)

The operator

HS ≡ A†A = H +
~2

M

[(
u′0
u0

)2

− u′′0
u0

]
, (5)

is called the supersymmetric partner ofH. The operatorsH
andHS have the same eigenvalues, with the exception of the
ground state energyE0, which is missing in the spectrum

of HS. The operatorA† maps any eigenstate ofH, different
from the ground state, into an eigenstate ofHS, with the same
energy. (Note thatA†u0 = 0.) In a similar way,A maps any
eigenstate ofHS into an eigenstate ofH with the same eigen-
value.

The time-independent Schrödinger equation for a parti-
cle in two dimensions subjected to a central potentialV (r),
in polar coordinates has the form

− ~2

2M

[
1
r

∂

∂r

(
r
∂ψ

∂r

)
+

1
r2

∂2ψ

∂θ2

]
+ V (r)ψ = Eψ, (6)

hence, writingψ(r, θ)=r−1/2u(r)eimθ, (m=0,±1,±2, . . .)
one finds thatu satisfies the one-dimensional Schrödinger
equation

Hmu ≡ − ~2

2M

d2u

dr2
+

[
V (r)+

~2

2M

m2 − 1/4
r2

]
u = Eψ. (7)

In the case of the TIHO,V (r) = Mω2r2/2 and the effective
potential in Eq. (7) is given by

Vm(r) =
1
2
Mω2r2 +

~2

2M

m2 − 1/4
r2

. (8)

The “ground state” of the one-dimensional Schrödinger equa-
tion with the potential (8) is

u0 = Nrm+1/2 exp(−Mω2r2/2~), (9)

whereN is a normalization constant; hence, from (3) we find
that

Am = ~(2M)−1/2

(
d

dr
+

m + 1/2
r

− Mωr

~

)
,

A†m = ~(2M)−1/2

(
− d

dr
+

m + 1/2
r

− Mωr

~

)
, (10)

and a straightforward computation gives

AmA†m = Hm − (m + 1)~ω,

A†mAm = Hm+1 −m~ω. (11)

Thus, except for constant terms,AmA†m andA†mAm are the
HamiltoniansHm andHm+1 respectively; however, the fact
that the constant terms in Eq. (11) differ by~ω implies that
the operatorsA†m andAm transform eigenstates ofHm into
eigenstates ofHm+1 and conversely, with energies that dif-
fer by ~ω. For instance, ifu is an eigenfunction ofHm with
eigenvalueE, Hmu = Eu, then, according to (11),

Hm+1(A
†
mu) = (A†mAm + m~ω)A†mu

= A†m
[
Hm − (m + 1)~ω

]
u + m~ωA†u

= (E − ~ω)A†mu,

showing thatA†mu is an eigenfunction ofHm+1 with eigen-
value E, provided thatA†mu 6= 0. In an analogous way
one finds that ifu is an eigenfunction ofHm+1 with eigen-
valueE, thenAmu is an eigenfunction ofHm with eigen-
value E + ~ω; hence, loosely speaking,A†m increases the
value ofm by 1 and decreases the value of the energy by~ω
while Am has the opposite effects.

Denoting the operatorsAm andA†m, defined by Eq. (10),
asAm(ω) andA†(ω), respectively, one finds thatA†m(−ω)
increases the value ofm and also increases the energy by~ω,
while Am(−ω) decreases the value ofm and of the energy.
Hence, the composition

Q†
m ≡ A†m+1(−ω)A†m(ω) = A†m+1(ω)A†m(−ω) (12)

must increase the value ofm by 2, without changing the ener-
gy; therefore, it may correspond to an operator that commutes
with the Hamiltonian of the TIHO. In effect, making use of
Eqs. (10) and (12), one obtains

Q†
m =

~2

2M

[
d2

dr2
− 2(m + 1)

r

d

dr
+

(m + 1/2)(m + 5/2)
r2

− M2ω2r2

~2

]
. (13)

In order to find the effect ofQ†m on the complete wavefunction, we have to take into account thatQ†m acts on the radial part
of a wavefunction with angular dependenceeimθ, yielding the radial part of a wavefunction with angular dependenceei(m+2)θ
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and that the radial part of the wavefunctionψ(r, θ) is equal tor−1/2u(r); hence,Q†m corresponds to the operator

Q† =
~2

2M
e2iθr−1/2

[
∂2

∂r2
− 2

r

(
1− i

∂

∂θ

)
∂

∂r
+

1
r2

(
1
2
− i

∂

∂θ

)(
5
2
− i

∂

∂θ

)
− M2ω2r2

~2

]
r1/2

=
~2

2M
e2iθ

(
∂2

∂r2
− 1

r

∂

∂r
+

2i

r

∂

∂θ

∂

∂r
− 2i

r2

∂

∂θ
− 1

r2

∂2

∂θ2
− M2ω2r2

~2

)

=
~2

2M

[
eiθ

(
∂

∂r
+

i

r

∂

∂θ

)
eiθ

(
∂

∂r
+

i

r

∂

∂θ

)
− ∂2

∂θ2
− M2ω2

~2
(reiθ)2

]
,

which does not contain the quantum numberm, or, in terms
of Cartesian coordinates,

Q† =
~2

2M

[(
∂

∂x
+ i

∂

∂y

)2

− M2ω2

~2
(x + iy)2

]

= − 1
2M

[
(px + ipy)2 + M2ω2(x + iy)2

]
. (14)

A straightforward computation shows thatQ† indeed
commutes with the Hamiltonian of the TIHO. Then, writing
Q† = −ω(Q1 + iQ2), with Q1 andQ2 Hermitean, it fol-
lows thatQ1 andQ2 are two Hermitean constants of motion,
which are components of the second-rank symmetric trace-
less tensor

qij =
1

Mω
(pipj + M2ω2xixj)

− 1
2Mω

[
p2

x + p2
y + M2ω2(x2 + y2)

]
δij ,

for i, j = 1, 2 (Q1 = q11, Q2 = q12).

3. Concluding remarks

The results presented here, as well as those of Ref. 1, show
that in some cases the hidden symmetries of a Hamiltonian
can be deduced making use of the supersymmetry quantum
mechanics.

If one considers the time-independent Schrödinger equa-
tion in three dimensions with a central potentialV (r),
the radial equation can be reduced to a one-dimensional
Schr̈odinger equation of the form (7), withm2−1/4 replaced
by l(l + 1), and in case of the isotropic harmonic oscillator
the steps between Eqs. (10) and (13) also apply, but while in
the two-dimensional case it is easy to replace the quantum
numberm by a differential operator, owing to the simplicity
of the angular dependence of the wavefunction, in the three-
dimensional case, where the angular dependence of the wave-
function is given by the spherical harmonics, it is not so easy
to obtain an analog of the operatorQ (see also Ref. 1).
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