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It is shown that the constants of motion of the two-dimensional isotropic harmonic oscillator not related to the rotational invariance of the
Hamiltonian can be derived using the ideas of supersymmetric quantum mechanics.
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Se muestra que las constantes de movimiento del osciladonarorbidimensional istropo no relacionadas con la invarianza rotacional del
hamiltoniano, pueden derivarse usando las ideas de lanmitecc@ntica supersigtrica.

Descriptores:Mecanica ci@ntica supersigtrica; simetias ocultas

PACS: 03.65.Fd

1. Introduction mined by an effective potential that is the sum of the true
(harmonic oscillator) potential and a centrifugal potential that

The hydrogen atom and the isotropic harmonic oscillator ar(gepends on the angular momentum quantum numbein

perhaps the best known examples of systems with hiddeWe case of t_he hydrogen atom, the effective_ potentials for
symmetry,i.e., the Hamiltonian is invariant under a group of two neighboring values of: are supersymmetric partners of

transformations which is larger than the rotation group asso(-eaCh other [1]; however, in the case of the TIHO, following

ciated with the “obvious” rotational invariance of the Hamil- " analogous procedure, one obtains operators that connect

tonian. The existence of this larger group corresponds to thf{f"dial wavefunctions with neighboring valuessefbut with

of constants of motion in addition to the angular momen-'2lues of the energy that differ by one unitib (by con-

tum. In Ref. 1 it has been shown that the hidden Symme'grast, for the hydrogen atom there is no energy shift). Then

try of the two-dimensional hydrogen atom can be deducedy COMPOsing two of these shifting operators, with appropri-
using the ideas of supersymmetric quantum mechanics. THE® valut_as of the parameters, one obtains operators that con-
aim of this paper is to present a similar derivation for thenect radial wavefunctions with the same energy and values

two-dimensional isotropic harmonic oscillator (TIHO). As of m differing bY 2 Since a (_:onstant of mot|_on (that does
we shall show below, despite the well-known connection beot depend explicitly on the time) maps an eigenstate of the

tween the hydrogen atom and the isotropic harmonic osciIHam":]O”'?n Into anot_h_erwnh th_e sa(rjnebenergy, one maél sus-
lator, there are some interesting differences in the derivatioR€Ct that the composition mentioned above corresponds to a

of the extra constants of motion which are related to the fac‘t:OnStant of motion. As shown below, one indeed obtains two

that in the case of the hydrogen atom these extra constants 8 nstants of motion in this manner and the fact that the value

motion are the components of a vector (the so-called Runge2 """ 'S Sh'ﬁfed by two units is related t(; the fact that (;hese
Lenz vector) while in the case of the isotropic harmonic os-fonstants of motion are components of a tensor (and not a

cillator the extra constants of motion are the components of yector as In the case of the hydrogen e_xtom). .
second-rank tensor. Following Ref. 1, we shall summarize the relevant infor-

mation about supersymmetric quantum mechanics that will
be required in what follows (for a more complete discus-

2. Supersymmetric factorization and shift sion see Refs. 2-8). H, is the wavefunction of the ground
) state of a particle of masd/ in a one-dimensional poten-

operators tial V(z), i.e.

The rotational invariance of the Hamiltonian of the TIHO al- R,

. o =—— 1% —E .
lows one to separate the Sokinger equation in polar co- () 20 0 (@) + V(@)uo(2) oto(@), (1)
ordinates and the radial part of the wavefunction is deter-
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then, makingE,, = 0 by redefining the energy, the poten- The “ground state” of the one-dimensional Sitinger equa-

tial V() is given by tion with the potential (8) is
V({,C) _ ﬁug(x) (2) Uy = NT'rrH-l/Q exp(_1\414(}2,'2/277/)7 (9)
2M uy(z)’
whereN is a normalization constant; hence, from (3) we find
and letting that
d  uf _ d m+1/2 Mor
d _ d m+1/2 Mowr
T = 71/2 [ — 70 AT = 2M 1/2 _ — —
one finds that and a straightforward computation gives
2 g2 T _
AN = T V@ = B @ Amdhon = Hyn = (m o+ D,
X
AInAm = H'rrz+1 —mhw. (11)

The operator
Thus, except for constant termg,, AT and Al A,, are the
ug 2 ug (5) HamiltoniansH,, andH,,, , , respectively; however, the fact
) ]’ that the constant terms in Eq. (11) differ by implies that

, . the operatorsi! and A, transform eigenstates @f,, into
is called the supersymmetnc partner@'f The operat_orsH eigenstates off,, ., and conversely, with energies that dif-
and Hq have the same eigenvalues, with the exception of thc?

S er by hw. For instance, if; is an eigenfunction of,,, with
ground state energy,, which is missing in the spectrum eigenvalue®, H_u — Eu, then, according to (11)
of Hy. The operatorA™ maps any eigenstate &f, different o ’ ’ 7
from the ground state, into an eigenstatéfaf withthe same ~ H, . (Al u) = (A6 A, + mhw) Al u
energy. (Note thatifu, = 0.) In a similar way,A maps any ; ;
eigenstate offy into an eigenstate df with the same eigen- = Al [Hy, — (m+ Dhw]u +mhwATu

value. = (E — hw) Al u,
The time-independent Sdtdinger equation for a parti- "

cle in two dimensions subjected to a central poteritiagt),  showing thatA,u is an eigenfunction off,, . ; with eigen-

h2
HSATAH+K

M [\ u,

in polar coordinates has the form value E, provided thatAf v # 0. In an analogous way
10/ o0 1 6% one finds that ifu is an eigenfunction of7,, , ; with eigen-
- { <T> + 22] +V(r)y = Ey, (6) valueFE, thenA, uis an eigenfunction off,, with eigen-
2M |[ror \ or r2 90 value E + hw; hence, loosely speakingl! increases the

value ofm by 1 and decreases the value of the energjidy
while A4, has the opposite effects.
Denoting the operatorg,, andAf , defined by Eq. (10),

hence, writing) (r, ) =7~ /2u(r)e’™?, (m=0, +£1,+2,...)
one finds that, satisfies the one-dimensional Sgtlinger

equation as4,,(w) and Af(w), respectively, one finds that! (—w)
72 d2u K m?—1/4 increases the value af and also increases the energyry,
Hpu=—orr gt {V(THQMTQ} uw=Ep. (7)  while A,,(—w) decreases the value of and of the energy.

Hence, the composition
In the case of the TIHOY (r) = Mw?r?/2 and the effective

potential in Eq. (7) is given by Ql, = Al (~w) Al (w) = Al | (W) Al (~w)  (12)
1 ., W2 m?-1/4 must increase the value of by 2, without changing the ener-
Vi(r) = oMW+ o (8)  gy; therefore, it may correspond to an operator that commutes

with the Hamiltonian of the TIHO. In effect, making use of
| Egs. (10) and (12), one obtains

o — nd 2(m+1)i+ (m+1/2)(m+5/2)  M°wr?
™M | dr? r dr r2 h2 ’

(13)

In order to find the effect of)!, on the complete wavefunction, we have to take into account@faacts on the radial part
of a wavefunction with angular dependeré&?, yielding the radial part of a wavefunction with angular dependet¢e2)?
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and that the radial part of the wavefunctiotr, §) is equal tor—/2u(r); hence Q! corresponds to the operator

R . 0% 2 oo 1/1 d\ (5 0 M?2w%r?
J[:i 2160 71/2 ~ = _ .2\ = =z _ . e _ s = 1/2
@ =5y [aﬂ r(l Zae) 8r+r2(2 lae)<2 Zae) R2 }r

h22i9(32 10 200 20 10 W)

“on® \o2 ror T v o60r o0 2ok R
R [f(0 0\ ,(0 id 02 M2w? .,
_QM[G <a7~+rae)e (mﬂag)aez‘m“‘? )]’

which does not contain the quantum numberor, in terms
of Cartesian coordinates,

B2 [/ 0 o\? M2w?
T: J— - ;o _ . . 2
@ = [(ax +Z(‘3y> @t iy) }

I
3. Concluding remarks

The results presented here, as well as those of Ref. 1, show
that in some cases the hidden symmetries of a Hamiltonian

= —ﬁ [(Pr +ip,)? + M*?(x + z’y)ﬂ . (14 can be deduced making use of the supersymmetry quantum
mechanics.
A straightforward computation shows thgt' indeed If one considers the time-independent Sxfinger equa-
commutes with the Hamiltonian of the TIHO. Then, writing tion in three dimensions with a central potentigl(r),
Q" = —w(Q, +1iQ,), with Q, and @, Hermitean, it fol- the radial equation can be reduced to a one-dimensional

lows that@, and@., are two Hermitean constants of motion, Schiddinger equation of the form (7), with? —1/4 replaced
which are components of the second-rank symmetric tracedy (I + 1), and in case of the isotropic harmonic oscillator

less tensor the steps between Egs. (10) and (13) also apply, but while in
1 . the two—dimensi(_)nal case it is easy to_ replace thfa qu_a_ntum
Q5 = m(pipj + M w z ;) numberm by a differential operator, owing to the simplicity
of the angular dependence of the wavefunction, in the three-
- [Pi =+ pz + M2w2(x2 + yQ)] 5ijs dimensional case, where the angular dependence of the wave-
2Mw function is given by the spherical harmonics, it is not so easy
fori,j =1,2(Q7 = ¢11, @2 = ¢12)- to obtain an analog of the operat@r(see also Ref. 1).
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